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Abstract

The estimation of genetic clusters using genomic data has application from genome-wide

association studies (GWAS) to demographic history to polygenic risk scores (PRS) and is

expected to play an important role in the analyses of increasingly diverse, large-scale

cohorts. However, existing methods are computationally-intensive, prohibitively so in the

case of nationwide biobanks. Here we explore Archetypal Analysis as an efficient, unsuper-

vised approach for identifying genetic clusters and for associating individuals with them.

Such unsupervised approaches help avoid conflating socially constructed ethnic labels with

genetic clusters by eliminating the need for exogenous training labels. We show that Arche-

typal Analysis yields similar cluster structure to existing unsupervised methods such as

ADMIXTURE and provides interpretative advantages. More importantly, we show that since

Archetypal Analysis can be used with lower-dimensional representations of genetic data,

significant reductions in computational time and memory requirements are possible. When

Archetypal Analysis is run in such a fashion, it takes several orders of magnitude less com-

pute time than the current standard, ADMIXTURE. Finally, we demonstrate uses ranging

across datasets from humans to canids.

Author summary

This work introduces a method that combines the singular value decomposition (SVD)

with Archetypal Analysis to perform fast and accurate genetic clustering by first reducing

the dimensionality of the space of genomic sequences. Each sequence is described as a

convex combination (admixture) of archetypes (cluster representatives) in the reduced

dimensional space. We compare this interpretable approach to the widely used genetic

clustering algorithm, ADMIXTURE, and show that, without significant degradation in

performance, Archetypal Analysis outperforms, offering shorter run times and represen-

tational advantages. We include theoretical, qualitative, and quantitative comparisons

between both methods.

This is a PLOS Computational BiologyMethods paper.
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Introduction

Estimating ancestry cluster allele frequencies and cluster membership from single nucleotide

polymorphism (SNP) data is important for many applications in population genetics and

applying such methods to characterize diverse human cohorts has become an essential part of

large-scale genomic studies. With the growing number of samples in whole genome databases,

efficient population clustering techniques that can handle such sample sizes have become

increasingly important. Existing techniques for the clustering of genomes include STRUC-

TURE [1], FRAPPE [2] and, ADMIXTURE [3]. These compute probabilistic values referred to

as ancestry coefficients that represent the fraction of the genome of an individual attributable to

a particular population cluster. These methods can perform both supervised and unsupervised

inference of ancestry coefficients. Supervised inference requires reference individuals from pre-

defined ancestral populations, while unsupervised inference uses the structure of the genome-

wide data alone. These existing approaches perform inference via Bayesian [1] or likelihood

based methods [2, 3] and tend to be computationally expensive due to the high dimensionality

of genomic data.

Dimensionality reduction techniques such as multidimensional scaling (MDS), principal

component analysis (PCA) and uniform manifold approximation (UMAP) have been used to

overcome the high dimensionality of genomic data [4, 5], and have become indispensable for

visualization and representation of diversity amongst genomic sequences. In PCA, samples are

projected onto the axes of highest variation, each of which is a linear combination of allelic

dosages across variants [6]. This method has become particularly important in genome-wide

association studies and has also been used to investigate the distribution of genetic variation

across geography [7]. An advantage is that no assumptions are made about ancestral popula-

tions; however, interpretation can often be misleading if sampling designs are irregular. Unsu-

pervised clustering techniques such as ADMIXTURE or Archetypal Analysis (AA) can

complement PCA to provide a detailed description of data and to augment visualization. In

this work we show how AA can be coupled with PCA, specifically the Single Value Decompo-

sition (SVD), to efficiently cluster samples providing shorter run-times than STRUCTURE or

ADMIXTURE. We also discuss how these techniques work, where they differ, and how they

relate to well established general-purpose clustering techniques such as K-Means and

K-Medioids.

Materials and methods

System overview

The complete proposed pipeline is presented in Fig 1.

Singular value decomposition. If we observe N individuals atM SNP positions, each

individual i can be represented by a genotype vector xi 2 f0; 1

2
; 1g

M
, where each position j in xi

indicates the average number of alternate alleles found for each j (position) and i (individual’s

diploid genome). By aggregating xi the vectors for all individuals, we obtain anM ×N genotype

matrix X = [x1,. . .,xN]. We center the columns of X to produce data matrix Xc of centered

genotype vectors and then compute the SVD:

Xc ¼ UΣVT ð1Þ

This yields U and V, the left and right-singular vectors respectively. The first N − 1 scores

X0 = US can then be used as input for Archetypal Analysis. As described in [6] these vectors

are made up of a linear combination (rotation) of genotypic values across the genome.
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Because the subspace spanned by the centered genotype vectors can have no more than N
− 1 dimensions with N the number of samples, there is no loss of information in projecting

these centered genotype vectors onto their N − 1 right singular vectors before applying Arche-

typal Analysis. This operation corresponds simply to a rotation of the coordinate system fol-

lowed by a pruning of the unused dimensions and yields a space that generally has much

smaller dimensionality (N − 1) than the original space (M, number of genotyped positions),

since typically N�M.

Archetypal Analysis. This non-negative matrix factorization method was first developed

by Cutler and Breiman in 1994 [8], and here it represents each individual as a convex combi-

nation of extreme points, or archetypes, in allele frequency space. In particular, given an N xM
multivariate data set X with N individuals andM SNPs, for a given number of archetypes or

clusters K, the algorithm finds theM x Kmatrix of archetypes Z according to two principles:

1. The samples are approximated as convex combinations of the archetypes such that the

residual sum of squares (RSS) between the approximation and original data is minimized:

RSS ¼ jjX � αZTjj
2

F ð2Þ

with k � k2
F representing the squared Frobenius norm, α representing the fractional ancestry

assignments, so
PK

j¼1
aij ¼ 1, 1� αij� 0 for i = 1, . . ., N, and j = 1, . . ., K.

2. The archetypes are convex combinations of the samples:

Z ¼ XTβ ð3Þ

with β an N × Kmatrix and βij indicating the weight of sample i at archetype j, and
PN

i¼1
bij ¼ 1 with 1� βij� 0.

By combining Eqs 2 and 3 we have:

RSS ¼ jjX � αβTXjj2F ¼
X

i

jjxi �
X

k

aik

X

j

bkjxjjj
2

2 ð4Þ

Where k � k2
2

represents the squared L2 norm.

Fig 1. Archetypal Analysis pipeline. The allele counts from both haplotypes of each of N individuals are averaged and then dimensionally-reduced fromM SNPs to N
− 1 element singular vectors via the SVD. Archetypal Analysis then implements an alternating non-negative matrix factorization algorithm that minimizes a

constrained sum of squares to find ancestry proportions (α) and cluster centroids (Z0; archetypes, Z0 = ZVT). Archetypal analysis models the individual genotypes as

originating from the admixture of K parental populations, where K is an input parameter. For visualization we create bar plots for proportions of archetype

assignments given by the matrix α, and project archetypes Z into a 3D subspace using the first three principal components of the individual genotype sequences.

https://doi.org/10.1371/journal.pcbi.1010301.g001
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The optimization problem presented in Eqs 2 and 3 consists of finding the weight matrices

α and β for a given data matrix X and a particular number of archetypes K. This is commonly

solved through an iterative process of optimizing α and β in an alternating fashion. For a fixed

set of values for α, finding the optimal values for β is reduced to a constrained least squares

problems, and vice versa [8]. The iterative process is typically repeated until the quality of the

decomposition reaches a pre-defined threshold, or up to a fixed maximum number of steps.

The constrained least square optimization problem can be solved through a variety of tech-

niques. Here we make use of the implementation of [9], which utilizes a non-negative least

squares solver obtaining αij� 0 and βij� 0, where an extra dimension is added to enforce
Pn

i¼1
aij ¼ 1 and

Pn
i¼1
bij ¼ 1. There are multiple open-source packages available in R [10],

Python [9] and MATLAB [11] that implement Archetypal Analysis.

Unlike ADMIXTURE, Archetypal Analysis permits the use of rotated and projected

(dimensionally reduced) representations of SNP data. If all singular vectors are used, the resid-

ual sum of squares of the decomposition (RSS0) using projected data X0 is equivalent to the RSS
of the original decomposition:

RSS0 ¼
X

i

jjx0i �
X

k

aik

X

j

bkjx
0

jjj
2

2
¼
X

i

jjPðxi � μÞ �
X

k

aik

X

j

bkjPðxi � μÞjj2
2

¼
X

i

jjPxi � Pð
X

k

aik

X

j

bkjxjÞjj
2

2

¼
X

i

jjxi �
X

k

aik

X

j

bkjxjjj
2

2
/ RSS

ð5Þ

This is because the projection matrix P = V is the orthonormal rotation matrix of X onto its

singular vector axes.

Thus, as discussed earlier, using the singular value decomposition permits us to perform

AA clustering on a matrix having dimensions of only N × N − 1 instead of N ×M. Note that

although the learnt parameters of AA, α and β, do not depend onM, the computation times

for Z and the RSS do, therefore, working in lower dimensions reduces the computational load.

Constrained optimization. Non-negative least squares (NNLS) is a constrained least

squares problem in which coefficients are always non-negative (Eq 8). Archetypal Analysis

includes an additional constraint coefficient C and adds a row of ones to matrices involved in

optimization after every NNLS iteration (Eqs 9 and 10) to ensure the coefficients also sum to

one, one of the defining properties of Archetypal Analysis.

Given an N ×Mmatrix X representing a multivariate data set with N observations andM
attributes, for a given K, we minimize:

~RSS ¼ jj~X � ~αZTjj
2

F ð6Þ

where ~a is defined as:

~α ¼

a11C a12C a13C . . . a1KC

a21C a22C a23C . . . a2KC

..

. ..
. ..

.
. . . ..

.

aN1C aN2C aN3C . . . aNKC

1 1 1 . . . 1

0

B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
A

ð7Þ
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and α and archetypes are defined in the previous section. ~X is defined as:

~X ¼

x11C x12C x13C . . . x1MC

x21C x22C x23C . . . x2MC

..

. ..
. ..

.
. . . ..

.

xN1C xN2C xN3C . . . xNMC

1 1 1 . . . 1

0

B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
A

ð8Þ

where C is a constraint coefficient for C> 0 and rows of ones are added after every NNLS iter-

ation. This ensures the constraint
Pk

j¼1
aij ¼ 1 where the value of C represents a weighting

between the importance of the constraint and NNLS minimization, with lower C’s giving a

stronger importance to the constraint. The same method is applied to β coefficients to ensure
Pn

i¼1
bij ¼ 1.

Archetype initialization. We make use of the implementation in [9] which supports

three different archetype initialization strategies: (1) random initialization of the archetypes

where each dimension of the archetype is sampled from a uniform distribution scaled to have

the same range as the input data, (2) random selection of a sample from the input data as the

archetype, and (3) the FurthestSum introduced in [11]. By default we make use of FurthestSum

initialization as it efficiently generates initial archetype candidates by, after selecting the first

archetype randomly, selecting each subsequent archetype as the sample that has the largest

aggregate distance from the previously selected archetypes.

Implementation details. Archetypal analysis was run with the following parameters (with

code adapted from [9]).

• Tolerance: defines when to stop optimization when alternating between finding the best α’s

for given archetypes Z and finding the best Z for given α’s. Specifically, the threshold applied

is,

jjRSSc � RSSpjj
2

2

RSSp
> T ð9Þ

where RSS is the residual sum of squares defined in (Eq 2) for the current iteration RSSc and

the previous iteration RSSp, and T is the desired tolerance. We use a value of T = 0.001.

• Maximum number of iterations for the residual sum of squares (RSS) minimization: 50.

• Constraint coefficient C: coefficient that ensures the summation of α’s and β’s equals one.

See Appendix B for further details on the constrained optimization method. We use a value

of C = 0.001.

• Initialization method: we use FurthestSum [11] as the initialization method.

Datasets

Human. Whole genomes from the Human Genome Diversity Project [12], the Simons

Genome Diversity Project [13] and the 1000 Genomes Project [14] have been included in this

study. The Human Genome Diversity Project whole genome cohort includes 929 individuals

from 54 human populations. The Simons Genome Diversity Project contains 300 publicly
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available genomes from 142 diverse populations, and the 1000 Genomes Project includes 2504

individuals from 26 populations. The three datasets were merged, removing duplicated indi-

viduals between the studies and retaining only SNPs present in all three datasets, to yield an

intersection of 1, 411, 471 SNPs for analysis. Rare variants, having minor allele

frequencies < 0.1, were removed. In total, 3558 individuals were included in our study from 7

different continents: 683 from Europe, 805 from Africa, 34 from Oceania, 695 from South

Asia, 772 from East Asia, 150 from West Asia, and 419 from the Americas.

Dogs. The heterogeneous data set of dog breeds from [15] consists of 1355 individual

dogs representing 166 dog breeds. Each sequence has a total of 150, 131 SNPs. Populations

with vastly different histories are included, originating from all continents except Antarctica

[15]. See Tables B and C in S1 Text for additional domestic dog breed details.

Results

Human datasets

Principal components and Archetypal Analysis. We first compute the principal compo-

nents of the human data set and display the first two components in a plot coloured by conti-

nental population (Fig 2a). The African populations display the highest genetic variability,

extending across the first principal component axis (11% explained variance). We then use all

principal components, that is the projection of the samples onto all the left singular vectors of

the SVD, yielding a total of N − 1 dimensions, as input to Archetypal Analysis and plot the pro-

portional membership of each cluster for each individual in a compositional plot (Fig 2b). The

African populations are represented by three archetypes (A1, A2 and A8), while the East Asian

and South Asian populations have one archetype each (A3 and A5 respectively). Note that

Archetypal Analysis captures the high variation within African groups by utilizing multiple

archetypes. The European and West Asian populations share a single archetype (A4), while the

Oceanian populations are found on the gradient between the East Asian and South Asian

archetypes. Finally, the American populations are represented by two archetypes (A6 and A7)

and have a gradient running to the European/West Asian archetype as a result of colonial

admixture. Example populations found along this gradient are the Puerto Ricans in Puerto

Rico and Colombians in Medellı́n (Colombia).

Comparison of ancestry estimates. To compare the ancestry estimates derived from

ADMIXTURE and Archetypal Analysis, we display the proportional ancestry cluster assign-

ments, the Q and α matrices respectively, in a bar plot for K = 8 cluster (Fig 3b). Each vertical

bar represents an individual and the shaded colors denote the cluster proportions. We also dis-

play individuals on a three-dimensional PCA plot with projected archetypes (Z) and ADMIX-

TURE cluster centers (F) (Fig 3a). A theoretical comparison of both methods can be found in

the Discussion section. The linear correlation between the results displayed in Fig 3 is� 0.84,

while the average pairwise similarity computed using a variant of the Jaccard Index (described

by [16]) is� 0.86.

Archetypal Analysis: European (red), South Asian (turquoise), and East Asian populations

(yellow) are predominantly represented by a single archetype. American populations show a

combination of three archetypes, two of which are mostly specific to this population (light

green and dark green) and a third, representing colonial admixture, which is European (red).

Individuals from Puerto Rico, population 23, and Colombia (Medellı́n), population 24, mostly

share the third archetype with Europeans. The African populations are represented by three

archetypes. One archetype encompasses West African populations such as Mandeka, popula-

tion 1, Gambian in Western Division (Mandika), population 2, and Mende in Sierra Leone,

population 3 (ocean blue). Another includes eastern and southern groups such as Luhya in
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Fig 2. Principal component analysis and Archetypal Analysis compositional plots for human populations (K = 8). a), 2-dimensional PCA plot of human

continental populations, where groups of individuals are colored by the unique regional genetic components they possess (see legend) b), Compositional plot

giving proportional archetype assignment for each individual (points). Points are coloured by the presence of regional genetic components (colored text) and a few

example sub-populations are labeled in small black text. Clusters of individuals from the same population are observed on the vertices of the polygon while

diagonals (and edges) between vertices indicate admixed individuals. For details on how to interpret compositional plots see Fig G in S1 Text. c), Similar

compositional plot showing the results for ADMIXTURE. Note that several ADMIXTURE clusters (A4, A5, A7) are never attained by real samples. See Figs A and

B in S1 Text for additional examples of Archetypal Analysis compositional plots for human continental populations.

https://doi.org/10.1371/journal.pcbi.1010301.g002
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Fig 3. Comparison of ancestry estimates for human populations (K = 8). a), three-dimensional PCA plot of individuals (small points) with projected archetypes

(circles) and ADMIXTURE cluster centers (triangles). b), bar plot where individuals are represented along the horizontal axis as narrow bars ordered by

population group. The height of the color for each bar shows the proportional colored cluster assignment for that individual sample. We compare the cluster

assignments of ADMIXTURE (top) and Archetypal Analysis (bottom). Correspondence of numbers to labels can be found in Tables A and B in S1 Text.

https://doi.org/10.1371/journal.pcbi.1010301.g003
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Webuye (Kenya), population 17, and San, population 22 (navy blue). A third archetype repre-

sents a few individuals from all African populations (light blue).

ADMIXTURE: Oceanian (purple) and East Asian populations (yellow) are predominantly

represented by a single cluster center. Europeans and West Asians are represented as a combi-

nation of two centers (red and pink) that are located outside the point cloud of individuals;

this differs from AA, which captures both with a single cluster inside the point cloud. Ameri-

cans (largely from Latin America) show traces of the European and West Asian cluster compo-

nents, but are mostly represented by their own unique, here single, cluster (light green),

deriving from the original peoples of the Americas. African populations are predominantly

represented by two unique clusters (ocean blue and light blue), while a few populations, such

as the North African Mozabites, population 9, show traces of European and West Asian com-

ponents. Finally, South Asians predominantly show a single cluster (turquoise), but also show

traces shared with the European and West Asian clusters.

Overall, Archetypal Analysis provides estimates that qualitatively match ethnolinguistic and

geographical labels. Additionally, AA properly captures the wide variation within African pop-

ulations, assigning more than one cluster to this diverse continent; however, this comes at the

cost (due to the fixed number of clusters) of lacking a further unique cluster for Oceanians.

Due to its stronger constraints than ADMIXTURE, AA also obtains cluster centroids that

could represent real individuals, lying either on or within the set of observations. In contrast

ADMIXTURE cluster centers can represent population frequencies that have never existed in

the past and also cannot be realized in the present by any combination (admixture) of popula-

tions (see Fig 2c). Thus, archetypes can be interpreted as representing actual populations,

while ADMIXTURE clusters often cannot.

Domestic dog breed dataset

Principal components and Archetypal Analysis. We compute the principal components

of the dog breed data set and display the first two components in a plot coloured by dog clades

(Fig 4a). The Asian Spitz clade shows the highest genetic variability extending across the first

principal component axis, including breeds such as Chow Chow, Greenland Sledge Dog and

Siberian Husky. The latter is found close to the wolf, while the European Mastiff clade, repre-

sented by breeds such as Bull Terrier, Boxer and Bulldog, extends across the second principal

component axis. Archetypal Analysis is then computed for K = 5 and K = 15 with principal

components as input (Fig 4b and 4c). For K = 5, dog archetypes were found to be the Asian

Spitz dogs (A1), the Bulldog-derived dogs (A2), the Terriers (A3), hunting water dogs (A4)

and herding dogs (A5). The remaining breeds are displayed as a linear combination of these

main archetypes, mostly represented by A5 and A4. This matches the structure shown in PCA,

where most of the breeds are clustered in the origin, except the dogs in the Bull Terrier and

Husky groups. When increasing the number of archetypes to K = 15, individual dog breeds

begin clustering around single archetypes, showing the finer scale population structure. New

archetypes appear for the Boxer (A3), Irish Wolfhound (A4), Otter Hound (A6), Bullmastiff

(A7), Bernese Mountain Dog (A10), Glen of Imaal Terrier (A11), French Bulldog (A12), Bos-

ton Terrier (A13), Shetland Sheepdog (A14) and Tibetan Spaniel (A15). The rest of the breeds

are mostly found near A14 and A15.

Performance metric analysis. The dog breed dataset was used to benchmark the compu-

tation times and clustering quality of both ADMIXTURE and Archetypal Analysis. Running

times and explained variances (defined as EVðY; Ŷ Þ ¼ 1 �
VarðY � Ŷ Þ
VarðYÞ ) of ADMIXTURE and

Archetypal Analysis are measured for an increasing number of archetypes/clusters K = 1, . . .,

22 and K = 1, . . ., 30 respectively. The initialization was set to random for both methods to
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Fig 4. Principal component analysis and Archetypal Analysis compositional plots for domestic dog breeds. a), two-dimensional PCA plot of domestic dog

breeds where groups of dogs are colored by clade. b) and c), proportional composition of each cluster for each individual in coordinate space for K = 5 and K = 15

archetypes respectively. Data points are coloured by clade and archetype representatives are shown as drawings. Gradients between vertices indicate combinations

between breeds. (We thank Ines de Vilallonga for her dog breed illustrations).

https://doi.org/10.1371/journal.pcbi.1010301.g004
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achieve uniform comparison and results were averaged over 5 runs. Accumulated run-times

increased exponentially with K for ADMIXTURE whereas they increased linearly for Arche-

typal Analysis (Fig 5). An accumulated runtime of 34 minutes was taken by Archetypal Analy-

sis to compute ancestry estimates for K = 2 to K = 30 clusters. For ADMIXTURE, the

accumulated runtime from K = 2 to K = 30 was 78 hours. Thus, Archetypal Analysis ran 137

times faster than ADMIXTURE on the domestic dog breed dataset. A similar increase in rela-

tive speed was maintained, on average, for non-cumulative times (Table 1). A comparison of

the evolution of the runtime of ADMIXTURE and Archetypal Analysis when increasing the

number of samples can be found in Fig C in S1 Text. An additional qualitative comparison of

different runs of Archetypal Analysis (K = 15) on the dogs dataset using different initialization

methods can be found in Fig D in S1 Text.

Explained variances increased linearly in the number of clusters for both algorithms (Fig 5).

The explained variance for Archetypal Analysis was on average 2% lower than for ADMIX-

TURE. For the values of K included in this analysis, the mean standard deviation for five aver-

aged runs with random initialization was 0.007 for Archetypal Analysis and 0.0004 for

ADMIXTURE. As described in the following Discussion section, the difference in explained

variance is due, at least in part, to the stronger restrictions that Archetypal Analysis imposes

when estimating the cluster centroids. However, as shown with human sequences in Fig 3, the

stronger restrictions of AA lead to a benefit: centroids that are always a linear combination of

actual samples, guaranteeing that they represent theoretically observable population samples.

Discussion

Population structure overview

Archetypal Analysis was able to capture the high genetic variability in African populations by

identifying three ancestral clusters in this large and diverse super-population, compared to

only two clusters assigned by ADMIXTURE. This had an effect on the clustering of the pro-

portionally over-represented European populations, mostly collected under a single ancestral

cluster in Archetypal Analysis but given two clusters in ADMIXTURE for the same K. This

illustrates how Archetypal Analysis is more robust to sample scheme bias when properly cap-

turing genetic variation.

Archetypal Analysis proved to be an interpretable alternative to ADMIXTURE. It assigned

separate regional archetypes that associated predominantly with Europeans, with South

Asians, and with East Asians, and it recognized the high genetic variability of African popula-

tions. Differences within regions were also detectable (Fig 3). For example, Indigenous Ameri-

cans were separated from the remainder of the modern American communities as the light

green archetype (e.g. Maya, population 27, Zapotec, population 29, Quechua, population 30).

Peruvians in Lima Peru, population 26, were also included in this group, most likely because

indigenous groups make up 45% of the Peruvian population. Similarities in related peoples

that were geographically spread were also detected. For example, the Bantu peoples (Bantu

Herrero, population 8, Bantu South Africa, population 12, Bantu Kenya, population 16, Luhya

in Webuye (Kenya), population 17, Bantu Tswana, population 18) comprise several hundred

indigenous ethnic groups in Africa spread over a vast area from Central Africa to Southern

Africa, nevertheless those present in our dataset were grouped together forming the dark blue

archetype.

The red archetype, which is modal in Europeans, is also seen in North African peoples

(Saharawi, population 10, and Mozabites, population 9) at a smaller fraction due to geographic

proximity and migration. As also observed in previous studies, American populations, such as

Puerto Ricans in Puerto Rico, population 23, and Colombians in Medellı́n (Colombia),
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Fig 5. Performance metrics analysis. a), runtime analysis for FRAPPE, ADMIXTURE and Archetypal Analysis for K = 2 to K = 30. Time is

expressed in units of accumulated hours. Note that for FRAPPE we only include up to K = 5 due to computational limitations. b), explained

variance analysis comparison for ADMIXTURE and Archetypal analysis for K = 2 to K = 22. Results are averaged over five distinct random seed

values for each value of K and the ranges observed are shown as vertical bars.

https://doi.org/10.1371/journal.pcbi.1010301.g005
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population 24, showed a European associated cluster due to Spanish colonization. The effects

of this historical event can also be observed in (Fig 2b), which shows a diagonal of decreasing

European admixture that runs from the European vertex (A4) to Puerto Ricans in Puerto Rico,

through Colombians in Medellı́n (Colombia), to some of the Mexican Ancestry individuals in

Los Angeles CA USA, Peruvians in Lima Peru and Mayans. Some of these Latin American

samples (green points) also fall above this diagonal cline, due to colonial-era admixture with

West African populations (vertex A1 at top). Archetypal Analysis also identified a large shared

component with Europeans in South Asians that ADMIXTURE did not detect (Fig 3b). For

example, the Brahui, population 141, Kalash, population 138, and Baloch, population 140,

were identified with the red archetype, modal in Europeans, by Archetypal Analysis, but not

by ADMIXTURE. This shared component has been noted using other methods for detecting

shared ancestry and has been associated with the Ancestral North Indians [17], an ancestral

genetic grouping that shares some ancestry with other Indo-European speakers from India to

Iran to Europe.

Relationship between Archetypal Analysis and ADMIXTURE

The popular algorithm ADMIXTURE estimates individual ancestries by computing maximum

likelihood estimates in a parametric model. Specifically, it maximizes the biconcave log-likeli-

hood of the model using block relaxation:

LðQ; FÞ ¼
X

i;j

ðnij ln pij þ ð2 � nijÞ ln ð1 � pijÞÞ ð10Þ

where genotype nij for individual i at SNP j represents the number of type ‘1’ alleles observed.

Given K populations, the success probability pij ¼
PK

k¼1
qikfki in the binomial distribution nij ∽

Bin(2,pij) depends on the fraction qik of i’s ancestry attributable to population k and on the fre-

quency fkj of the allele 1 in population k, where qik and fkj are the entries of Q and F respectively

[3].

ADMIXTURE and Archetypal Analysis share similar modeling assumptions. Both Qkj
ADMIXTURE and α archetype fractions can be interpreted as partial cluster assignments,

while ADMIXTURE frequency coefficients Fkj and archetype coordinates Z encode cluster

center locations in SNP space. A key difference is that ADMIXTURE cluster centroids have M

(# of SNPs) free parameters, in other words, the frequency at each SNP for each cluster (fkj) is a

parameter that needs to be learnt. Instead, in AA, cluster centroids have N (number of sam-

ples) free parameters, that is, a coefficient (β) for each training sample needs to be learnt for

each cluster center. WhenM� N (the typical scenario when working with genomic data), AA

has far fewer free-parameters than ADMIXTURE. This can lead to lower explained variance

values (or higher reconstruction errors), but guarantees centers that exist within the convex

hull of real samples (and thus could represent a real descendant individual), while ADMIX-

TURE can over-fit, yielding centers outside the hull of the observed data (see Results section)

Table 1. Runtime (in minutes) for ADMIXTURE-AA comparison.

K (number of clusters / archetypes)

Algorithm [2–6) [6–10) [10–14) [14–18) [18–22) [22–26) [26–30)

ADMIXTURE 43 64 97 150 247 250 319

AA 0.5 0.48 0.7 1 1.4 1.9 2.4

Relative speed 86× 133× 139× 150× 176× 132× 132×

https://doi.org/10.1371/journal.pcbi.1010301.t001
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that may represent no population that has ever existed. Furthermore, because AA does not

optimize each of theM free-parameters, it can work with rotated data (the left singular vectors

of the SVD) without any loss of information, or with dimensionally-reduced (projected) data,

allowing for a much more efficient computation.

The likelihood function of ADMIXTURE can be understood as an error or distance metric

between the input sequences X (where both haplotypes have been averaged) and a decomposed

product QF. In fact, when X�QF:

1

2
LðQ; FÞ ¼

X

i;j

ðxij ln qijfij þ ð1 � xijÞ ln ð1 � qijfijÞÞ �
X

i;j

jjxij � qijfijjj
2

2 ð11Þ

Therefore, the likelihood function resembles the RSS problem of AA. In fact, ADMIXTURE

can be understood as a type of likelihood-based relaxed archetypal analysis, where the con-

straints imposed on the cluster centroids are loosened.

Another shared aspect of both methods is the alternating nature of the optimization proce-

dure. In both methods, cluster centers and cluster assignments are optimized in an iterative

manner. Once the cluster assignments are fixed, optimizing centers becomes a convex prob-

lem, and vice versa, allowing for fast convergences. A summary of this comparison can be

found in Table 2.

Relationship between Archetypal Analysis, ADMIXTURE, K-Means, and

K-Medioid clustering

Archetypal Analysis and ADMIXTURE hold a strong relationship with K-Means and K-Med-

ioids. As already stated in [11], if the constraints on the archetypes Z are relaxed, and cluster

assignments are limited to binary values αij 2 {0, 1} and
Pk

j¼1
aij ¼ 1, then archetypal analysis

becomes equivalent to K-Means. Similarly, if the sparsity regularization used in ADMIXTURE

[3] is strongly applied, the cluster assignments Q become binary and the technique becomes

similar to K-Means. In a similar fashion, if both α and β are restricted to be binary, αij, βij 2 {0,

1}, Archetypal Analysis becomes equivalent to K-Medioids. Therefore, AA can be understood

as a smooth or fuzzy version of K-Medioids. Note that both K-Means and K-Medioids are also

typically optimized in a iterative alternating nature, similar to AA and ADMIXTURE.

Fig 6 shows a qualitative comparison of all four of these methods when K = 4. Examples

with K = 3 and K = 5 can be found in Figs E and F in S1 Text. We can observe that

Table 2. ADMIXTURE and Archetypal Analysis comparison.

ADMIXTURE Archetypal Analysis

Model X� QF X� αZT

Loss Function log-likelihood RSS

Free-parameters (N + M)K − N 2NK − N − K

Cluster Assignments (CA) Q α

CA Dimensions N × K N × K
CA Free-parameters N(K − 1) N(K − 1)

CA Constraints
PK

j¼1
Qij ¼ 1 and Qij � 0

PK
j¼1
aij ¼ 1 and αij � 0

Cluster Centroids (CC) F Z = XT β

CC Dimensions K ×M K ×M
CC Free-parameters KM K(N − 1)

CC Constraints 0� Fij� 1
PN

j¼1
bij ¼ 1 and βij � 0

https://doi.org/10.1371/journal.pcbi.1010301.t002
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ADMIXTURE with sparsity regularization (green) obtains cluster centroids less extremal than

ADMIXTURE without, showing a behaviour that tends to K-Means. Note that the differences

between cluster centers will not depend only on differences in modelling assumptions for each

technique, but also in differences in implementation details and initialization approaches of

each method.

Fig 6. Comparison of cluster centroids from different methods. Cluster centers learned by ADMIXTURE, ADMIXTURE with sparsity regularization, Archetypal

Analysis, K-Means, and K-Medoids for K = 4 are plotted as solid circles while the underlying samples are plotted as small blue points. Regularization in ADMIXTURE

is introduced with lambda = 500 and epsilon = 0.1.

https://doi.org/10.1371/journal.pcbi.1010301.g006
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Conclusion

In this paper we show how Archetypal Analysis (AA) can be used as a fast alternative to

ADMIXTURE for population clustering. We also show that the Archetypal Analysis model has

fewer degrees of freedom, constraining the centroids of clusters to be within the convex hull of

the training samples, leading to lower explained variance than ADMIXTURE, but providing

more interpretable cluster centroids that represent realizable populations. We apply our pro-

posed system to human and dog genotypes, showing that AA can perform more than two

orders of magnitude faster than ADMIXTURE while still properly capturing the population

structure of the data.

Supporting information

S1 Text. Supporting information. Detailed information and additional experiments are pro-

vided.

(PDF)
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