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The coronavirus disease 2019 (COVID-19) pandemic has caused many deaths
worldwide. To date, the mechanism of viral immune escape remains unclear, which is a
great obstacle to developing effective clinical treatment. RNA processing mechanisms,
including alternative polyadenylation (APA) and alternative splicing (AS), are crucial in the
regulation of most human genes in many types of infectious diseases. Because the role of
APA and AS in response to severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) infection remains unknown, we performed de novo identification of dynamic APA
sites using a public dataset of human peripheral blood mononuclear cell (PBMC) RNA-
Seq data in COVID-19 patients. We found that genes with APA were enriched in innate
immunity -related gene ontology categories such as neutrophil activation, regulation of the
MAPK cascade and cytokine production, response to interferon-gamma and the innate
immune response. We also reported genome-wide AS events and enriched viral
transcription-related categories upon SARS-CoV-2 infection. Interestingly, we found
that APA events may give better predictions than AS in COVID-19 patients, suggesting
that APA could act as a potential therapeutic target and novel biomarker in those patients.
Our study is the first to annotate genes with APA and AS in COVID-19 patients and
highlights the roles of APA variation in SARS-CoV-2 infection.

Keywords: COVID-19, alternative polyadenylation, immunity, alternative splicing, APA regulator
INTRODUCTION

SARS-CoV-2 causes the respiratory disease known as COVID-19. By the start of August 2021, there
had been more than 200 million cases and at least 4,200,000 deaths caused by COVID-19 around
the world.

mRNA-processing events, including APA and AS, play key roles in various diseases (1, 2). APA is a
widespread mechanism of gene regulation that generates different 3’ ends of transcripts (3). APA leads
to the production of distinct protein isoforms and repressing gene expression (4, 5). APA regulators
control APA by binding to the APA site during mRNA processing (6). AS enables an mRNA to
org October 2021 | Volume 12 | Article 7562881
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differentiate into isoforms that may have different biological
functions (3). Therefore, APA and AS are involved in
transcriptional gene regulation. Overall, the diversity of the
transcriptome and proteome is enhanced by APA and AS,
which are two important regulatory mechanisms for many
biological processes. Indeed, through APA, a single gene can
encode multiple different 3’ ends of transcripts. Polyadenylation
affects numerous aspects of mRNA metabolism, including
transcription termination by RNAP II, mRNA stability, and the
efficiency of translation (7). APA upregulates target genes through
miRNA repression escape (6). Shortening of the average 3′UTR
length and widespread APA in response to virus infection have
been reported (8). The expression level of genes with APA is
altered and enriched in immune-related categories including
interferon (8). Interferons have shown in vitro and in vivo
antiviral effect against SARS-CoV-2, and they have been
suggested as a potential treatment for COVID-19 patients (9,
10). Moreover, APA has an effect on viral replication and plays a
crucial role in the antiviral innate immune response (8). The
mechanisms of changes in APA are considered to be regulated in
cis through genetic aberrations (11) and in trans by regulatory
proteins in response to dynamic environmental changes (12). To
date, there has been no research on whether APA plays an
essential role in patients infected with SARS-CoV-2.

Similar to alternative polyadenylation, hundreds of host genes
showed AS upon viral infection (13). For instance, infection of
human cells with influenza A virus induced a broad program of
alternative splicing of host genes (14). However, the in-depth
molecular basis of infection and pathogenesis of SARS-CoV-2 in
human cells has not been further explained. It has also been
reported that SARS-CoV-2 disrupts mRNA splicing in vitro (1).
There is an urgent need to determine whether these AS
anomalies correlate with clinical features.

Based on the above information, we aimed to reveal overall
dynamic changes in APA and AS in COVID-19 patients. DaPars
(6) and rMATS (15) were used to directly detect APA and AS
events from RNA-Seq data. Our findings will contribute to our
understanding of the pathogenesis, potential molecular targets,
and development of new APA-based therapeutic targets of
COVID-19.
MATERIALS AND METHODS

Data Extraction
The sequencing data used in this study were retrieved from two
large-scale multiomic studies of COVID-19 (16, 17), in which
128 patients admitted to Albany Medical Center in Albany, NY
were collected for moderate to severe respiratory issues
presumably related to SARS-CoV-2 infection from April 6,
2020 to May 1, 2020. Patients who were positive (n = 102) and
negative (n = 26) for the virus were assigned to the COVID-19
and non-COVID-19 groups, respectively. Due to missing
sequencing data for 2 positive patients, a total of 126 cases
were included in this study. RNA-Seq data of the COVID-19
cohort mentioned above were available at the SRA database
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SRP279280 (https://www.ncbi.nlm.nih.gov/sra/) (16). To
validate our results, independent RNA-Seq data for PBMCs
from the non-COVID-19 and COVID-19 groups were
downloaded from the GSA database CRA002390 (https://bigd.
big.ac.cn/gsa/) (17). The reads were mapped to the hg38 human
genome using HISTA2 (v2.1.0) (18). We used StringTie (v1.3.4d)
to calculate the TPMs (transcripts per million) of Ensembl
annotated genes (19). Differential gene expression analyses
were performed using DESeq2 according to the read counts of
each gene determined by HTSeq (18). Genes with FDR (false
discovery rate) ≤ 0.05 and mean CPM (Couts per Million) > 100
were determined to be differentially expressed genes, as we
descripted previously (20) (Table S1).

Alternative Polyadenylation Analysis
We used APA to link genetic variation to variations in gene
expression and disease risk. DaPars is a bioinformatic algorithm
dedicated to de novo identification and quantification of dynamic
APA events using standard RNA-Seq (6). In this study, we used
DaPars (0.9.1) to infer, identify and quantify APA in RNA-Seq
data for COVID-19 patients and non-COVID-19 cohorts. The
APA with FDR ≤ 0.05 and D|PDUI|>0.1 were determined as the
significantly different APA between COVID-19 and non-
COVID-19 as described previously (21). The percentage of
distal polyA site usage index (PDUI) was defined as follows:

PDUI =
L

L + S

S and L are the abundances of transcripts with proximal distal
polyA sites in each sample. The following is a detailed
description of the options used with DaPars. FDR_cutoff=0.05,
PDUI_cutoff=0.1 (Table S2).

Differential Alternative Splicing Analysis
The main types of AS include exon skipping (SE), intron
retention (IR), alternative 5’ splice site (A5SS), alternative 3’
splice site (A3SS) and mutually exclusive exon (MXE). In total,
126 samples, including 100 COVID-19 and 26 non-COVID-19
patient samples, were used for analysis. We used hisat2 (v2.1.0)
for sequence alignment and rMATS for AS analysis (15). Using
FDR ≤ 0.05 as the threshold, the AS analysis results were screened
to obtain a matrix of differential AS genes and expression levels.
We ran rMATS on bam as input data. The following is a
description of the options used with rMATS: FDR ≤ 0.05, Read
length = 51, and Thread=32 (Table S3). The data were visualized
using the Integrative Genomics Viewer (IGV) tool (22).

GO Function Enrichment and KEGG
Pathway Analyses
To describe potential different mechanisms between those with
and without COVID-19, differential APA genes, AS genes, and
differentially expressed genes screened in the previous step were
u s ed f o r GO func t i on en r i chmen t ana l y s i s and
KEGG pathway enrichment analysis using The Database
f o r Ann o t a t i o n , V i s u a l i z a t i o n a n d I n t e g r a t e d
Discovery (DAVID, https://david.ncifcrf.gov/) and Metascape
October 2021 | Volume 12 | Article 756288
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(https://metascape.org/gp/index.html#/main/step1) (23, 24). The
Benjamini-Hochberg (BH) method was used to obtain the FDR
value, and FDR ≤ 0.05 was taken as the threshold. Pathway/GO
terms satisfying this condition were defined as those significantly
enriched among differentially expressed genes. The top hits with
the most significant enrichment (the lowest p-value) are shown
in a histogram.

Principal Component Analysis
Principal component analysis (PCA) is used to transform
original correlating variables into two uncorrelated principal
components by linear transformation and to characterize the
contribution rate by variance (also called the eigenvalue); we
selected the first two principal components for analysis
according to the contribution rate. After standardizing the
input alternative splicing PSI (percent spliced in index) and
PDUI values, the R packages factominer (V2.4) and factoextra
(v1.0.7) were applied to reduce the PCA dimension of AS and
APA genes, and the first and second principal components were
extracted for two-dimensional visualization.

Analyses of the Relationship of APA
With DEG
We performed cumulative distribution analysis of log2 fold
changes in mRNA expression in R as we described previously
(20). The empirical cumulative distribution functions of the
log2-fold mRNA expression values were computed using the
ecdf function, and the corresponding p‐value was included
in the plot. miRNA-binding sites were predicted by
TargetScanHuman (25), and Hypergeometric Optimization of
Motif EnRichment (HOMER) software was used for motif
enrichment analysis (26).
RESULTS

Dynamic APA Events in COVID-19 Patients
First, we developed a computational framework to systematically
analyze the dynamic changes in APA, gene expression and AS in
two independent databases. The computational framework is
illustrated in Figure 1. The detailed method is given in the
Materials and Methods section.

We performed de novo identification and quantification of
dynamic APA events using existing RNA-Seq data for PBMCs
from COVID-19 patients. Based on data for 100 COVID-19
patients and 26 non-COVID-19 subjects collected in GEO, we
detected 145 sites that were significant dynamic APA events (FDR ≤
0.05 and D|PDUI|>0.1) in COVID-19 (Figures 2A, B) (Table S2).
We quantified the degree of difference of APA in COVID-19 as a
change in the percentage of distal polyA site usage index (DPDUI),
which could identify shortening (negative index) or lengthening
(positive index) of 3′UTRs. As shown in Figures 2A, B, in COVID-
19 samples, most dynamic APA events presented a shorter 3′UTR.
The mean PDUI value was significantly lower in the COVID-19
group than in the non-COVID-19 group(Figure 2C). Additionally,
COVID-19 patients with shorter 3′UTRs had a decreasing number
Frontiers in Immunology | www.frontiersin.org 3
of ventilator-free days compared with those with longer 3′UTRs.
COVID-19 patients with shorter 3′UTRs also had higher intensive
care unit (ICU) admission rates. We concluded that APA is related
to the clinical characteristics of COVID-19. Furthermore, the
canonical polyA signal AATAAA was successfully identified by
HOMER motif enrichment analysis of dynamic APA sites (Figure
S1A) (27), AATAAAwas found to be the most predominant motifs
in human APA events in pervious study (8). One example of a
changed APA event in COVID-19 compared with non-COVID-19
is given for the IGSF6 gene (Immunoglobulin Superfamily Member
6) (Figure 2D), with a shorter 3′UTR predominating in COVID-19
samples compared with matched non-COVID-19 samples in GEO
(16). Furthermore, we validated this result with another
independent data in GSA (17) (Figure S1B). Collectively, these
analyses revealed global changes in APA in COVID-19 patients.

Functional Analysis of APA in COVID-19
According to previous studies, the type I interferon (IFN) response
characterizes the local immune response phase due to SARS-CoV-2
attack (28). The IFN system caused by TNF-a and IFN-g mirrors
the tissue damage and inflammation that occur in COVID-19
samples (29), and most GO and pathway enrichment analyses
based on gene expression data have revealed that interferon terms
are enriched in COVID-19 patients (17). We performed GO and
pathway enrichment analyses to explore changes based on APA in
response to SARS-CoV-2 infection and found that APA is
associated with key biological processes and pathways of COVID-
19 (Figure S2). Figure 3A shows significant enrichment of
significantly different APA in biological processes associated with
innate immune responses, such as neutrophil activation, regulation
of the MAPK cascade and cytokine production, response to IFN-
gamma and the innate immune response. In fact, viruses infecting
vertebrate hosts must overcome the IFN-mediated antiviral
response before replicating and propagating to new hosts (30). As
shown in Figure 3B, the GSEA results showed that genes with APA
were significantly enriched in response to IFN-gamma.
Interestingly, this result is similar to previous GO results based on
differentially expressed genes in COVID-19 (17). To further
investigate the specific innate immune regulatory APA in
COVID-19, we selected representative samples to track the IFN-
related genes CD14, IL6 and IFNGR1(Figure S3). In addition, we
performed KEGG pathway enrichment analysis using genes with
significantly different APA (Figure 3C). This analysis indicated that
genes expressing APA were significantly enriched in pathogenic
Escherichia coli infection, endocytosis, phagosome human
cytomegalovirus infection, Epstein-Barr virus infection and
human T-cell leukemia virus 1 infection. We concluded that APA
was involved in the IFN signaling pathway in the antiviral innate
immune response of COVID-19 patients.

APA and DEGs in COVID-19
It is widely accepted that 3′UTR shortening through APA may
upregulate target genes via miRNA repression escape (6).
Because the results of immune-related pathway enrichment for
APA were similar to the results of pathway enrichment for the
differentially expressed genes, we speculated that APA affected
the expression level of immune-related genes in COVID-19
October 2021 | Volume 12 | Article 756288
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patients. To address this possibility, we examined differentially
(DEGs) and nondifferentially expressed genes to assess whether
the APA sites were overrepresented in COVID-19 associated
DEGs. As expected, almost 6% of significantly DEGs underwent
APA, whereas only 1% of nondifferentially expressed genes
underwent APA, indicating a significantly enriched occurrence
of APA target sites among DEGs (p=2.8×10−33, two-tailed chi-
square test; Figure 4A), suggesting that APA affects host gene
expression level. Moreover, the fold change ratios of the genes
with APA were significantly upregulated compared to genes
without APA target sites in COVID-19 (p= 1.2×10−36, two-
tailed Wilcoxon test; Figure 4B). We also observed that 77% of
genes with shorter 3′UTRs in COVID-19 samples lost at least 1
predicted miRNA-binding site, indicating that APA might
upregulate parental genes by escaping miRNA repression
(Figure S4A).

It has been reported that the STAT1/STAT3 axis is required for
TNF-a- and IFN-g-induced inflammatory cell death-PANoptosis in
COVID-19 (29). Thus, we manually compared APA in multiple
IFN-related genes, especially STAT1 in two independent datasets to
verify our results (Figures 4C, E). We found a shorter 3′UTR for
STAT1 and significantly higher gene expression levels in two
Frontiers in Immunology | www.frontiersin.org 4
independent datasets (Figures 4D, F). Since there were too many
samples, we randomly selected five representative samples to show
the trends. The findings are consistent with the theoretical
hypothesis that 3′UTR shortening through APA may upregulate
target genes through miRNA repression escape. Collectively, these
analyses revealed that APA play an important role in the regulation
of gene expression in COVID-19 patients.

Regulatory Factors of APA
The core polyadenylation trans factors include the activity of 3’
processing factors. The 3’ processing complex consists of over 20
core proteins (27), including cleavage and polyadenylation
specificity factor (CPSF), cleavage factors (CFim and CFIIm),
Two cytoplasmic poly(A)-binding proteins (PABPC1 and
PABPC4), cleavage stimulatory factor or cleavage stimulation
factor (CSTF), poly(A)-binding protein nuclear 1 (PABPNl),
FIP1L1, PCF11 and SYMP. Previous studies have found that
alteration in the expression of some 3’ processing factors caused
significant changes in poly (A) site choice (31).

To investigate whether APA changes with the expression level
of 3’ processing factors in COVID-19 patients, we analyzed
changes in expression of 3’ processing factors in PBMCs from
FIGURE 1 | Schematic flow chart demonstrating the computational framework.
October 2021 | Volume 12 | Article 756288
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COVID-19 patients. Figures 5A, B show that the expression level
of most 3’ processing factors was significantly higher in COVID-19
patients (P < 0.05), especially CPSF2, PAPOLG, FIP1L1, and
PCF11. To validate our results, we analyzed RNA-Seq data from
other independent COVID-19 datasets and observed the same
results (Figure S4B), suggesting change of APA is associated with
expression level of 3’processing factors in COVID-19 patients.

In brief, we concluded that high expression level of 3’
processing factors might be one of the reasons underlying
genome-wide APA when patients are infected with SARS-
CoV-2. Our results were consistent with previous studies that
3′UTR shortening correlated positively with high expression of
polyadenylation factors (32).
Frontiers in Immunology | www.frontiersin.org 5
Performance Evaluation of APA and AS
To further determine the power of APA in COVID-19 patients,
we compared APA with AS, and AS has been proven to play an
important role in COVID-19. We performed alternative
splicing analysis for COVID-19 patients by using rMARTs
(33), a computational tool employed to detect differential
AS events based on RNA-Seq data. We detected a total of
806 events in the COVID-19 sample, including 640 unique AS
events, which are 292 SE events, 188 RI events, 47 A5SS events,
81 A3SS events, and 32 MXE events (Figure 6A). Moreover,
the pathways enriched in AS were immune related (Figure 6B)
(Table S3). Considering that SE was found to be the most
prevalent AS event, we conducted principal component
A

C D

B

FIGURE 2 | Differential APA analysis for COVID-19. (A) Volcano plot showing the log2FC of PDUI and the statistical significance of DPDUI between COVID-19
patients and non-COVID-19 patients. Red indicates upregulated APA sites; blue indicates downregulated APA sites. (B) A heat map showing the APA index of all the
genes that displayed significant APA. (C) Average 3’UTR length of non-COVID-19 and COVID-19 patients. (D) Tracks for IGSF6 in 5 COVID-19 samples and 5
control samples randomly selected from 128 samples.
October 2021 | Volume 12 | Article 756288
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analysis (PCA) to construct APA and SE signatures as
described previously (34).

We identified twosignificant components that explained61%and
12%of theAPAvariation. They also explained 10.6%and9.4%of the
SEvariation, respectively. Thefirst PC (principal component)mainly
separated COVID-19 patients from non-COVID-19 patients with
regard toAPAandSE (Figures 6C,D). Then, principal component 1
Frontiers in Immunology | www.frontiersin.org 6
was selected to act as a signature score predicting COVID-19 status.
To further explore thediagnosticpotential of theabovedynamicAPA
and SE, we performed receiver operating characteristic (ROC) curve
analysis. As illustrated in Figure 6C, the area under the curve (AUC)
for discriminating COVID-19 from non-COVID-19 was 0.83 for
APA, suggesting its high diagnostic potential in COVID-19.
Furthermore, the AUC for SE was 0.76 (Figure 6E), which
A

B

C

FIGURE 3 | Enrichment analyses of genes with significant APA changes. GO (A) and GSEA (B) enrichment analyses of genes with significant APA changes.
(C) KEGG pathway enrichment analyses of genes with significant APA changes. The GO and pathway terms are displayed on the x-axis and are significantly
enriched at −log10 (p value).
October 2021 | Volume 12 | Article 756288
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indicated that APA provided greater accuracy than SE in
COVID-19. Furthermore, we investigated the association between
the clinical outcomes of COVID-19 patients and APA conditions.
We found that the APA index was significantly changed in the
differenthospital freedays groups (FigureS5A).However, therewere
not significantly differences in the APA index between different
ventilator free day groups and male vs female COVID-19 patients
(Figures S5B, C). Hence, we fill the knowledge gap of regarding the
role of APA in the clinical outcomes of COVID-19 patients.
DISCUSSION

In brief, we performed de novo identification of dynamic APA
and AS using two independent datasets of PBMC RNA-Seq data
Frontiers in Immunology | www.frontiersin.org 7
from COVID-19 patients. We found that APA and gene
expression of APA regulators in the hosts was perturbed in
100 COVID-19 patients. This study contributes to a better
understanding of the activation and evasion of interferon
responses by SARS-CoV-2, and this will be beneficial to the
study of new treatment methods for COVID-19. Even though all
of the in silico works were performed in two independent
datasets, the limitations of our in silico work cannot be
ignored. For instance, we could not demonstrate which APA
regulator mainly regulates abnormal APA in COVID-19
patients. Wet experiments need to be conducted to
demonstrate the detailed regulatory mechanism in future
studies. At the same time, the effects of abnormal APA on
phenotypes in human immune cell lines were also need to be
conducted using wet experiments.
A

C

E

D

F

B

FIGURE 4 | Relationship of APA and DEGs in COVID-19. (A) Barplot representing the percentages of the DEGs or nonsignificant genes enriched for significant APA sites.
(B) Plot of the cumulative fraction of log2-fold change of gene expression ratios in COVID-19 patients comparing genes with significant APA sites versus those overlapping
without significant APA sites. The p value of a two-tailed Wilcoxon test is indicated. (C) Tracks displaying the read coverage for the STAT1 gene in samples randomly selected
from SRP279280. (D) Expression level of STAT1 in COVID-19 and non-COVID-19 patients in GEO. (E) Tracks displaying the read coverage of validation RNA-Seq data
(CRA002390) for the STAT1 gene. (F) Expression level of STAT1 in COVID-19 and non-COVID-19 patients in GSA. *P < 0.05, ****P < 0.05*10^-4.
October 2021 | Volume 12 | Article 756288
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Transcriptome analysis of PBMCs can indicate numerous
RNA mis-APA and mis-AS events, which may serve as disease-
specific biomarkers (35). Although PBMCs are peripheral blood
cells comprising T cells, B cells, NK cells, and monocytes, they
are widely used to identify potential biomarkers for COVID-19
(36–38). For instance, RNA-Seq data for COVID-19 PBMCs
indicated immune-related transcriptomic profiles (1). However,
PBMCs contain many cell types, which is difficult to verify by
wet experiments.

It was reported that antiviral pathways and interferon
pathways play important roles in COVID-19 patients (38–41),
but the exact mechanism remained unclear. Simultaneously,
previous studies have found that APA and AS regulated
multiple viral immune processes (7, 8, 13, 42–44). However,
there is a lack of studies on whether APA affects SARS-CoV-2
infection. Innate lymphoid cells including neutrophils and
macrophages secrete signaling factors that regulate innate and
Frontiers in Immunology | www.frontiersin.org 8
adaptive immune responses. Recent studies have reported that
innate immunity may play a more central role in combating
SARS-CoV-2 rather than adaptive immunity (45). Based on our
results, APA may cause neutrophil activation by affecting the
release of inflammatory factors from macrophages. APA may
play a central role in innate immunity in COVID-19 patients. In
addition, neutrophils can express costimulatory molecules and
MHC-II after exposure to cytokines, such as IFN-g (46). APA
may also affect the release of antiviral factors such as interferon
and exert antiviral effects. It has been reported that IFN-induced
STAT1 phosphorylation remains intact in the presence of SARS-
CoV-2 ORF6 (47) and that alteration of STAT1 increases
susceptibility to virus infections because it is involved in
various signaling pathways both upstream and downstream of
IFN production. Interestingly, in COVID-19 patients, APA (and
AS) genes were enriched in IFN related categories, especially
pathogenic Escherichia coli infection, endocytosis, phagosome
A

B

FIGURE 5 | Gene expression of APA regulators. (A) Heatmap of gene expression of regulators of APA. (B) Volcano plot of differentially expressed APA regulators.
Significant regulators (p value ≤ 0.05) are highlighted in red.
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human cytomegalovirus infection, and Epstein-Barr virus
infection signaling pathways.

We revealed that 3′UTR shortening through APA might play
an essential role in COVID-19 and that APA upregulated target
genes by facilitating miRNA repression escape in SARS-CoV-2
infection, which was consistent with previous report that 3′UTR
shortening through APAmight upregulate target genes bymiRNA
repression escape in other infectious diseases. Although previous
studies showed that global 3′UTR shortening affects protein
abundance (8), our study revealed that the impact of the 3′UTR
on protein production may depend on the gene. However, APA of
the genes confers different functions and needs further
investigation. Most of the trans factors assessed were highly
expressed in COVID-19 patients, in accordance with previous
results that 3′UTR shortening was associated with highly
expressed trans factors. For instance, the key poly-A trans-factor
CSTF64 was significantly upregulated, leading to preferential 3′
UTR shortening in tumors (6). The expression of 3′ processing
Frontiers in Immunology | www.frontiersin.org 9
factors was down-regulated when cells were infected by vesicular
stomatitis virus, which might be one of the reasons underlying
genome-wide APA when cells were infected with viruses (8).
Meanwhile, we found that the expression level of 3′ processing
factors was also altered in COVID-19 patients. Therefore, the
question here is how SARS-CoV-2 disrupts APA and AS.
According to the research conclusion that SARS-CoV-2 proteins
could bind to transcription factor and splicing factors (1), we
proposed the following hypothesis: SARS-CoV-2 proteins can
bind to APA factors affecting the gene expression level of APA
factors to regulate APA. Although SE has been reported to play a
key role in SARS-CoV-2 infection (1), our PCA results of dynamic
APA and SE showed that APA provided greater accuracy than SE
(Figure 6C). This conclusion will contribute to a better
understanding of mRNA-processing mechanisms in COVID-19
samples. Furthermore, APA may disrupt antigen presentation by
MHC in infected cells, and interference with APA and AS might
further aid SARS-CoV-2 in evading the host immune response.
A B

C D E

FIGURE 6 | Performance of APA and SE analysis. (A) Bar plot showing the genes exhibiting AS during SARS-CoV-2 infection (at 5% FDR). (B) GO terms obtained
from functional annotation analysis using R software. (C) Principal component analysis (PCA) of APA and SE (D). Each dot represents one sample. Red: COVID-19,
Green: non-COVID-19. (E) Receiver operating curve (ROC) plot of the performance based on accuracy using PC1 for APA and SE.
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