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Abstract
Objectives To determine if predictions of the Lung Cancer Prediction convolutional neural network (LCP-CNN) artificial
intelligence (AI) model are analogous to the Brock model.
Methods In total, 10,485 lung nodules in 4660 participants from the National Lung Screening Trial (NLST) were analysed. Both
manual and automated nodule measurements were inputted into the Brock model, and this was compared to LCP-CNN. The
performance of an experimental AI model was tested after ablating imaging features in a manner analogous to removing
predictors from the Brock model. First, the nodule was ablated leaving lung parenchyma only. Second, a sphere of the same
size as the nodule was implanted in the parenchyma. Third, internal texture of both nodule and parenchyma was ablated.
Results Automated axial diameter (AUC 0.883) and automated equivalent spherical diameter (AUC 0.896) significantly im-
proved the accuracy of Brock when compared to manual measurement (AUC 0.873), although not to the level of the LCP-CNN
(AUC 0.936). Ablating nodule and parenchyma texture (AUC 0.915) led to a small drop in AI predictive accuracy, as did
implanting a sphere of the same size as the nodule (AUC 0.889). Ablating the nodule leaving parenchyma only led to a large drop
in AI performance (AUC 0.717).
Conclusions Feature ablation is a feasible technique for understanding AI model predictions. Nodule size and morphology play
the largest role in AI prediction, with nodule internal texture and background parenchyma playing a limited role. This is broadly
analogous to the relative importance of morphological factors over clinical factors within the Brock model.
Key Points
• Brock lung cancer risk prediction accuracy was significantly improved using automated axial or equivalent spherical mea-
surements of lung nodule diameter, when compared to manual measurements.

• Predictive accuracy was further improved by using the Lung Cancer Prediction convolutional neural network, an artificial
intelligence-based model which obviates the requirement for nodule measurement.

• Nodule size and morphology are important factors in artificial intelligence lung cancer risk prediction, with nodule texture and
background parenchyma contributing a small, but measurable, role.

Keywords Artificial intelligence . Neural networks, Computer . Algorithms . Early detection of cancer .Multidetector computed
tomography
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BTS British Thoracic Society
CI Confidence intervals
CT Computed tomography
LCP-
CNN

Lung Cancer Prediction
convolutional neural network

NLST National Lung Screening Trial
PACS Picture archiving and communication system
PanCan Pan-Canadian EarlyDetection of LungCancer Study

Introduction

Pulmonary nodules are a common incidental finding on com-
puted tomography (CT) [1]. Current guidelines emphasise the
importance of assessing the likelihood that a nodule is malig-
nant, with further management being dependent on the pre-
dicted risk of malignancy [2, 3]. Lung cancer risk prediction
models have been developed using both statistical approaches
such as logistic regression (LR) and machine learning ap-
proaches such as convolutional neural networks (CNN).

The Brock University model is a LR model that has been
successfully validated in a screening cohort from the National
Lung Screening Trial (NLST) in the USA and in an unselected
clinical population in the UK [4–8]. The British Thoracic
Society (BTS) guidelines recommend the use of the Brock
model in clinical practice, whilst the Fleischner Society guide-
lines do not advocate any risk prediction model but do ac-
knowledge that the Brock model is of great interest [2, 3].

Nodule size, defined as the maximum diameter of the long
axis of the nodule measured by a thoracic radiologist using
electronic callipers, is the single most important predictor in
the Brock model [8]. Other predictors of cancer in this model
include older age, female sex, family history of lung cancer,
emphysema, upper lobe nodule location, part-solid nodule,
lower nodule count, and spiculation.

Manual nodule diameter measurements are subject to sig-
nificant intra- and inter-reader variability, greatest at measure-
ments of 5 mm and 6 mm, which are the key thresholds for
determining follow-up [9, 10]. Moreover, diameter does not
accurately reflect nodule size, unless nodules are perfectly
spherical. Automated measurements of nodule diameter and
volume have produced no or modest improvement in the pre-
dictive accuracy of the Brock model in the literature [11, 12].

Artificial intelligence (AI) models are a step forward from
automated nodule measurement as they typically do not re-
quire nodule measurement or data entry. The Lung Cancer
Prediction CNN (LCP-CNN) is an externally validated AI
model, which has been shown to outperform the Brock model
in the NLST cohort and a UK clinical cohort [13, 14].
However, whilst the Brock model is fully interpretable, the
rationale underlying predictions made by LCP-CNN is not
well understood and the effects of individual predictors cannot
be isolated.

We hypothesise that predictions made by LCP-CNN are, in
part, attributable to those imaging features which are also pre-
dictors in the Brock model. First, we propose that LCP-CNN
does more than just measuring nodule size optimally. We
compare the predictive accuracy of LCP-CNN against that
of automated measurements within the Brock model.
Second, we hypothesise that ablating imaging features is anal-
ogous to removing predictors from the Brock model. We ex-
plore which imaging features contribute to the predictions of
LCP-CNN by re-training the CNN on information-ablated CT
images and assessing the drop in performance attributable to
each ablated feature.

Materials and methods

Study dataset

This is a retrospective analysis of imaging data from the NLST.
Trial design and eligibility criteria are described elsewhere [15].
In brief, NLST was a multicentre randomised trial of three
rounds of screening with low-dose CT compared to chest radi-
ography for asymptomatic participants aged 55–74 years with a
significant smoking history. Participants were followed for
lung cancer diagnoses for a median of 6.5 years. Nodule size
was measured using electronic callipers by NLST radiologists
who had received training in standardised image interpretation.
No standard protocol for nodule evaluation was mandated.

Of the 26,722 patients in the CT screening arm of the
NLST, 16,684 were excluded as no abnormality was re-
corded in the NLST database. In our study, CT studies
from 10,038 patients with recorded abnormalities were
reviewed under the supervision of an experienced radiol-
ogist to identify pulmonary nodules. Each nodule was
manually annotated and its correspondence to an abnor-
mality found during NLST recorded. All time-points were
considered and nodules were tracked over time. Eighty-
two patients had no recorded abnormalities that could be
matched to a CT finding. Two hundred fifty-two patients
with a diagnosis of cancer were excluded because their
cancer diagnosis could not be matched to a specific nod-
ule. Nodules that were not solid or part-solid were exclud-
ed (n = 1233 patients) because the LCP-CNN was trained
on solid and part-solid nodules only. Nodules < 6 mm or
> 30 mm using manual measurements were excluded (n =
3007 patients). Nodules < 6 mm were excluded because
these do not routinely warrant surveillance according to
the Fleischner Society, and masses > 30 mm were exclud-
ed because the online Brock calculator and segmentation
algorithm were not designed for masses > 30 mm [3, 16,
17]. In total, 4660 participants with 10,485 nodules were
included in the analysis. The study flow diagram is pro-
vided in Fig. 1.
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Automatic nodule size measurements

The U-Net convolutional neural network is a well-established
medical segmentation tool that was adapted for nodule seg-
mentation within this study [16, 18]. In total, 1276 participants
were randomly selected to train the segmentation algorithm.
Of these, participants meeting the inclusion criteria for the
analysis in this study (n = 730) were excluded from the vali-
dation cohort.

Volumetric segmentation was initiated from a seed point
within the nodule identified by doctors under the supervision
of a senior chest radiologist (F.V.G.), and then performed by
the algorithm in an unsupervised manner. Equivalent spheri-
cal diameter was calculated using ∛(6/π.V), where V is nodule
volume. Two different methods were used to measure maxi-
mal axial diameter. In the first, the longest distance between
any two points on the nodule boundary was calculated on each
axial slice, and the maximum among all axial slices was used.
However, this method can overestimate the diameter of
spiculated nodules. In the second method, the largest diameter
was calculated for an ellipse fitted to each axial contour using
standard least squares methods. Both methods gave almost
identical results. We have reported only the second because
it is less sensitive to spiculation and small changes in nodule
geometry, in line with Fleischner Society recommendations
[19]. Some of these results have been previously published
in the form of an abstract and conference proceeding [20, 21].

For each participant, the Brock model was used to calculate
risk of malignancy using (1) manual diameter provided in the
NLST dataset, (2) maximal axial diameter derived from auto-
matic segmentation, and (3) equivalent spherical diameter de-
rived from automatic segmentation. The risk of malignancy
was also derived using the LCP-CNN. The LCP-CNN

development and validation are fully described in prior publi-
cations, and the same version of the model was used in this
analysis [13, 14].

Predictive accuracy was primarily evaluated with area
under the receiver operating characteristic curve (AUC)
analysis. The statistical significance of any difference in
accuracy between the methods was computed from the
distribution of AUC differences. This was derived by
bootstrapping across 10,000 draws from the data with re-
placement. 95% confidence intervals (CI) were obtained
from the distribution of differences. p values were com-
puted using a two-sided permutation test using 10,000
random resamplings of the data [22], with p < 0.05 con-
sidered statistically significant.

Information ablation

Covariates were removed from the full Brock model, and the
predictive performance of three ‘feature-reduced’ Brock
models was tested.

& Non-morphological factors only

Age, sex, emphysema, family history of cancer, nodule
location, and nodule count were included.

& Morphological factors only

Nodule size, nodule type (solid or part-solid), and spicula-
tion were included.

& Without spiculation (equivalent to the ‘parsimonious
model’ in [3])

Fig. 1 Study flow diagram
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All covariates in the full Brock model, except spiculation,
were included.

Unlike the Brock model, LCP-CNN does not consist
of human-interpretable terms. Hence, feature removal
was performed by ablating information from the CT
images. As the LCP-CNN was not trained to analyse
ablated CT images, an experimental AI model was
trained to predict malignancy from ablated CT images
using the dataset and same eight folds as were used to
train the LCP-CNN model [13, 14]. For a given fold,
three-quarters of the data was partitioned for training the
AI model, one-eighth was partitioned for validation, and
one-eighth was partitioned for testing. Each participant
was assigned to be in the test partition in precisely one
of each of the folds. Each fold had an approximately
equal proportion of participants with malignant nodules.
Each of the eight folds was associated with a single
corresponding independently trained model. During
analysis, the results of the eight folds were combined
together to provide a set of cross-validation results for
the entire dataset as described in prior publications [13,
14].

The predictive performance of the AI model was test-
ed on unmodified and ablated CT images.

& Parenchyma only
All information about the nodule was ablated. A region

15 mm away from the furthermost edge of the nodule margin
towards the hilum was evaluated, comprising of an image
containing background lung parenchyma but without the nod-
ule being visible.

& Morphological factors
All information about the background lung and the

nodule internal texture was ablated. Background lung
was replaced with average lung density across all pa-
tients (− 825 Hounsfield units), and nodule internal tex-
ture was replaced with mean nodule density.

& Implanted sphere
A sphere of the same volume as the nodule and with

mean nodule density was implanted in the ‘parenchyma
only’ model as described above.

As information ablation was carried out using mean
nodule density, a subgroup analysis was performed to
compare the predictive performance of the experimental
AI model on part-solid and solid nodules.

Data analysis

Data analysis was performed using Python 3.8 installed on
Ubuntu 20.04 with NumPy 1.19.4, scikit-learn 0.21.3, and
pandas 0.23.4 libraries.

Results

In total, 4660 participants with 10,485 lung nodules (of which
556 were malignant) were included in this retrospective anal-
ysis. Demographic data are provided in Table 1.

Malignant nodules were larger than benign nodules, re-
gardless of measurement technique (Supplementary
Figure 1). Equivalent spherical diameter was smaller than
manual or automatic maximal axial diameter, as many nodules
were not perfectly spherical.

AUC values for the Brock model were significantly higher
with automatic axial diameter (0.883, 95% CI 0.870–0.895, p
< 0.02) and automatic spherical diameter (0.896, 95% CI
0.883–0.907, p < 0.0001) than with manual diameter (0.873,
95% CI 0.860–0.886) (Fig. 2). Within the automatic tech-
niques, equivalent spherical diameter had a significantly great-
er AUC than maximal axial diameter (p < 0.0001). LCP-CNN
showed significantly greater AUC than Brock regardless of
measurement technique (0.936, 95% CI 0.926–0.945, p <
0.0001) (Fig. 2).

The predictive performance of the various feature-reduced
Brock models is presented in Fig. 3 and Supplementary
Figure 2. The Brock model with non-morphological factors
only was a poor predictor of malignancy, with AUC 0.686
(95% CI 0.665–0.706). On the other hand, the Brock model
with morphological factors only was a good predictor with
AUC 0.858 (95% CI 0.842–0.874). The Brock model without
spiculation performed slightly better with AUC 0.862 (95%
CI 0.848–0.876, p 0.16) but the difference was not significant.

The predictive performance of the experimental AI
model is presented in Fig. 3 and Supplementary
Figure 3. The experimental AI model with parenchyma
alone and no visible nodule produced a poor predictive
performance with AUC 0.717 (95% CI 0.697–0.737).
When a sphere of the same volume and mean density as
the nodule was implanted into this parenchyma, the pre-
dictive performance was good with AUC 0.889 (95% CI
0.876–0.901). When the background lung parenchyma
and the nodule internal texture were replaced with uni-
form density, predictive performance was very good with
AUC 0.915 (95% CI 0.904–0.926), compared to AUC
0.926 (95% CI 0.916–0.935) for unablated images.

A subgroup analysis was undertaken to compare predictive
performance for part-solid nodules (n = 669, 6.4%) and solid
nodules (n = 9816, 93.6%). The results are presented in Fig. 4.
On unablated images, performance of the experimental AI
model was reduced for part-solid nodules (AUC 0.827, 95%
CI 0.778–0.872) compared to solid nodules (AUC 0.932, 95%
CI 0.992–0.942). A similar reduction in performance was ob-
served in the two ablation experiments where mean nodule
density was employed (AUC 0.822 vs 0.920, and AUC
0.796 vs 0.894) and in the parenchyma-only ablation experi-
ment (AUC 0.607 vs 0.724).
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Discussion

Automated measurement (AUC 0.883 and 0.896, p = 0.02
and p < 0.0001) significantly improved the accuracy of the
Brock model compared with manual measurement (AUC
0.873). We report a larger effect size than prior studies which
demonstrated that automated measurement is associated with
no or modest improvement in the accuracy of the Brock mod-
el. This may be due to different methods used in our study; the
Brock model was not re-fitted to the automated data [12] and
the sample size was sixteen-fold greater [11]. Within the au-
tomated techniques, equivalent spherical diameter resulted in
a significant increase in accuracy (AUC 0.896, p < 0.0001)
compared to maximal axial diameter (AUC 0.883). This sug-
gests that the volumetric nature of automatic measurement
may underpin the improvement in predictive performance.
The merits of nodule volume over diameter in risk prediction
have been described elsewhere [23]. Equivalent spherical di-
ameters offer an alternative to volume that remains compatible
with the Brock model.

LCP-CNN significantly improved the accuracy of lung
cancer prediction (AUC 0.936, p < 0.0001) when compared
to the Brock model supplemented with automated measure-
ment. This suggests that LCP-CNN does more than just mea-
suring nodule size optimally. Our results are supported by
another study showing that LCP-CNN outperformed the
Brock model in the IDEAL cohort, a cohort of non-screen-
detected incidental pulmonary nodules in the UK [13].

An experimental AI model was trained on ablated CT images
in order to test the hypothesis that predictions made by LCP-
CNN are, in part, attributable to those imaging features which
are also predictors in theBrockmodel.When tested on unablated

Table 1 Study participant
demographics and characteristics
of pulmonary nodules

All Benign Cancer

Participants (n, %) 4660 (100) 4224 (90.6) 436 (9.4)

Age (years) (mean, SD) 62.8 (5.2) 62.1 (5.2) 64.4 (5.4)

Female (n, %) 1815 (38.9) 1627 (38.5) 188 (43.1)

Current smoker at enrolment (n, %) 2323 (49.8) 2079 (49.2) 244 (56.0)

Smoking history (pack-years) (mean, SD) 58.1 (24.5) 57.3 (24.0) 65.7 (28.1)

Years since quitting smoking (mean, SD) 7.3 (4.7) 7.4 (4.7) 6.5 (4.4)

Emphysema (n, %) 4124 (50.1) 3805 (49.5) 319 (58.7)

Personal history of cancer (n, %) 197 (4.2) 167 (4.0) 30 (6.9)

Family history of cancer (n, %) 1052 (22.6) 946 (22.4) 106 (24.3)

Pulmonary nodules (n, %) 10,485 (100) 9929 (94.7) 556 (5.3)

Solitary nodule (n, %) 4491 (54.5) 4190 (54.5) 301 (55.4)

Upper lobe location (n, %) 3475 (33.1) 3134 (31.6) 341 (61.3)

Spiculation (n, %) 1433 (13.7) 1153 (11.6) 280 (50.4)

Part-solid nodule (n, %) 669 (6.4) 594 (6.0) 75 (13.5)

Abbreviations: n, number; %, percentage; SD, standard deviation

Fig. 2 Area under the receiver operating characteristic curve (ROC) for
the Brock model using manual and automatic measurement techniques
and for Lung Cancer Prediction convolutional neural network (LCP-
CNN)

Fig. 3 Area under the receiver operating characteristic curve (ROC) for
feature-reduced Brock models and information-ablated artificial intelli-
gence (AI) models
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CT images, the experimental AI model (AUC 0.926) performed
similarly to the LCP-CNN (AUC0.936). The small performance
gap here is likely due to some of the capacity of the experimental
model being used to characterise features in the ablated CT
images that differ from those in unmodified CT images.

Morphological factors within the Brock model, such as size,
spiculation, and type, are all visible to the experimental AI
model.Morphological features alone (AUC 0.858) were almost
as good as the full Brock model in predicting malignancy
(AUC 0.896), with non-morphological features playing a lim-
ited role. We hypothesised that, analogous to the Brock model,
the experimental AI model predominantly uses information on
nodulemorphology to predict cancer, with parenchyma playing
a limited role. Indeed, ablating all information on the nodule
and leaving only the background parenchyma gave a poor per-
formance (AUC 0.717)—but this is still better than a random
classifier and better than Brock with non-morphological factors
only (AUC 0.686). The AI is blind to the clinical data used by
the Brock model; however, it may have learnt parenchymal
changes indicative of age, emphysema, and environmental ex-
posures, hence performing better than random [24].

Replacing the background parenchyma and the nodule with
uniform density, whilst preserving the nodule morphology,
produced a good predictive performance (AUC 0.915). In prin-
ciple, this is analogous to Brock with morphological factors
only (AUC 0.858). The difference in performance suggests that
the AI utilises morphologic features in addition to those within
Brock, and possibly outside of the radiology lexicon. This is
supported by a study on size-matched benign and malignant
nodules showing reasonable performance of LCP-CNN inde-
pendent of size [25]. The small drop in the performance of the
experimental AI model as a result of replacing the background

parenchyma and the nodule with uniform density (AUC 0.915
vs 0.926) suggests that nodule internal texture carries a small
amount of predictive information, somewhat analogous to the
‘nodule type’ term in the Brock model. Several recent
radiomics studies have explored the potential role of internal
texture in nodule classification [26].

Ablating all information on the nodule margins by
implanting a sphere of equivalent volume and mean density
as the nodule into the lung parenchyma produced a reasonable
performance (AUC 0.889); this is analogous to Brock without
spiculation (AUC 0.862). Doing this significantly lowers the
performance of both AI and Brock suggesting that nodule mar-
gins carry a significant amount of information, a concept that is
well recognised by radiologists. In addition, this finding is com-
patible with predictive features lying within the peritumoural
region, which has been shown to improve the classification of
malignant nodules in the field of radiomics [27].

The performance of the experimental AI model was poorer
for part-solid compared to solid nodules. Interestingly, this
finding was not limited to the ablation experiments where
mean nodule density was employed, and was also seen with
unabated images. The relatively small numbers of part-solid
nodules available to train the AI may account for this.
Moreover, it is possible that indolent malignant part-solid
nodules may have been mis-classified as benign over the
6.5-year NLST median follow-up period [28].

Our findings have implications for future research. First,
we have demonstrated that nodule morphology plays a large
role in AI prediction, with background parenchyma playing a
limited, but still important, role. Future work using feature
ablation can further our understanding; e.g., repeating this
experiment in a population including never-smokers will yield

Fig. 4 A subgroup analysis of solid nodules (A) and part-solid nodules (B) showing area under the receiver operating characteristic curve (ROC) for
feature-reduced Brock models and information-ablated artificial intelligence (AI) models
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insights about the role of the background parenchyma.
Second, LCP-CNN outperformed Brock supplemented by au-
tomated measurement despite being blind to the clinical fac-
tors used in Brock such as age, family history of cancer, and
sex. Prior studies in different cohorts also found this [13, 14].
It was previously found that clinical variables (e.g. age, sex,
and smoking history) did not contribute significantly to LCP-
CNN performance; hence, clinical variables were excluded
during the derivation of the model [14]. In the future, under-
standing the reasons for this may help reveal how much clin-
ical information is implicitly learned from the images.

There are several limitations to this study. First, the accuracy
of the Brock model in this study is somewhat lower than in the
PanCan and BCCA cohorts used to develop Brock (AUC >
0.90) [8]. Similar differences have been reported in another
secondary analysis of NLST data using Brock and are likely
due to underlying differences between cohorts [5]. Second, the
predictive value of the Brock model is contingent on the prev-
alence of lung cancer in the population. This may differ in a
clinical cohort from the 5.5–5.6% seen in screening cohorts
such as NLST, PanCan, and BCCA [8, 15]. Third, the selection
criteria applied to the NLST cohort and to this analysis limit the
generalisability to clinical practice. Patients outside the age of
55–75 years, with previous lung cancer, recent chest CT,
haemoptysis, or unexplained weight loss were all excluded
fromNLST [15]. Nodules measuring < 6 mm and ground glass
opacities were excluded from this analysis. Patients with inci-
dental pulmonary nodules in clinical practice can fall outside
these criteria. Fourth, the manual diameter measurements from
NLST were used directly, rather than being performed again,
which may have resulted in bias in the predictive performance
for the manual measurement. Fifth, there is likely bias when
comparing LCP-CNN and Brock in this analysis as LCP-CNN
was trained using data from NLST whilst Brock was trained on
a separate population. However, direct comparison of the two
models is not the main aim of this paper, and would require
testing in a previously unseen population. Finally, ablated CT
images are atypical images that are not seen in clinical practice
and that are challenging to interpret. It is difficult to attribute the
effects of ablation to a single factor; e.g., translating by 15 mm
in order to ablate a nodule may, in part, reduce predictive ac-
curacy because the local severity of emphysema is altered.
Future work performing feature removal using different tech-
niques is necessary in order to draw stronger conclusions.

Lung nodule risk predictionmodels lie on a continuum from
the fully manual LR Brock model, to using automated segmen-
tation to supplement this, to the fully automatic LCP-CNN
which does not require nodule measurement or data entry.
The performance of the Brockmodel improved with automated
measurement, although not to the level of the LCP-CNN sug-
gesting the latter may utilise features outside of Brock for pre-
diction. Following feature ablation, we found that nodule size
and morphology play the largest role in AI prediction, with

nodule internal texture and background parenchyma playing a
limited role. This was broadly analogous to the relative impor-
tance of morphological factors over clinical factors within the
Brock model. These findings have important implications for
future work on understanding AI prediction.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00330-022-08635-4.
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