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Abstract

The effective monitoring and early warning capability of metal mine tailings ponds can

improve the associated safety risk management level. The infiltration line is an important

core index of tailings pond stability. In this paper, a tailings pond monitoring and early warn-

ing system, which provides technical support for the design and daily management of tail-

ings reservoir early warning systems, is constructed. Based on a deep learning bidirectional

recurrent long and short memory network, an infiltration line prediction model with univariate

input and an infiltration line prediction model with multivariate input are proposed. The data

adopted are those from four monitoring points of the same cross-section at different posi-

tions and data from one adjacent internal lateral displacement and internal vertical displace-

ment monitoring point. Using the adaptive moment estimation (Adam) optimization

algorithm and the root mean square error (RMSE) model evaluation metric, the multilayer

perceptron model, univariate input model, and multivariate input model are compared. This

work shows that their RMSEs are 0.10611, 0.09966, and 0.11955, respectively.

Introduction

Mineral resources are an important material basis for promoting economic and social develop-

ment and an indispensable support for ensuring social stability and sustainable economic

development. In the process of mining mineral resources, the treatment of tailings should

avoid causing environmental problems, and at the same time, the redevelopment and utiliza-

tion of tailings resources should be considered. The solid-liquid mixed storehouse formed by

the concentrated storage of mineral waste residues is called a tailings pond [1]. Many serious

accidents related to tailings ponds have occurred worldwide. The basic causes of tailings dam

failure can be divided into flood overtopping, dam cracks, seepage damage and dam landslides.

However, the failure of tailings dams is often caused by many factors, which are essentially due

to the influence of the external environment, such as the increased load through tailings dams,
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earthquakes, rainfall, floods and dam foundation settlement [2]. The stress field and seepage

field of the tailings reservoir change, which leads to instability of the dam body. The infiltration

line of the seepage field in tailings ponds is called the "lifeline" of tailings ponds, and the deter-

mination of the seepage field is the basis of studying dam failure in tailings ponds. The position

of the infiltration line affects the stability of the dam slope [3]. The consolidation speed of tail-

ings below the infiltration line is slow, and tailings close to saturation increase the weight of

the dam body, thus reducing the shear strength and effective stress of the dam body. In addi-

tion, rainstorms, floods and drainage facility failures usually lead to an increase in the satura-

tion line in tailings dams, which leads to seepage damage. For tailings ponds, when the

deformation conditions caused by seepage are met, a piping effect occurs in tailings dams. The

material properties of tailings change after the piping effect, which leads to an increase in per-

meability and a decrease in shear strength and deformation modulus. Eventually, the tailings

pond collapses, and the tailings dam breaks. Because of the complicated geological conditions

and inaccurate boundary conditions of tailings ponds, it is difficult to find the exact solution of

the seepage field and stress field of tailings ponds through theoretical research.

Li et al. [4] evaluated tailings reservoir disasters by the dynamic hierarchical gray relational

analysis method and established an evaluation index and dynamic early warning index. Li

et al. [5] studied the safety monitoring and early warning of tailings by examining the spatial

evolution process of sediment flow and simulated the dam failure process of tailings dams in

three-dimensional space. Wang et al. [6] designed and implemented a tailings pond monitor-

ing system based on the Internet of Things and realized the real-time collection of monitoring

data. Recently, an increasing number of researchers have applied data-driven methods in risk

prediction, such as the artificial neural network (ANN). Through machine learning, we can

use more data information, including nonlinear, mutual relations, and even hidden informa-

tion in imperceptible data. Through model training, the safety trend of tailings ponds can be

predicted, and the safety assessment and risk prediction performance of tailings ponds can be

greatly improved. With the development of 5G networks, artificial intelligence, big data and

other technologies, industrial production and processing have become more intelligent.

Increasingly more monitoring data are being collected. It is very difficult to automatically pro-

cess a large amount of data through a shallow network processing method.

The deep learning method has a strong feature extraction performance. In the first stage, it

reduces the requirement of data feature description and provides a new solution for processing

massive data. Deep learning methods have achieved great breakthroughs and have been used

as advanced models in the field of artificial intelligence (AI) [7], such as for image semantic

analysis and recognition [8,9], natural language processing [10] and speech recognition [11].

Deep learning has been widely used in various fields, such as earthquake and emergency

response [12–15], biomedicine [16–18], mechanical fault diagnosis management [19–21], pub-

lic transportation [22,23], energy [24–26], novel electrodes for future devices [27], and tailings

dam failure and risk management [28–31]. In deep learning, the bidirectional long and short

memory network model can combine the historical state and current memory to address time

series problems. It is mainly used to describe the relationship between current data and previ-

ous input data, and its memory is used to save the internal information of previous data. The

bidirectional cyclic long-short memory network model can not only learn the shallow nonlin-

ear network structure but also approximate complex functions, extract the essential features of

input time series data, and remember information for a long time. On this basis, the following

topics are studied in this paper:

1. A monitoring and early warning system is constructed for tailings ponds that integrates a

deep learning bidirectional cyclic long and short memory network.
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2. Based on a deep learning bidirectional recurrent long-short memory network, a tailings

pond infiltration line prediction model is proposed that has a single-variable input and a

multi-variable input.

3. Through experiments, the multilayer perceptron model is compared with the model based

on a bidirectional recurrent long short-term memory network.

Materials and methods

Deep learning bidirectional recurrent long and short memory network

A recurrent neural network is the foundation of a bidirectional cyclic long and short memory

network. The calculation of the cyclic neural network forms a directed graph, and the expan-

sion calculation diagram of the training loss of the basic cyclic neural network is shown in Fig

1. For time step t, h is the hidden state of the cyclic neural network, x is the input time series

vector, and y^ is the output vector of the cyclic neural network mapping the input vector of

the x value. L is a measure of the loss function between each model output y^ and the corre-

sponding training target y. Comparing it with the target y, the bias vectors b and c and the

weight matrices U, W, and V are the links from the input to the hidden layer, the hidden layer

to the hidden layer, and the hidden layer to the output layer, respectively. Its calculation

expression is as follows: (1)–(3), where θ is the parameter learning function with minimum
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Fig 1. The computational graph to compute the training loss of the recurrent network.

https://doi.org/10.1371/journal.pone.0273073.g001
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model loss and f is the nonlinear activation function.

ht ¼ fðUht þWxt þ bÞ ð1Þ

y^ðtÞ ¼ Vht þ c ð2Þ

L ¼ yðy� y^Þ ð3Þ

The long-term and short-term memory network, based on the simple cyclic neural net-

work, specializes in cyclic information transmission by introducing a new internal state ct2RD.

At the same time, it outputs information nonlinearly to the external state ht2RD of the hidden

layer, which solves the problem of gradient explosion or disappearance. The internal state ct is

calculated by the following Formulas (4)–(5).

ct ¼ f t � ct� 1 þ it � c^t ð4Þ

ht ¼ ot � tanhðctÞ ð5Þ

Among them, the forget gate ft2[0,1]D, the input gate it2[0,1]D, and the output gate

ot2[0,1]D are three gates to control the information transmission path.� is the product of vec-

tor elements, the internal state ct−1 is the memory unit at the previous moment, and the candi-

date state c^t 2 RD is the candidate state obtained through a nonlinear function:

c^t ¼ tanhðWcxt þ Ucht� 1 þ bcÞ ð6Þ

The bidirectional recurrent neural network (Bi-RNN) combines the RNN that moves for-

ward and the RNN that moves backward in the time series. The basic Bi-RNN training loss

expansion calculation diagram is shown in Fig 2. The hidden state h recursively propagates to

the left in the time sequence, the hidden state g recursively propagates to the right in the time

sequence, and their inputs are the same.

The hidden state at t is defined as hð1Þt and gð1Þt (see calculation expressions (7)–(9)), where ot

is the vector concatenation of hð1Þt and gð2Þt .

hð1Þt ¼ fðU1hð1Þðt� 1Þ þWð1Þxt þ bð1ÞÞ ð7Þ

gð2Þt ¼ fðU2gð1Þðtþ1Þ þWð2Þxt þ bð2ÞÞ ð8Þ

ot ¼ hð1Þt � gð2Þt ð9Þ

Construction of the tailings pond monitoring and early warning system

System structure. The system structure is shown in Fig 3, which adopts a three-level

structure that includes a monitoring station, a monitoring management station and a predic-

tion management center. As the first level of the overall architecture, the monitoring station is

used to obtain the data of monitoring points in real time. The on-site monitoring and manage-

ment station is the second level of the overall architecture, which is used for data collection,

display, query, fault alarm, etc. The prediction management center station is the third level of

the overall architecture and is used for 3D display, collection, storage, management, analysis,

early warning and remote network release of the data.
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Global navigation satellite system (GNSS) ground receiving sensors are used for dam dis-

placement monitoring. According to the requirements of the code, a monitoring section is set

with a section spacing of 100~300 m, and multiple monitoring sections are set in the dam

body. There are multiple monitoring points in each section, a monitoring reference point is set

in the stable area near the duty room, and a reference point is set in the stable area at the dam

tail. GNSS data processing software is deployed in the control center server, and all monitoring

points and reference points of the tailings pond transmit GNSS signals received in real time

with the control center through the network. The GNSS data processing software denoises and
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Fig 2. The computational graph to compute the training loss of the bidirectional recurrent network.

https://doi.org/10.1371/journal.pone.0273073.g002
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solves the position information of each monitoring point in real time according to the model

and analyzes it by associating the initial coordinates, thus obtaining the displacement variation

of each monitoring point. The main functions of the GNSS data solution software are the

remote management of GNSS receivers at monitoring points and control points, real-time and

on-time GNSS raw data analysis and processing, independent ring network adjustment and

data management.

Internal displacement monitoring and internal displacement monitoring points should be

deployed in combination with surface displacement, and monitoring sections should be set at

the dam crest at the initial stage of the tailings pond. Each section is provided with a plurality

of monitoring vertical lines, and each vertical line is provided with a plurality of sensors to

monitor the displacement in the downstream direction of the dam body axis.

Infiltration line monitoring. The infiltration line is monitored by using the intelligent vibrat-

ing string osmometer built in the piezometer. The osmometer sensor transmits data to the

data acquisition unit through special hydraulic cables, converges them with other data through

communication cables, and finally transmits all data to the monitoring center server through

an industrial network. For reservoir water level monitoring, a radar level gauge is adopted, and

monitoring points are set on the drainage wells in the reservoir area. The radar level gauge

moves to monitor the change in the reservoir water level. For rainfall monitoring, a grid rain

gauge with a heating module is adopted, and monitoring points are set at the duty room on

site. Video surveillance deployment, using high-definition infrared network cameras, sets up

monitoring points near the duty room of the reservoir area, the top of the initial dam, the

drainage well, etc., to meet the night vision and key area monitoring requirements.

Early warning management center. The early warning management center of the system

is deployed in the mine management center, centrally manages the monitoring of the tailings

pond, sets up the storage server, machine learning early warning system and data management

publishing server, and is responsible for and realizes the inquiry, analysis and early warning of

the monitoring system. According to the monitoring items, it has good stability and
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Fig 3. Monitoring and early warning system architecture.

https://doi.org/10.1371/journal.pone.0273073.g003
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expandability, meets the needs of mine sites and remote management, and can realize net-

working with relevant government supervision departments.

The goal of the machine learning server is to automate the decision-making of tasks. The

learning process is shown in Fig 4. Feature extraction involves extracting important features or

attributes from the original data or creating new features from existing features. Modeling

involves providing data features to machine learning methods or algorithms and training

them, aiming at the evaluation index of the loss function, reducing errors and summarizing

expressions learned from the data. Model evaluation and adjustment involve evaluation and

testing on the validation dataset and gradual optimization to obtain the optimal model. The

basic structure of the model is shown in Fig 5. The input data are the time series data of the

infiltration line and internal displacement, the output layer is the prediction data of the infil-

tration line, and the hidden layer performs deep learning according to the algorithm. For

deployment and monitoring, the selected model is deployed in production and continuously

monitored according to its prediction and results.

Experiment

Experimental environment

Model training machine hardware configuration: 8-core AMD Ryzen7 2.00 GHz processor

and 16 GB RAM. Software: Python 3.8.5 and TensorFlow 2.3.0.

Re-iterate until satisfactory 
model performance

Feature 
Extraction

Datasets
Machine
Learning 
Algorithm

Modeling
Evaluating 

Tuning
Modeling Deployment &

Monitoring

Fig 4. Machine learning process.

https://doi.org/10.1371/journal.pone.0273073.g004
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Fig 5. Basic structure of the model.

https://doi.org/10.1371/journal.pone.0273073.g005
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Experimental design

The goal of the experiment is to answer two questions:

1. What is the loss difference of the model when different optimization algorithms are

utilized?

2. How does the multilayer perceptron model compare with a model based on a bidirectional

recurrent long short-term memory network?

To answer the first question, we use algorithms such as stochastic gradient descent (SGD),

adaptive gradient (AdaGrad), root mean square prop (RMSprop), and adaptive moment esti-

mation (Adam). For the second question, the multilayer perceptron model and the model

based on the bidirectional recurrent long-short memory network are compared, the model

structure diagram is shown in Fig 6. This model contains three layers. The multilayer percep-

tron model consists of all fully connected layers, with 32 nodes in the first layer, 32 nodes in

the second layer, and 2 nodes in the third layer. Based on the bidirectional cyclic long-short

memory network model, the first and second layers are bidirectional cyclic long-short memory

network layers, each layer with 32 nodes, and the third layer is a fully connected layer with 2

nodes.

Model evaluation index

The root mean square error (RMSE) was chosen as the evaluation index of model perfor-

mance. The RMSE is expressed as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
ðyi � y^i Þ

2

r

ð10Þ
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Fig 6. Experimental Model Structure (a) Multi-Layer Perceptron Model, (b) Univariate Input Model, and (c) Multivariable Input

Model.

https://doi.org/10.1371/journal.pone.0273073.g006

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0273073 October 13, 2022 8 / 15

https://doi.org/10.1371/journal.pone.0273073.g006
https://doi.org/10.1371/journal.pone.0273073


Data preparation

The research data come from the monitoring system database of a metal mine tailings pond in

western China. The monitoring equipment for the saturation line of the metal mine tailings

pond adopts an intelligent vibrating wire sensor, and the internal displacement monitoring

equipment adopts an intelligent inclinometer. According to the monitoring design of the tail-

ings pond, the monitoring system of the whole tailings pond is composed of seven cross-sec-

tions, each of which has 3–4 monitoring points of the saturation line and one internal

displacement monitoring point, and each monitoring point has different buried depths of the

intelligent vibrating wire sensors and intelligent inclinometers.

In this study, the state of the infiltration line over the next six hours is predicted, mainly

using the databases of four monitoring points of the infiltration line in cross-section 1 and the

databases of the horizontal internal displacement and vertical internal displacement of adja-

cent internal displacement monitoring points, which are named DataSetI, DataSetII, DataSe-

tIII, DataSetIV, DataSetV and DataSetVI. The monitoring data are collected every three hours

from January 2019 to June 2020. There are 8 monitoring data points every day and 3,850 rec-

ords in each dataset. The curve of the data collected by the monitoring points with time is

shown in Fig 7, and some original data are shown in Table 1.

To improve the convergence speed and accuracy of the model, the collected data are nor-

malized. The normalization method adopted is the MinMaxScalar method, and the calculation

formula is as follows:

Xstd ¼
X� X:min

X:max� X:min
ð11Þ

Xscaled ¼ Xstd�ðmax� minÞ þmin ð12Þ

where X is the original saturation line data or internal displacement data; x.min and x.max are

the maximum and minimum, respectively; max and min are the normalized characteristic

ranges, which are 1 and 0 by default; and Xscaled is the normalized data.

Model training

The model parameters depend on the input layer, hidden layer and output layer of the model.

The dimension of the input layer depends on the feature dimension of the training set. In this

study, there are one-dimensional and three-dimensional time series data, which correspond to

the infiltration line, internal horizontal displacement and internal vertical displacement time

series data. There are many neurons in the hidden layer. These neurons transform the input of

the previous layer and then use the activation function to activate it and output it to the next

layer. The output layer is the predicted target result.

Although deep learning is very powerful, it requires different optimization methods, such

as stochastic gradient descent (SGD), adaptive gradient (AdaGrad), root mean square prop

(RMSprop), and adaptive moment estimation (Adam). When the input sequence x1:T =

(x1,. . .,xT) of length T and the label sequence y1:T = (y1,. . .yT) constitute the training sample (x,

y), there is label supervision information yt at time t, and the loss function is defined as:

Lt ¼ Lðyt; gðhtÞÞ ð13Þ
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https://doi.org/10.1371/journal.pone.0273073.g007
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L is the differentiable loss function, g(ht) is the output at time t, and the loss function of the

entire sequence is:

L ¼
Xt

t¼1
LT ð14Þ

The mean squared error (MSE) loss function can be expressed mathematically as:

Lmse ¼ ðy
t� gðhtÞÞ

2
ð15Þ

The gradient of the loss function L of the entire sequence with respect to the weight param-

eter U is the sum of the partial derivatives of the loss Lt with respect to the parameter U at each

moment. The expression is as follows:

@L
@U
¼
XT

t¼1

@Lt

@U
ð16Þ

Calculate the partial derivative
@Lt
@U because the weight parameter U and the net input of the

hidden layer at each time k (1�k�t) are:

zk ¼ Uhk� 1 þWxk þ b ð17Þ

Therefore, the gradient of the loss function Lt with respect to the parameter uij at time t is:

@Lt

@uij
¼
Xt

k¼1

@þzk
@uij

@Lt

@zk
ð18Þ

where
@þzk
@uij
¼ 0; . . . ; ½hk� 1�; . . . ; 0½ � and the error term dt;k ¼

@Lt
@zk

is defined as the derivative of

the loss at time t with respect to the net input zk of the hidden neural layer at time k. Then,

when 1�k�t,

dt;k ¼
@Lt

@zk
¼
@hk

@zk
¼
@zkþ1

@hk

@Lt

@zkþ1

ð19Þ

Substituting Formulas (18) and (17) into Formula (16) yields a matrix of the form:

@Lt

@U
¼
Xt

k¼1
dt;kh

T
k� 1

ð20Þ

The process of model training is to apply an optimization algorithm, iterate the model

parameters, gradually improve the loss of the model and index, minimize the loss function,

and terminate the model iteration to obtain the optimal parameters learned from the model

training. The model training is time consuming, sometimes requiring hours or even weeks.

The efficiency of model training is related to the advantages and disadvantages of the optimiza-

tion algorithm. Understanding the optimization algorithm is beneficial to targeted model

parameter adjustment, which makes the model perform better. The training models in this

Table 1. Part of the original saturated line and internal displacement data.

Acquisition time DataSetI

(m)

DataSetII

(m)

DataSetIII

(m)

DataSetIV

(m)

DataSetV

(mm)

DataSetVI

(mm)

2019-01-08 01:06:00 8.5534 7.6418 5.5572 8.8431 3.5777 47.0169

2019-01-08 04:06:00 8.5633 7.6418 5.5549 8.8508 3.2718 47.0885

2019-01-08 07:06:00 8.5668 7.6443 5.5450 8.8525 3.0608 47.1234

2019-01-08 10:06:00 8.5590 7.6350 5.5519 8.8525 2.8494 47.2027

https://doi.org/10.1371/journal.pone.0273073.t001
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experiment include a multivariate input infiltration line prediction model and a univariate

input infiltration line prediction model.
Algorithm 1. Back-propagation algorithm stochastic gradient descent
optimization training.
Input: training set D ¼ ðxðnÞyðnÞÞNn¼1

, validation set V, learning rate α,
regularization system λ, number of network layers L, number of neurons
Ml, 1�l�L.
1: Random initialization W, b;
2: Repeat
3: Randomly reorder the samples in the training set;
4: For n = 1. . .N do
5: Select samples (x(n),y(n)) from training set D;
6: Feed-forward calculate the net input z(l) and activation value a(l)
of each layer until reaching the last layer;
7: Inversely calculate the error δ(l) of each layer;

8: 8 l; @LðyðnÞ ;y^ðtÞÞ
@wðlÞ ¼ d

ðlÞ
ðaðl� 1ÞÞ

T;

9: 8 l; @LðyðnÞ ;y^ðtÞÞ
@bðlÞ

¼ sðlÞ;

10: WðlÞ  WðlÞ � aðsðlÞðal� 1Þ
T
þ lWðlÞÞ;

11: b(l) b(l)−αδ(l);
12: End
13: Until the error rate of the deep Bi-LSTM network model on verifi-
cation set V no longer decreases;
Output: W, b

The parameter update difference Δθt of the adaptive moment estimation algorithm (Adam)

is calculated using the Formulas (21)–(23), where α is the learning rate, β1 and β2 are the decay

rates, ε is a very small constant to maintain numerical stability, and M^

t is the modified first-

order moment bias, and G^t is the corrected second moment bias.

M^

t ¼
Mt

1 � b
t
1

ð21Þ

G^t ¼
Gt

1 � b
t
2

ð22Þ

Dyt ¼ �
a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G^t þ �

p M^

t ð23Þ

The univariate input infiltration line prediction model uses DataSetII for training the input

data. For example, Algorithm 1 depicts SGD random gradient descent optimization training.

Train the model 10,000 times.

The training input data of the multivariate input model adopted include DataSetII, Data-

SetV, and DataSetVI (i.e., the input data are the saturation line, internal horizontal displace-

ment and internal vertical displacement). The univariate input infiltration line prediction

model and the multivariate input infiltration line prediction model adopted are the Adam

optimization method and the same evaluation standard. The model was trained 10,000 times.

Results and discussion

The univariate input infiltration line prediction model of the deep learning bidirectional cyclic

long and short memory network is used to perform prediction on DataSetI, DataSetII, DataSe-

tIII and DataSetV, as shown in Table 2, where the prediction root mean square error (RMSE)

is used to compare performance. The Adam optimization algorithm has the lowest RMSE
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(approximately 0.046) among these optimization methods, while the RMSprop optimization

algorithm has the highest prediction RMSE (approximately 0.119).

As shown in Table 3, the multivariate input infiltration line prediction model and multi-

layer perceptron model carry out predictions on DataSetI, DataSetII, DataSetIII and DataSetV.

Comparing the loss between the multilayer perceptron model, multivariate input model and

univariate input model, the multivariate input infiltration line model is slight worse. The

RMSE of prediction is basically satisfactory and can provide some decision support.

This article fuses deep learning technology in the construction of a tailings pond early

warning system. At present, many tailings pond early warning systems compare with the

threshold after real-time data collection for early warning, which is somewhat different from

the data-driven early warning method. The early warning indicators of tailings ponds include

dam body displacement, internal displacement, infiltration line, reservoir water level, rainfall,

and infiltration line. The prediction index of the early warning model fused with deep learning

in this paper is the infiltration line. The experimental data adopted are the same cross-sectional

infiltration line monitoring point data and adjacent internal displacement data. Although

there are certain limitations, the fusion of multisource data of the infiltration line and internal

displacement is realized, and the trained model can be migrated to related cross-sections to

improve the efficiency of model training as a whole.

Conclusions

In this paper, a method for constructing the monitoring and early warning system of tailings

reservoirs that includes the infiltration line, dam displacement, internal displacement, reser-

voir water level, rainfall, video, etc., is introduced, and an infiltration line prediction model of

a bidirectional recurrent long and short memory network is proposed, which provides techni-

cal support for the design and daily management of monitoring and early warning systems of

tailings reservoirs.

The tailings pond monitoring and early warning system offers more real-time response and

intelligence, and the data-driven tailings pond risk early warning method has certain applica-

bility. In the early warning of issues related to the tailings reservoir infiltration line, comparing

the multilayer perceptron model, the univariate input model, and the multivariate input

model, their RMSEs are 0.10611, 0.09966, and 0.11955, respectively. The data-driven early

warning of tailings pond risk, integrating monitoring indicators such as dam body displace-

ment, internal displacement, the infiltration line, the reservoir water level, and rainfall, is con-

ducive to further risk evaluation.

Table 2. Prediction RMSE of different optimized methods.

Dataset SGD AdaGrad RMSprop Adam

I 0.04711 0.04738 0.04743 0.04688

II 0.04726 0.04844 0.04849 0.04599

III 0.07602 0.10724 0.10762 0.06145

IV 0.10902 0.11966 0.11983 0.09966

https://doi.org/10.1371/journal.pone.0273073.t002

Table 3. Prediction RMSE of different models.

Model DataSetI DataSetII DataSetIII DataSetIV

Multilayer perceptron model 0.04688 0.04658 0.07486 0.10611

Univariate input model 0.04688 0.04599 0.06145 0.09966

Multivariable input model 0.04692 0.04871 0.10855 0.11955

https://doi.org/10.1371/journal.pone.0273073.t003
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