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Engineering neural networks to perform specific tasks often represents a monumental

challenge in determining network architecture and parameter values. In this work, we

extend our previously-developed method for tuning networks of non-spiking neurons,

the “Functional subnetwork approach” (FSA), to the tuning of networks composed of

spiking neurons. This extension enables the direct assembly and tuning of networks of

spiking neurons and synapses based on the network’s intended function, without the use

of global optimization ormachine learning. To extend the FSA, we show that the dynamics

of a generalized linear integrate and fire (GLIF) neuronmodel have fundamental similarities

to those of a non-spiking leaky integrator neuron model. We derive analytical expressions

that show functional parallels between: (1) A spiking neuron’s steady-state spiking

frequency and a non-spiking neuron’s steady-state voltage in response to an applied

current; (2) a spiking neuron’s transient spiking frequency and a non-spiking neuron’s

transient voltage in response to an applied current; and (3) a spiking synapse’s average

conductance during steady spiking and a non-spiking synapse’s conductance. The

models become more similar as additional spiking neurons are added to each population

“node” in the network. We apply the FSA to model a neuromuscular reflex pathway two

different ways: Via non-spiking components and then via spiking components. These

results provide a concrete example of how a single non-spiking neuron may model the

average spiking frequency of a population of spiking neurons. The resulting model also

demonstrates that by using the FSA, models can be constructed that incorporate both

spiking and non-spiking units. This work facilitates the construction of large networks

of spiking neurons and synapses that perform specific functions, for example, those

implemented with neuromorphic computing hardware, by providing an analytical method

for directly tuning their parameters without time-consuming optimization or learning.
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1. INTRODUCTION

Neuromorphic computing hardware is becoming more widely
available (Khan et al., 2008; Pfeil et al., 2013; Benjamin et al.,
2014; Gehlhaar, 2014; Merolla et al., 2014; Ionica and Gregg,
2015; Davies et al., 2018). Such chips have non-traditional
architecture, with highly-parallel processing and specialized
circuits that mimic neural and synaptic dynamics. These
chips mimic the communication of spiking neural networks,
whose discrete communication events (i.e., spikes) reduce the
communication overhead relative to continuous networks. Many
canonical brain networks have been tested with these chips
including decorrelation networks, winner-take-all networks, and
balanced random networks (Pfeil et al., 2013), as well as
other networks that perform complex computations, such as
multi-object recognition (Merolla et al., 2014) and keyword-
matching (Blouw et al., 2018), using <100 mW of power in the
process.

Neuromorphic hardware is advancing both computational
neuroscience (Eliasmith and Anderson, 2002; Eliasmith et al.,
2012) and artificial intelligence (Pfeil et al., 2013; Benjamin et al.,
2014; Merolla et al., 2014), and soon will play a critical role
in robotics. Animals’ mobility shows that neuron-based control
is effective, and several groups have already developed neural-
inspired controllers that could benefit from the low power and
parallel computing of neuromorphic hardware (Ayers et al., 2010;
Floreano et al., 2014; Dasgupta et al., 2015; Hunt et al., 2017;
Szczecinski and Quinn, 2017b; Dürr et al., 2019). However, to
apply these neuromorphic chips to robotics, these controllers
must be converted into a chip’s specific neural model, which
may not be trivial. All chips use a variant of the integrate-and-
fire model (Brunel and van Rossum, 2007). Toward this goal, we
have developed methods for applying our functional subnetwork
approach (FSA) for designing non-spiking recurrent neural
networks (Szczecinski et al., 2017b) to the specific generalized
integrate-and-fire (GLIF) model used by Intel’s Loihi chip
(Mihalaş and Niebur, 2009; Davies et al., 2018).We will show that
these models (i.e., non-spiking and GLIF) have several parallels
that enable a network designer to map between them. The details
of this comparison are listed at the end of the Introduction.

Setting parameter values in dynamic neural networks can
be extremely difficult. Even when network architecture is
created directly from animal architecture, parameters cannot
be practically measured across all neurons and synapses, and
there may be thousands of parameters that dynamically interact.
Therefore, these parameter values must be set by the modeler
such that the network produces the desired behavior. Some
methods and tools have been developed to assist neural designers
when mapping network behavior to a desired output, for
example, the Neuroengineering Framework and its browser-
based design program, Nengo (Eliasmith and Anderson, 2002;
Maass and Markram, 2004; Bekolay et al., 2014). These methods
seek to build populations of neurons, whose average activity (i.e.,
spiking frequency) encodes a value of interest. Each population
can then interact with others to perform specific operations,
such as arithmetic or calculus. This technique is very powerful,
enabling the construction of brain-scale networks (Eliasmith,

2013). However, one drawback is that within each population,
the connectivity is random, and may not provide insight into
how biological networks are structured at small scales. This
method is also not ideal for modeling networks with relatively
few neurons, such as those that have been described in the
locomotion networks of animals (e.g., Bueschges et al., 1994;
Sauer et al., 1996; Berg et al., 2015).

As an alternative to this technique we have developedmethods
for explicitly computing neural and synaptic parameter values for
non-spiking dynamical neural networks that perform arithmetic
and calculus (Szczecinski et al., 2017b). Such networks are
also called “recurrent neural networks,” because each neuron’s
instantaneous state is a function of its own history, producing
a form of self-feedback. While such recurrent dynamics can
make it difficult to tune networks, such continuous dynamical
neural models enable direct analysis of a network’s eigenvalues,
equilibrium points, and therefore, individual neuron behavior
in response to specific inputs (Szczecinski et al., 2017a,b). Such
analysis can be difficult to perform on spiking networks, but is
particularly important in robotics, in which engineers seek to
guarantee a robot’s stability and the controller’s robustness to
parameter changes or sensor noise. The resulting networks are
sparse and based on known anatomy, similar to related robotic
controllers composed of analog very large scale integration
(VLSI) circuits or efficient, discrete-time neuron models (Ayers
and Crisman, 1993; Ayers et al., 2010).

Such non-spiking, continuous-valued models theoretically
have the same activation dynamics as the average spiking
frequency of a population of spiking neurons, all of whom
receive the same (noisy) inputs (Wilson and Cowan, 1972).
The current manuscript explores this assertion by identifying
relationships between the parameter values in the non-spiking
model used in our previous work (Szczecinski et al., 2017a,b)
and those in a GLIF model (Mihalaş and Niebur, 2009; Davies
et al., 2018). Applying the functional subnetwork approach to
spiking networks has three primary benefits: First, it enables rapid
and direct assembly of spiking networks that have predictable
performance; second, it enhances neural robot controllers with
richer dynamics than recurrent neural networks; and third, it
is a tool for implementing neural controllers on neuromorphic
hardware for robots.

In this manuscript, we demonstrate the first of these
benefits by extending our previously-developed design tools
for non-spiking models (Szczecinski et al., 2017b) to spiking
models. We present three “parallels” between the non-spiking
and spiking models that enable the extension of our non-
spiking network design techniques to spiking networks.
This extension includes reducing the impact of non-linear
relationships within a network. We derive three parallels
between these models:

P1. The steady-state spiking frequency of a spiking neuron is
parallel to the steady-state depolarization of a non-spiking
neuron because each is proportional to the current applied
to the neuron. We refer to both of these quantities as the
“activation” of the neuron. The activation of each model can
be related to the other via model parameters, and specific
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parameter values increase the similarity between spiking
frequency and non-spiking depolarization.

P2. The instantaneous spiking frequency of a spiking neuron is
parallel to the instantaneous depolarization of a non-spiking
neuron. Each exhibits a transient response when stimulated.
The decay rate of each model can be related to the other via
model parameters, and specific parameter values increase the
similarity between the spiking frequency time constant and
the non-spiking membrane time constant.

P3. The time-averaged conductance of a spiking synapse is
parallel to the conductance of a non-spiking synapse
because each is proportional to the activation of the pre-
synaptic neuron. Both spiking and non-spiking synapses
can be designed to implement a given “gain” value, i.e.,
the ratio between the post-synaptic (i.e., receiving) and
pre-synaptic (i.e., sending) neurons’ activations. Specific
parameter values increase the similarity between the time-
averaged spiking synapse conductance and the non-spiking
synapse conductance.

This manuscript is organized as follows. The methods in section
2 present the non-spiking and GLIF models and compute
fundamental quantities for each, including equilibrium points
and useful relationships between parameter values and variables.
We use these expressions to extend our FSA for designing non-
spiking networks to spiking models. The results in section 3
demonstrate parallels P1-P3 and leverage them into a sequential
process for designing a spiking pathway. In section 4, the results
from section 3 are applied to a neuromuscular model of a stretch
reflex, and the resulting motion of the models is compared.
Finally, the discussion in section 5 summarizes the work, explains
how neurobiologists and roboticists can apply this work to their
research, and proposes future work. To aid the reader, variable
names are defined in Table 1.

2. METHODS

In this section, we present both the non-spiking model and the
spiking model. For each, we compute parameter values necessary
to demonstrate parallels P1–P3. Then we briefly summarize the
philosophy behind the FSA.

2.1. Non-spiking Neuron and Synapse
Models
The non-spiking model is a leaky integrator, or recurrent neural
model (Beer and Gallagher, 1992). Such a model describes the
subthreshold dynamics of a neuron with the differential equation

C̄mem ·
dŪ

dt
= −Gmem · Ū+

n
∑

i=1

Ḡs,i · (Es,i− Ū)+ Iapp+ Ibias, (1)

where Ū is the non-spiking neuron voltage above its rest potential
(referred to as “membrane depolarization” throughout, see
Szczecinski et al., 2017b for more detail), C̄mem is the capacitance
of the cell membrane, Gmem is the leak conductance, Ḡs,i is the
instantaneous conductance of the ith incoming non-spiking (i.e.,
graded) synapse, Es,i is the reversal potential of the i

th incoming

TABLE 1 | List of variables and descriptions.

Variable Description

NON-SPIKING

Ū Membrane voltage, state variable

C̄mem Membrane capacitance, constant parameter

Gmem Membrane conductance/leak conductance, constant parameter

Iapp Applied current, input variable

Ḡmax Maximum non-spiking synaptic conductance, constant parameter

Ḡs Instantaneous non-spiking synaptic conductance, piecewise linear

function of the pre-synaptic neuron’s voltage

Ēs Non-spiking synaptic reversal potential, constant parameter

SPIKING

U Membrane voltage, state variable

θ Spiking threshold, state variable

Cmem Membrane capacitance, constant parameter

Gmem Membrane conductance/leak conductance, constant parameter

Iapp Applied current, input variable

θ0 Initial spiking threshold, constant parameter

τθ Spiking threshold time constant, constant parameter

m Proportionality constant that determines the change in θ relative to U,

constant parameter

Gmax Maximum spiking synaptic conductance, constant parameter

Gs Instantaneous synaptic conductance, state variable

τs Synaptic time constant, constant parameter

Es Spiking synaptic reversal potential, constant parameter

synapse relative to the neuron’s rest potential, Iapp is the applied
current that encodes information (e.g., muscle stretch, as shown
in Figure 1), and Ibias is the constant offset current. The synaptic
conductance Ḡs is a piecewise linear function of the pre-synaptic
neuron voltage,

Ḡs = Ḡmax,i ·











0, if Ūpre ≤ 0,
Ūpre

R , if 0 < Ūpre < R,

1, if Ūpre ≥ R.

(2)

Ḡmax is the maximum synaptic conductance, and R is the
maximum membrane depolarization of neurons in the network
(Szczecinski et al., 2017b). Parameters with a bar (e.g., Ū) are
those that relate to the non-spiking model, and will be mapped
to analogous parameters in the spiking model in section 2.2. The
results in section 3 explain how to map from these values into
their spiking model counterparts.

The steady-state membrane depolarization, Ū∞, is calculated
by solving Equation (1) when dŪ/dt = 0,

Ū∞ =

∑n
i=1 Ḡs,i · Es,i + Iapp + Ibias

∑n
i=1 Ḡs,i + Gmem

. (3)

Note that the equilibrium voltage is effectively the average of
incoming synaptic potentials Es, weighted by their conductances
Ḡs. If a neuron receives an applied current but has no incoming
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FIGURE 1 | An example of a simple reflex pathway that encodes muscle stretch and decodes to muscle force. Both non-spiking and spiking implementations are

shown. Both methods require mapping to and from mechanical states and neural states, but the specific transforms required depend on the model used. The rest of

this manuscript demonstrates the relationships between parameters in these models.

synaptic connections, this expression simplifies to:

Ū∞ =
Iapp + Ibias

Gmem
. (4)

If Ibias = 0, then Ū is directly proportional to Iapp. This
expression will be used to demonstrate parallel P1 between
the models.

How does the non-spiking model’s response evolve over time?
The response to a tonic current that is turned on at time
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t = 0 is

Ū(t) = Ū∞ · (1− e−t/τmem ), (5)

where U∞ comes from Equation (3), and

τmem =
Cmem

∑n
i=1 Gs,i + Gmem

. (6)

The transient response of Ū decays with time constant τmem,
which will be compared to the spiking model’s transient spiking
frequency, demonstrating parallel P2 between the models.

The effect of a synaptic input on the post-synaptic neuron can
be quantified by the “gain” of the synapse. We define the gain
ksyn = Ū∞,post/Ū∞,pre, the ratio between the post-synaptic and
pre-synaptic steady-state voltage. Substituting the expression for
synaptic conductance in Equation (2) into Equation (3) relates
the synapse’s parameter values to its gain (Szczecinski et al.,
2017b):

Ḡmax =
ksyn · R

Es − ksyn · R
. (7)

This expression will be extended to design spiking synapses, once
we demonstrate parallel P3 between the models.

2.2. Spiking Neuron and Synapse Model
The spiking model used in this work is a generalized leaky
integrate and fire (GLIF) model (Mihalaş and Niebur, 2009;
Davies et al., 2018). The dynamics of the membrane voltage are
identical to Equation (1) (Equation 8), except that U is reset
to 0 after crossing the spiking threshold, θ (Equation 10). In
addition, the threshold θ is itself a dynamical variable that evolves
according to Equation (9). The dynamics of U and θ interact to
produce a diverse set of spiking responses (Mihalaş and Niebur,
2009).

The spiking model’s dynamics are:

Cmem ·
dU

dt
= −Gmem · U +

n
∑

i=1

Gs,i · (Es,i − U)+ Iapp + Ibias

(8)

τθ ·
dθ

dt
= −θ + θ0 +m · U (9)

if U ≥ θ , 0←− U, (10)

where the variable names and functions are the same as in
Equation (1), with the exception of the synaptic conductance Gs,i

(described below); and the threshold variable θ , whose equation
includes the threshold time constant τθ , the initial threshold θ0,
and the proportionality constant that specifies how θ changes in
response to changes in U, calledm.

The spiking synapse conductance Gs is reset to its maximum
value Gmax when the pre-synaptic neuron spikes, and decays to 0
with a time constant τs,

τs ·
dGs

dt
= −Gs. (11)

The steady-state threshold value θ∞ is calculated by solving
Equation (9) when dθ/dt = 0,

θ∞ = θ0 +m · U∞, (12)

where U∞ is the neuron’s steady-state membrane depolarization
(as in Equation 3), if the spiking mechanism (Equation 10) is
disabled. We will refer to U∞ as the “target voltage.” When the
spiking mechanism is enabled, then steady-state spiking occurs
if U∞ > θ∞, which we show below.

The steady-state spiking frequency of a neuron fsp is the
inverse of the time required for the neuron’s membrane potential
in Equation (5) to cross the threshold θ(t),

fsp =
−1

τmem · ln
(

1− θ
U∞

) . (13)

Equation (13) indicates that if the target voltage is below the
threshold (i.e., U∞ < θ), then the argument of ln() becomes
<0 and the frequency is undefined because no spikes can occur.
Increasing the target voltage U∞ (e.g., via synaptic inputs or
applied current) or decreasing the threshold θ increases fsp by
decreasing the amount of time needed for U(t) to reach θ . The
spiking frequency can also be increased by reducing τmem, which
similarly reduces the time needed for U(t) to reach θ .

If the spiking threshold is not dependent on the membrane
voltage (i.e.,m = 0 in Equation 10), then θ(t) = θ0, and Equation
(13) is used to calculate the spiking frequency explicitly, given the
target voltageU∞. According to Equation (3),U∞ is a function of
Iapp, so Equation (13) provides the Iapp → fsp mapping necessary
to demonstrate parallel P1 whenm = 0.

The spiking thresholdmay depend on themembrane potential
(m 6= 0 in Equation 10), for example, when modeling neurons
that exhibit class 2 excitability, frequency adaptation, or other
non-constant spiking frequency responses (Mihalaş and Niebur,
2009). In such cases, Equation (13) is still used to calculate the
spiking frequency. However, since θ is a dynamical variable, the
value of θ at the instant that a spike occurs, called θ∗ must be
found. Additionally, θ∗ may change from spike to spike, so in
fact one must solve for θ∗∞, the instantaneous spiking threshold
for each spike during steady-state spiking. This amounts to
solving the following implicit equation, which is derived in the
Supplementary Materials S1.1.1 and S1.1.2:

f (θ∗∞) = 0 =










(θ∞ − θ∗∞) ·
θ∗∞
U∞
+m · U∞ ·

(

1−
θ∗∞
U∞

)

· ln
(

1−
θ∗∞
U∞

)

,

if τmem = τθ ; (θ∞ − θ∗∞) ·
(

1− (1−
θ∗∞
U∞

)τmem/τθ
)

+

m·U∞·τmem
τθ−τmem

·
(

(1−
θ∗∞
U∞

)− (1−
θ∗∞
U∞

)τmem/τθ
)

, else.

(14)

Equation (14) implicitly describes the relationship between the
target voltage U∞ and the threshold at the instant a spike occurs
θ∗∞, and must be solved numerically. Once θ∗∞ is found, the
steady-state spiking frequency is calculated by substituting θ =

θ∗∞ in Equation (13).
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A more easily computed but less accurate explicit function
approximation of θ∗∞ based on U∞ is shown below in Equation
(16). This approximation follows from observing that when fsp is
large, two key phenomena arise: First, there is less time between
spikes for θ to fluctuate, so its average value is a good estimate
of its instantaneous value; second, the average voltage Uavg

approaches θ∗∞/2 (Supplementary Materials S1.1.3), enabling
the usage of Equation (12) to calculate

θ∗∞ = θ0 +m ·
θ∗∞

2
. (15)

Rearranging for θ∗∞ yields

θ∗∞ =
θ0

1−m/2
= B · θ0, (16)

where B = 1/(1−m/2). The approximation in Equation (16) has
the advantage of being explicit. However, it is only accurate when
1/fsp << τθ . Its utility will be explored in the results (section 3).

2.2.1. Average Synaptic Conductance
The average synaptic conductance Gavg is computed by solving
for Gs(t) and calculating its average value over a duration of one
interspike period, Tsp = 1/fsp. The synaptic conductance evolves
according to Equation (11). Because a pre-synaptic spike resets
the conductance to Gmax, the conductance after a spike at time
t = 0 is simply

Gs(t) = Gmax · e
−t/τs . (17)

The average conductance Gavg given a steady-state pre-synaptic
interspike period Tsp can be calculated by integrating Equation
(17) over the interval [0,Tsp] and dividing by Tsp. Performing
this integral,

Gavg = Gmax · τs · fsp · (1− e−1/fsp·τs ). (18)

The average conductance Gavg is directly proportional to the pre-
synaptic spiking frequency fsp except for the influence of the
exponential term, which we define as

δ = e−1/fsp·τs (19)

This equation will be necessary to tune synaptic connections in
the network.

2.3. Network Construction
To control motion, the nervous system must map from
mechanical quantities (e.g., muscle stretch) to neural quantities
(e.g., sensory neuron voltage, spiking frequency, etc.), perform
computations, and then map neural output back into mechanical
quantities (e.g., muscle force) (Eliasmith and Anderson, 2003;
Szczecinski et al., 2017b; Hilts et al., 2019). Thus, the network
“encodes” the mechanical state of the animal or robot, performs
control computations, and then “decodes” the required actuator
forces. For example, Figure 1 illustrates a simple stretch reflex,
implemented as both non-spiking and spiking pathways. The

type of encoding and decoding that take place in each pathway
depends on whether it is spiking or non-spiking, but the
computation itself should not differ.

In this manuscript, each non-spiking neuron has a maximum
expected membrane depolarization R, and each spiking neuron
has a maximum expected spiking frequency Fmax. The minimum
value in each case is 0. Specifying an expected range of activity
for each type of network simplifies network tuning in two ways.
First, it enables a clear comparison between non-spiking and
spiking implementations of the same network. The activation
of analogous nodes in two networks should be equal once
normalized to the range of activity, e.g., Ū/R = fsp/Fmax.
When all of a network’s nodes have the same activity scale, more
specific and precise computations can be designed within the
network (Szczecinski et al., 2017b). Second, it enables synaptic
connections between serial nodes in the same network to be
parameterized by the gain ksyn, whether non-spiking or spiking
models are used. The gain can be formulated as either ksyn =
Ūpost/Ūpre or ksyn = fpost/fpre. Normalizing network activity
in this way will enable us to apply the same design constraints
derived in Szczecinski et al. (2017b) to the spiking model.

2.4. Simulation
All simulations were implemented in Matlab (The Mathworks,
Natick, MA). Neurons were initialized with a random initial
depolarization U(0) ∈ [0, θ0]. This added some variation to
the simulation. All units were scaled to ms, mV, nA, nF, and
µS (M�). Dynamics were simulated using the forward Euler
method, with time step 1t = min(τmem) · 10

−4 ms.

3. RESULTS

3.1. Comparison of Non-spiking and
Spiking Neuron Activation
The steady-state spiking frequency fsp is approximately a linear
function of the applied current Iapp. Equation (4) shows that the
non-spiking model’s voltage Ū is directly proportional to Iapp.
However, Equation (13) shows that the spiking frequency of the
spiking model fsp is a transcendental function of the neuron’s
applied current Iapp. Despite its transcendental nature, it can be
bounded by parallel lines,

Iapp

Gmem · τmem · θ∗∞
−

1

2 · τmem
≤ fsp(Iapp, θ

∗
∞)

≤
Iapp

Gmem · τmem · θ∗∞
+

1

2 · τmem
, (20)

provided that

Ibias =
Gm · θ

∗
∞

2
. (21)

This inequality is derived in Supplementary Materials (S1.1.4).
For any Iapp, the precise value of θ∗∞ is calculated numerically
with Equation (14), or approximated with the explicit function in
Equation (16). Then, Equation (20) provides affine bounds on the
spiking frequency, with a range of ±1/(2 · τmem). Figures 2A,B
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FIGURE 2 | (A) A neuron’s spiking frequency fsp is an approximately linear function of the steady-state membrane voltage U∞, staying between the upper bound

fsp,ub = (U∞ + θ∗∞/2)/(τmem · θ
∗
∞) and the lower bound fsp,lb = (U∞ − θ∗∞/2)/(τmem · θ

∗
∞) (Equation 20). (B) Zooming in shows that the linear approximation is poor at low

frequencies. (C) The error between the measured and approximated spiking frequency is a function of both U∞ and m, but stays below 2% in all cases. (D) Even if the

spiking threshold can change over time (m 6= 0), neurons tend to spike at the same threshold no matter the value of U∞. This threshold approaches the explicit

approximation in Equation (16) (dashed lines) as U∞ increases.

plot the three terms in Equation (20) vs. Iapp/Gmem. Figure 2A
shows that as Iapp increases, fsp is an approximately linear
function of Iapp, and approaches the mean of the bounds from
Equation (20). The resulting approximation is

fsp,approx(Iapp, θ
∗
∞) =

Iapp

Gmem · τmem · θ∗∞
. (22)

Figure 2B shows that the linear approximation in Equation (22)
breaks down for very small values of Iapp, but Figure 2C shows

that the error asymptotically approaches 0 as Iapp increases,
no matter the value of m. Figure 2D shows that for any
value of m, θ∗∞ approaches the value in Equation (16) as Iapp
(and fsp) increases.

Equation (22) reveals the parallel between the non-
spiking activation Ū and the spiking activation fsp: Both
are directly proportional to Iapp (provided the bias current
is tuned according to Equation 21). To strengthen this
parallel, τmem can be tuned such that each activation
value equals its maximum value when the input Iapp
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equals its maximum value, Gmem · R. The resulting
constraint is

τmem =
R

Fmax · θ∗∞
. (23)

This condition implies that given the same
input current Iapp, the non-spiking and spiking
activations can be mapped to each other
through the relationship

fsp,approx(Iapp, θ
∗
∞) =

Fmax

R
· Ū∞, (24)

The results show that the spiking frequency is parallel
to the membrane depolarization of the non-spiking model.
Each activation state is a linear function of the applied
current, and can be related to each other by the factor
Fmax/R. This supports parallel P1 from the Introduction: Non-
spiking neuron voltage is analogous to the spiking neuron’s
spiking frequency.

3.2. Comparison of Non-spiking and
Spiking Activation Transient Responses
The transient spiking threshold θ∗ can be tuned to approximate
the transient response of the non-spiking membrane
depolarization Ū. Knowing the steady-state spiking threshold
at the time of spiking, θ∗∞, one can calculate the evolution of
θ∗ from spike to spike. This evolution describes the transient
response of the neuron’s spiking frequency in response to
a step-input current. The following expression is derived
in Appendix 1.4:

θ∗(t) = θ∗∞ + (θ0 − θ∗∞) · e
−t/τθ∗ , (25)

where θ∗∞ is calculated via Equation (14) or Equation (16) and
τθ∗ = τθ · B (Equation 46).

Equation 25 describes how the spiking threshold, and thus
the spiking frequency, evolves from spike time to spike time.
This is analogous to the non-spiking neuron membrane transient
response from Equation (5), whose time constant is defined in
Equation (6). The time constants in a non-spiking functional
subnetwork (e.g., as designed according to Szczecinski et al.,
2017b) are mapped to the threshold’s time constant in a spiking
neuron network with the equation

τθ = τ̄mem ·

(

1−
m

2

)

. (26)

Figure 3A plots the response of θ and fsp when m = −5,
compared to the response of a non-spiking neuron voltage
Ū, scaled by Fmax/R (Equation 24). Figures 3Ai–iii show
that Equation (25) accurately predicts the spiking threshold
at each spike time, even as different values of τθ are used.
Figures 3Aiv–vi show that when m = −5, fsp evolves smoothly,
because θ∗ evolves quickly and with a large amplitude.

Figure 3B plots the transient responses when m = −0.5. θ∗

is predicted accurately in Figures 3Bi–iii. However, the spiking
frequency discontinuously leaps from 0 to a non-zero value as

shown in Figures 3Biv–vi. Since θ has the same transient time
constant as Ū, the transient firing frequency has the same decay
rate as the non-spiking neuron voltage. However, the amplitude
does not map directly.

Finally, Figures 3Ci–iii show that this analysis applies even
whenm > 0, that is, when the threshold increases as U increases.
Figure 3C does not include plots of fsp or Ū because whenm > 0,
fsp decreases over time, a behavior that the non-spiking model
cannot reproduce.

The data in Figure 3A show that when m << 0, the firing
frequency fsp evolves smoothly at the same rate as Ū scaled by
Fmax/R, when subjected to the same current input. This result
supports parallel P2 from the Introduction: The transient spiking
threshold θ∗ mimics the transient membrane depolarization Ū
as long as τθ∗ = τθ · B = τ̄mem.

3.3. Comparison of Non-spiking and
Spiking Synaptic Conductance
The average spiking synaptic conductance Gavg can be tuned to
approximate the non-spiking synaptic conductance Ḡs. Gavg is
approximately proportional to fsp when τs is sufficiently small.
Decreasing τs improves this approximation by reducing the
impact of δ, the exponential term in Equation (18). Figure 4
illustrates δ graphically. After selecting a value for δ, Equation
(19) can be solved to compute the upper limit of τs,

τs ≤
−1

Fmax · ln δ
. (27)

For example, if δ = 0.01 (1% deviation from a linear relationship)
and Fmax = 0.1 kHz, then τs ≤ 2.17 ms. Equation 27 is
necessary to ensure that the average synaptic conductance Gavg

is an approximately linear function of the pre-synaptic neuron’s
firing frequency fsp.

Figure 4 plots Gavg vs. fsp for various parameter value
combinations. δ is different in each column. In each case, τs
is calculated using Equation (27). When δ is small (≤ 1%),
the average spiking synaptic conductance is almost directly
proportional to the spiking frequency of the pre-synaptic neuron.
This is analogous to the non-spiking synaptic conductance,
which is proportional to the membrane depolarization of the pre-
synaptic neuron (Equation 2). This result supports parallel P3
from the Introduction: The average spiking synaptic conductance
Gavg is proportional to the pre-synaptic neuron’s activation.
However, Gavg is an emergent property of the synapse; the
designer can only set the value of Gmax. How should Gmax be set?
Once the desired value for Gavg is known (see section 3.4), Gmax

is determined by rearranging Equation (18),

Gmax =
Gavg

τs · Fmax · (1− δ)
. (28)

What if one wishes to set Gmax to achieve a particular functional
gain, that is, ratio of firing frequencies between the post-
synaptic and pre-synaptic neurons (i.e., fsp,post/fsp,pre)? In this
case, one sets Gavg in Equation (28) equal to the equivalent non-
spiking synaptic conductance in Equation (7), which is expressed
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FIGURE 3 | The evolution of the spiking threshold when a spike occurs can be predicted. (A) When the threshold strongly hyperpolarizes in response to membrane

voltage depolarization, the transient spiking frequency evolves much like the non-spiking neuron’s membrane voltage. (B) When the threshold weakly hyperpolarizes in

(Continued)
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FIGURE 3 | response to membrane voltage depolarization, the transient spiking frequency evolves at the same rate as a non-spiking neuron’s membrane voltage, but

the amplitude matches poorly. This is because the spiking neuron’s membrane must depolarize strongly before firing even one spike, leading to a large leap in

frequency from 0 to a non-zero value. (C) This analysis also applies if the spiking threshold depolarizes in response to membrane voltage depolarization (i.e., m > 0).

However, the comparison between fsp and U is not shown because in this case, fsp begins large and decreases over time, rather than beginning small and increasing

over time, like Ū.

FIGURE 4 | Decreasing the synaptic time constant τs increases the linearity of the average synaptic conductance Gavg as a function of the pre-synaptic neuron’s

spiking frequency fpre. Changing the network’s maximum spiking frequency Fmax will change the specific value of τs, but the linearity δ varies in the same way.

in terms of ksyn, the functional synaptic gain. As a further
simplification, let us assume δ ≈ 0, in which case:

Gmax =
ksyn · R

(E− ksyn · R) · τs · Fmax
. (29)

This equation enables the direct design of synaptic conductance
based on synaptic gain.

3.4. Extending the Functional Subnetwork
Approach for Designing Non-spiking
Networks to Spiking Networks
Having established analogous parameters between non-spiking
and spiking networks, we can now adapt the functional
subnetwork approach (FSA) (Szczecinski et al., 2017b) to spiking
networks. The goal of the FSA is to determine the parameter
values for individual neurons and synapses based on network-
wide parameter values (e.g., R and Fmax) and the intended
function of a portion of a network. In the non-spiking framework
we previously developed, one could construct networks that
could add two (orN) input signals using three (orN+1) neurons;
subtract two signals using three neurons; multiply two signals
using four neurons; divide two signals using three neurons;
differentiate a signal using four neurons; and integrate a signal
over time using two neurons. The accuracy of the FSA has a
practical limit, especially when parameter values are constrained
to biologically plausible bounds. However, the FSA enables the
rapid, direct assembly of networks that can perform sophisticated
tasks, such as entraining rhythmic output to periodic inputs
(Nourse et al., 2018) or learning the appropriate force to

apply to the environment (Szczecinski and Quinn, 2017a), right
“out of the box.” Such networks also serve as good starting
configurations for subsequent optimization (Pickard et al., 2020).
As such, we find the FSA to be useful for designing computational
models and robot controllers.

How does one use the FSA to select parameter values based
on network function? As an example, consider a pathway in
which one neuron’s activation may represent the average of
two other neurons’ activation. To accomplish this, the synapses
connecting these neurons should each have gain ksyn = 1/2,
such that f3 = 1/2 · (f1 + f2). For another example, one
neuron’s activation may represent the difference between two
other neurons’ activation if the synapses have equal and opposite
gain, e.g., ksyn,1 = 1, ksyn,2 = −1 (and the second synapse has a
negative reversal potential). The FSA ensures that each neuron
encodes the intended quantities and performs the intended
operation by tuning parameter values in an algorithmic way.

Table 2 contains the FSA for spiking networks. The designer
first sets network-wide values for the spiking neuron parameters
Fmax, θ0, R, either based on biological data or arbitrarily.
Applying the same values across the entire network ensures
proper encoding and decoding (e.g., Figure 1). Next, the designer
sets m and τθ based on the desired transients in the system.
Then Ibias and τmem are calculated so that fsp = Fmax when
Iapp/Gm = R. After the neural parameters, the synaptic
parameters are tuned. The synaptic decay constant τs is calculated
to ensure the average synaptic conductance is proportional to the
pre-synaptic neuron’s spiking frequency. Finally, the maximum
synaptic conductance Gmax is calculated to achieve the intended
average synaptic conductance.
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TABLE 2 | Expanded functional subnetwork approach for designing spiking pathways.

Step Goal Param. Eq. No. Equation

1. Set network-wide activation parameters. Fmax , R, and θ0 24 fsp,approx =
Fmax
R
· Ū∞

2. For each neuron, set transient response type based on function in the network. m For d
dt fsp > 0, set m < 0.

For d
dt fsp = 0, set m = 0.

For d
dt fsp < 0, set m > 0.

3. For each neuron, set the duration of transient firing based on its function in the

network.

τθ 26 τθ = τ̄mem · (1−
m
2 )

4. For each neuron, calculate bias current. Ibias 21 Ibias =
Gmem ·θ0
2−m

5. For each neuron, ensure fsp ∈ [0, Fmax ]. τmem 23 τmem =
R

Fmax
·
1− m

2
θ0

6. For each synapse, limit its non-linearity. τs 27 τs ≤
−1

Fmax ·ln δ

7. For each synapse, set synaptic gain ksyn based on function in the network. Gmax 29 Gmax =
ksyn ·R

(Es−ksyn ·R)·τs ·Fmax

As an example, let us design a pathway wherein the post-
synaptic neuron’s spiking frequency mirrors its pre-synaptic
neuron’s spiking frequency. Following Table 2, the steps are:

1. Arbitrarily, but in the range of biological systems, pick the
maximum spiking frequency Fmax = 0.1 kHz, the maximum
membrane depolarization R = 20 mV, and the initial firing
threshold θ0 = 1 mV. These are arbitrary quantities, but may
be tuned to match a specific pathway if data is available.

2. Pickm = 0 so θ is constant, and each neuron has no transient
spiking frequency.

3. Sincem = 0, there is no transient, and this step is skipped.
4. Calculate Ibias = 0.5 nA, so that fsp = 0 when Iapp = 0 and

fsp = Fmax when Iapp = R.
5. Using the values from steps 1 to 4, calculate τmem = 200 ms.

The neuron properties are now set.
6. Set δ = 1% such that Gavg is nearly directly proportional to fsp

of the pre-synaptic neuron, with a maximum deviation of 1%.
This condition is met if τs = 2.17 ms.

7. Using non-spiking network design rules from Szczecinski et al.
(2017b), design a signal transmission pathway with a gain of
ksyn = 1. For a value of Es = 160, Gmax = 0.658 µS.

Figure 5 shows the behavior of the signal transmission pathway
designed above. The left column shows the pre-synaptic neuron
activity, and the right column shows the post-synaptic neuron’s
response. Themembrane depolarizationU is plotted in the upper
row for each trial, and the spiking frequency fsp is plotted in
the lower row. In each case, the post-synaptic neuron’s spiking
frequency is effectively the same as the pre-synaptic neuron’s. The
key result is that the process we outline above produces parameter
values for the construction of neural systems to produce a
particular behavior without optimization.

Let us perform another example, in which m < 0, to mimic
the behavior of a non-spiking neuron whose membrane time
constant is τ̄mem = 500 ms. In this case, we can also validate that
the transient spiking frequency is consistent with the non-spiking
model’s transient membrane depolarization.

1. Pick Fmax = 0.1 kHz, R = 20 mV, and θ0 = 1 mV.
2. Pick m = −5, such that the spiking frequency has a

transient response.
3. If τ̄mem = 500 ms, then τθ = 1, 750 ms.

4. Calculate Ibias = 0.143 nA.
5. Using the values from steps 1 to 4, calculate τmem = 700 ms.

Steps 4 and 5 ensure that fsp = 0 when Iapp = 0 and fsp = Fmax

when Iapp = R. Neuron properties are now set.
6. Same as in the previous example, τs = 2.17 ms.
7. Same as in the previous example, Gmax = 0.658 µS.

Figure 6 shows the same type of data as Figure 5. The spiking
frequency plots enable us to compare the smoothed transient
spiking frequency to the membrane depolarization of the
analogous non-spiking network. The spiking model’s smoothed
transient response decays at the same rate as the non-spiking
model’s, although some differences in the responses are visible.
First, the spiking neuron’s smoothed transient does not exhibit
the same exponential-shaped rise as the non-spiking neuron’s
transient. Second, the spiking neuron’s transient response to a
spiking input exhibits fluctuations because the spiking threshold
is continuously adapting to the instantaneous membrane voltage.
In the next subsection, we show that adding more neurons can
eliminate this problem.

3.5. Spiking Pathways May Introduce
Unwanted Artifacts
We have shown that we can apply our non-spiking signal
pathway design rules to spiking networks by treating many
values as their average over time. However, there are some
unintended artifacts of this approach that reduce performance.
The first is an intermittent drop in a post-synaptic neuron’s
spiking frequency (Figure 7A). The way the system is tuned, the
post-synaptic neuron should fire every time that the pre-synaptic
neuron fires. Occasionally, however, the post-synaptic spike time
is delayed relative to the synaptic current. This manifests as
a temporary drop in the instantaneous spiking frequency. The
prediction of the average spiking frequency is intermittently
incorrect as a result.

The second artifact is a periodic instantaneous spiking
frequency (about the predicted spiking frequency, Figure 7B).
This occurs when m < 0, and thus the spiking threshold θ

decreases when the neuron is depolarized, making it easier for
the neuron to spike. Particularly at low stimulus frequencies, the
neuron may exhibit a periodic spiking frequency (Figure 7B).
However, one can see that the prediction of the average spiking
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FIGURE 5 | Data from three simulations testing a signal transmission pathway where ksyn = 1 with different applied currents (Iapp) to the pre-synaptic neuron. In each

section, the upper row is the membrane voltage, and the lower row is the instantaneous spiking frequency plotted vs. time. In every case, the post-synaptic neuron’s

spiking frequency is the same as the pre-synaptic neuron’s spiking frequency and is consistent with the prediction from the analysis above. In addition, it is

approximately equal to Ū for the equivalent non-spiking network. Spikes are indicated by violet asterisks (no “cosmetic spikes” are plotted). (A) Response to a 5 nA

current applied to the presynaptic neuron. (B) Response to a 10 nA current applied to the presynaptic neuron. (C) Response to a 20 nA current applied to the

presynaptic neuron.
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FIGURE 6 | Data from three simulations testing the signal transmission pathway. In each section, the left column is the pre-synaptic neuron’s activity, the right column

is the post-synaptic neuron’s activity, the upper row is the membrane voltage, and the lower row is the instantaneous spiking frequency (inverse of the time between

two spikes) plotted vs. time. In every case, the post-synaptic neuron’s spiking frequency is the same as the pre-synaptic neuron’s spiking frequency, and consistent

with the prediction from the analysis above. In addition, the transient spiking frequency of each neuron follows the transient membrane voltage of the analogous

non-spiking pathway. Spikes are indicated by violet asterisks (no “cosmetic spikes” are plotted). (A) Response to a 5 nA current applied to the presynaptic neuron.

Note that the presynaptic neuron’s low spiking frequency causes large fluctuations in the postsynptic neuron’s spiking frequency. (B) Response to a 10 nA current

applied to the presynaptic neuron. Due to the higher spiking frequency, fluctuations in the postsynaptic neuron’s spiking frequency appear less severe than in A. (C)

Response to a 20 nA current applied to the presynaptic neuron. Fluctuations in the postsynaptic neuron’s spiking frequency are not severe.
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FIGURE 7 | (A) If a pre-synaptic spike does not elicit a spike in the post-synaptic neuron, then its spiking frequency will intermittently drop. (B) The spiking frequency

of a post-synaptic neuron whose threshold hyperpolarizes in response to membrane voltage depolarization may oscillate at low frequencies. In both columns, spikes

are indicated by violet asterisks (no cosmetic “spikes” are plotted).

frequency remains accurate. In the following section, we show
that both of these unwanted artifacts can be eliminated by adding
more neurons and synapses to the network.

3.6. A Spiking Pathway’s Regularity and
Accuracy Depends on the Number of
Neurons in the Network
Adding more neurons to both the pre-synaptic and post-synaptic
populations in a pathway helps mitigate the issues described
in the previous subsection. To demonstrate this, we performed
the same spiking frequency tests as before by connecting two
populations of neurons together through a single pathway
composed of multiple synapses. For these tests, each population
hasN neurons, and every neuron in each population is connected
to every neuron in the second population, requiringN2 synapses.
This connectivity pattern is illustrated in Figure 8.

Figure 9 displays the post-synaptic population’s mean spiking
frequency as N increases. The same parameter values were
used as in Figure 5, but with Gmax randomly distributed
across each neuron’s N incoming synapses (uniform random
distribution). For each value of N, 30 simulations were run.
The raw spiking frequency over time is plotted for each. The
spiking frequency fluctuates with smaller magnitude when the
pathway contains more neurons. This is because each incoming
synapse has a smaller maximum conductance, producing a
total synaptic conductance that fluctuates less over time than
when fewer synapses are present. Figure 9B plots the maximum
and minimum spiking frequency of any one neuron in the
population, normalized to the mean spiking frequency of the
population. As N increases, each individual neuron’s spiking
frequency approaches the mean of the population. Figure 9C
plots the mean spiking frequency of the population for each trial.
As N increases, the population’s spiking frequency more closely
matches the intended value.

Adding more neurons to a pathway also reduces the random
fluctuations in the transient response of a spiking pathway in
whichm 6= 0. Figure 10 plots data similar to that in Figure 9, but
for the pathway shown in Figure 6. Much like in Figure 9, adding
more neurons to the signal transmission pathwaymakes the post-
synaptic neurons fire more regularly, and with less fluctuation
during the transient. As more neurons are added, the transient
response more closely matches that of the equivalent non-spiking
network (in black).

4. APPLICATION TO A
NEUROMECHANICAL SYSTEM

The similarities between non-spiking models and a population
of spiking models apply to neuromechanical control models.
Figures 11, 12 show data from a simulation of the muscle stretch
reflex illustrated in Figure 1. In each case, the extensor muscle
was activated, causing the flexor to stretch. The system’s behavior
was simulated in four scenarios: (1) open loop, that is, the
flexor does not activate, although it can develop passive tension;
(2) closed loop, with a pathway containing a single spiking
neuron at each level that mediates a stretch reflex to activate
the flexor and resist the stretch imposed by the extensor; (3)
closed loop, with a pathway built from populations of 10 spiking
neurons per node, connected as illustrated in Figure 8, and (4)
closed loop, with a pathway built from non-spiking neurons and
synapses. Noise was added to the model via reset noise (Gerstner,
2000). The impact of such reset noise on a neuron’s encoding
properties is calculated in Supplementary Materials (S1.1.6),
and the model’s formulation and parameter values are listed in
Supplementary Materials (S1.2.1).

Figure 11 compares the system performance when the spiking
neurons have constant spiking threshold θ , i.e., m = 0. In this
case, there is effectively no transient spiking frequency when
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FIGURE 8 | Diagram showing the all-to-all connectivity scheme used between populations of spiking neurons. The N input neurons (blue) all receive the same applied

current Iapp, causing spikes that transmit this signal via N2 synapses to the N output neurons (red).

a stimulus is applied based on the length of the flexor muscle
(Figure 1). In case 1, the open loop case, contracting the extensor
results in significant joint extension, ≈0.7 radian. In all three
closed loop cases, the joint extends much less in response to the
muscle force due to the stretch reflex. After the major motions
have died out, the muscle force, and therefore the joint angle,
fluctuates the most in case 2, less in case 3, and not at all in
case 4. All of the key response characteristics, including the angle
overshoot, the settling time, and the final angle are the same
in cases 2–4, suggesting that these systems are interchangeable
models of such a stretch reflex.

Figure 12 compares the system performance when the spiking
neurons do not have constant spiking threshold θ , i.e., m = −5.
Tuning the spiking and non-spiking networks to exhibit similar
transient behavior (e.g., in section 3.4) will result in much longer
membrane time constants for the non-spiking system. In this case
one would expect delayed activation of the nodes along the reflex
pathway, causing a delayedmuscle membrane depolarization and
resulting in more overshoot and a longer rise time than when
m = 0. Indeed this occurs in each case 2–4 relative to the
experiments in Figure 11.

However, the non-spiking system in case 4 exhibits damped
oscillation after case 3 has effectively come to rest. The spiking
pathway does not exhibit such oscillations because the transient
spiking frequency is due to the threshold θ changing from its
initial value θ0 to the steady state value at which spikes occur
θ∗∞. Figure 2D illustrates this point, showing that once a neuron
begins spiking, the value of θ∗ is largely constant, even as the
input Iapp (and thus the spiking frequency fsp) increases. This
is because the average voltage Uavg is relatively insensitive to
changes in spiking frequency (Figure S1), causing only small
changes in θ∗ and thus fsp. Despite this mismatch in transient
responses, the FSA enables us to rapidly construct models that
contain both spiking and non-spiking elements.

5. DISCUSSION

5.1. Summary
The analysis and numerical results in this manuscript show how
continuous, non-spiking leaky-integrator neural dynamics can
approximate the dynamics of a population of identical GLIF
spiking neurons with randomized interconnections. The parallels
in encoding and information transfer manifest through three
analogs: (1) A spiking population’s mean spiking frequency
is analogous to the membrane voltage of a leaky integrator,
(2) the transient spiking frequency of a spiking neuron can
mimic a non-spiking neuron’s transient voltage, and (3) a
spiking synapse’s average conductance is proportional to the
pre-synaptic neuron’s spiking frequency, analogous to how
a non-spiking synapse’s conductance is proportional to the
pre-synaptic neuron’s membrane depolarization. Since the
dynamics are approximately similar, a network built from
either type can be used to encode and transfer information
in an equivalent manner. Therefore, networks of either type
can have similar overall behavior, and either type might
effectively be used to model and understand the nervous
system.

The parallels between non-spiking neural models and models
of populations of spiking neurons have been known for quite
some time (Wilson and Cowan, 1972). However, the process
and tools needed to set parameters within networks of these
models to achieve desired and/or equivalent behavior have
been lacking. In an attempt to apply the classical analysis
from (Wilson and Cowan, 1972) to the practical application
of programming neuromorphic hardware, we extended our
functional subnetwork approach (FSA) to tuning networks of
GLIF neurons and synapses. This extension enables one to
tune control systems built from either non-spiking nodes or
populations of spiking neurons. We presented a step-by-step
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FIGURE 9 | Adding more neurons to the pre-synaptic and post-synaptic populations increases encoding accuracy and reduces activation variation. (A) Average

spiking frequency of the post-synaptic population f̄sp over time when the spiking threshold θ is constant (i.e., m = 0) for all neurons. Thirty individual trials (blue), the

mean over time (red), and the equivalent non-spiking pathway (black dotted) are plotted. (B) The highest (blue circles) and lowest (red circles) mean frequency of a

single neuron in the population. Line plots the mean of each group, error bars are ±1 standard deviation. (C) The error between the mean spiking frequency of the

entire population and the intended spiking frequency for each trial (blue circles). Line plots the mean, error bars are ±1 standard deviation.

method for tuning practical networks of populations of spiking
neurons and synapses. We provided examples showing how
increasing the number of neurons makes data transmission
more ideal (i.e., match the expected population average activity).
Finally, we provided a practical example of how such a method
can be used to tune a neuromechanical model for control,

and how the non-spiking and spiking implementations compare
and contrast.

Despite the similarities between the models’ activation in
response to inputs (section 3.1) and how this activation maps
to synaptic conductivity (section 3.3), we observe differences in
the models’ transient responses. A spiking neuron’s smoothed
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FIGURE 10 | Adding more neurons to the pre-synaptic and post-synaptic populations increases encoding accuracy and reduces activation variation. (A) Average

spiking frequency of the post-synaptic population f̄sp over time when the spiking threshold θ is variable (i.e., m = −5) for all neurons. Thirty individual trials (blue), the

mean over time (red), and the equivalent non-spiking pathway (black dotted) are plotted. (B) The highest (blue circles) and lowest (red circles) mean frequency of a

single neuron in the population. Line plots the mean, error bars are ±1 standard deviation. (C) The error between the mean spiking frequency of the entire population

and the intended spiking frequency for each trial is plotted (blue circles). Line plots the mean, error bars are ±1 standard deviation.

(i.e., time-averaged) transient spiking frequency is a good
match for a non-spiking neuron’s transient membrane voltage
if the spiking neuron is not initially spiking (Figures 6, 10).
This is because the spiking threshold must change from
the initial value θ0 to the steady state value when a
spike occurs, θ∗∞. However, the spike-time threshold θ∗∞ is
insensitive to a neuron’s input current (and therefore the

neuron’s spiking frequency), meaning that the amplitude of
the transient is very small once a neuron is spiking. This
is not true for the non-spiking model, whose transient
amplitude depends strongly on the input current. Therefore,
the response properties of networks tuned to have long,
exaggerated transient responses are a good match initially, but
not once a neuron is already spiking (Figure 12). In all other

Frontiers in Neurorobotics | www.frontiersin.org 17 November 2020 | Volume 14 | Article 577804

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Szczecinski et al. Extending the Functional Subnetwork Approach

FIGURE 11 | Data from a simulation of the system in Figure 1. Each column shows data from a different configuration of the system, from left to right: Case 1, open

loop; case 2, spiking reflex pathway, N = 1; case 3, spiking reflex pathway, N = 10 (fsp for every neuron is shown in light blue, population mean fsp is plotted in dark

blue); case 4, non-spiking reflex pathway. All corresponding axes are scaled the same. Each row plots data from a different stage of the reflex loop as depicted in

Figure 1. In this figure, all spiking neurons have a constant spiking threshold θ (i.e., m = 0).
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FIGURE 12 | Data from a simulation of the system in Figure 1. Each column shows data from a different configuration of the system, from left to right: Case 1, open

loop; case 2, spiking reflex pathway, N = 1; case 3, spiking reflex pathway, N = 10 (fsp for every neuron is shown in light blue, population mean fsp is plotted in dark

blue); case 4, non-spiking reflex pathway. All corresponding axes are scaled the same. Each row plots data from a different stage of the reflex loop as depicted in

Figure 1. In this figure, all spiking neurons have a variable spiking threshold θ (i.e., m = −5).
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respects, however, these models can be tuned to produce the
same responses.

5.2. Expanding These Methods
The analysis in this manuscript primarily provides a framework
for designing rate-coding networks, based on their steady-state
spiking frequency. We have already shown how steady-state
analysis contributes to designing arithmetic and dynamic (i.e.,
differentiation and integration over time) networks (Szczecinski
et al., 2017b). However, not all neural computation is rate-
coding, meaning that additional techniques are needed to expand
this work to engineer direct encoding of other signals to
produce more sophisticated neural behaviors. For instance, a
non-spiking model captures class II excitability, in which a
neuron’s spiking frequency exponentially approaches a steady-
state spiking frequency when subjected to a step input (Mihalaş
and Niebur, 2009). However, the GLIF spiking neuron model
used in this work can also exhibit class I excitability in
which there is no transient spiking frequency, a behavior
that a non-spiking neuron cannot replicate. Such a response
might be useful in a reflex pathway, in which delayed sensory
feedback may destabilize the system. In addition, a spiking
neuron can exhibit phasic excitability, in which its spiking
frequency starts high, but decays to 0 during a step input
(Mihalaş and Niebur, 2009, see also Figure 3C). In the future,
we plan to investigate whether such phasic responses could
be used to replace the differentiation network from the non-
spiking FSA approach (Szczecinski et al., 2017b) with a single
neuron, a technique we have used in the past, but did not
characterize thoroughly (Szczecinski et al., 2014). Exploiting
single-neuron properties in this way could enable designers
to pack more computational capability into chips with limited
(albeit large) network sizes, such as Loihi (Davies et al.,
2018).

However, creating small networks that seek to exploit
single-neuron properties may reduce the accuracy of encoding,
decoding, and other operations within the network. Alternative
systems, such as the Neuroengineering Framework (NEF)
(Eliasmith and Anderson, 2002), rely on nodes (ensembles) with
many neurons (on the order of 10–1,000) to accurately encode
information into the network. What makes NEF so powerful is
the relatively hands-off design process, wherein the user specifies
the intended function and number of neurons per node, and
then NEF learns the intra-node parameter values necessary to
perform that function (Eliasmith et al., 2012; Bekolay et al., 2014).
This approach is much less onerous to the designer than the
FSA, which requires explicit tuning of parameters for encoding,
decoding, and other functions. We anticipate that these two
approaches may complement one another, wherein the direct
network tuning accomplished by the FSA could be used to
initialize tuning within the NEF. In our experience, the FSA can
be used to select initial network parameters that aid subsequent
parameter optimization (Pickard et al., 2020). As a next step, we
plan to compare the accuracy and efficiency of networks tuned
via the FSA with those tuned via the NEF. We expect that the
NEF may achieve arbitrarily high accuracy, but possibly at a
computational cost. The FSA could be used to initialize learning

networks in a less randomway, requiring fewer neurons per node
and less time to train.

5.3. When to Use Spiking or Non-spiking
Neurons
A question that follows from this work is that if non-spiking
and spiking neuron dynamics have many parallels, how does a
modeler choose to use one or the other type? We believe that
both types are useful in different contexts, depending on the
knowledge available about the system to be modeled, the research
question addressed by the model, and the real-world application
of the network (e.g., in robotics).

A natural choice is to model spiking neurons in the nervous
system with spiking models, and non-spiking neurons with non-
spiking models. However, biomechanical constraints determine
whether animals use spiking or non-spiking neurons. Specifically,
action potentials can be transmitted over long distances, whereas
graded (i.e., non-spiking) signals tend to dissipate over even short
distances. This may be why many non-spiking neurons have
been identified in insects and other small animals, particularly
for integrating sensory information (Burrows et al., 1988; Sauer
et al., 1996); they have less room in their bodies to house networks
of many spiking neurons, and their small bodies do not require
them to transmit information over long distances. No matter
why animals have spiking or non-spiking neurons, a computer
model does not share these biochemical constraints, so it is worth
deciding how to model networks based on the computational
hardware available.

One purely technological motivation to use spiking models is
for model implementation on neuromorphic hardware. Chips,
such as Loihi (Davies et al., 2018), SpiNNaker (Khan et al., 2008),
TrueNorth (Merolla et al., 2014), and others (Pfeil et al., 2013;
Gehlhaar, 2014; Ionica and Gregg, 2015) use non-traditional
architecture to simulate hundreds of thousands of spiking
neurons and hundreds of millions of synapses in real-time
while using on the order of one watt of power. Neuromorphic
computers tend to use spiking models because they have
less communication overhead than non-spiking networks. For
spiking networks, communication can be binary (1 bit per spike)
and only must occur after a spike occurs, at a maximum of 200–
300 Hz (Gerstner et al., 1997; Carter and Bean, 2010) but more
often below 1–2 Hz (Kerr et al., 2005). In contrast, non-spiking
synapses need to be updated during every simulation step,
because they depend on the pre-synaptic neuron’s continuous
membrane voltage. Such a requirement significantly increases
overhead relative to spiking models.

Spiking neurons and synapses are also attractive because
they enable the use of spike timing dependent plasticity (STDP)
learning techniques (Gerstner et al., 1996; Markram et al., 1997,
2012), a powerful class of machine learning tools. These methods
have been applied to many stimulus-recognition tasks, such as
hearing, speech, and vision. They measure the coincidence of
incoming spikes to increase or decrease the strength of synapses
in the network, and thus rely on spiking models. These networks
are typically classified as “self-organizing,” meaning that they
initially have no structure, but develop their own structure as
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connections are pruned due to disuse. However, many parts of
the nervous system have exquisite structure, and lend themselves
to being directly modeled, structure, and all. Thus, we believe that
the methods in this manuscript may serve to produce baseline
parameter values for a highly structured network, which may
then use spike-based mechanisms to tune itself over time, a
technique like that utilized in Nengo (Bekolay et al., 2014). In
such cases, populations of spiking neurons would be preferable
to non-spiking population models, but could be initialized using
the tuning rules presented in this manuscript.

Additionally, spiking neurons and synapses may be beneficial
because even a simple model like that used in this work can
produce a wide variety of behaviors and responses (Mihalaş and
Niebur, 2009). For example, setting m > 0 can produce spike
frequency adaptation and phasic spiking, which are known to
be critical for filtering sensory feedback in locomotory systems
(Mamiya et al., 2018; Zill et al., 2018). Such rate-sensitive
responses can be produced by small networks of non-spiking
neurons and synapses (Szczecinski et al., 2017b), but force the
modeler to use more neurons than may be necessary. Therefore,
if the modeler knows that single neurons in their model system
generate more complex responses than class I or II excitability,
then spiking models should be utilized. However, if the neuron
responses in the network are simple, then the model could be
implemented as a network of non-spiking neurons instead.

We believe non-spiking networks may be particularly
beneficial if a model is not meant to run on specialized
neuromorphic hardware. Simulating the membrane voltage of
each spiking neuron in a population requires storing and
updating orders of magnitude more states than simply using
a non-spiking node to represent the mean activity of the
population. In addition, throughout this study, we observed that
the timing of spikes was sensitive to the simulation step used (i.e.,
spikes cannot happen between time steps), and simulations only
closely matched our analytic predictions as the time step became
very small. We also tested adaptive stepping algorithms (Matlab’s
ode45 and ode15s solvers); however, the discontinuous nature of
spikes required the use of event functions that halt simulation
whenever a spike occurs, complicating the code. In general, we
found that it took longer to simulate the dynamics of a spiking
network relative to those of a non-spiking network. These reasons
motivate implementing networks on traditional computers with
non-spiking models.

Finally, non-spiking neurons may contribute to models by
representing neuromodulatory neurons that cause large-scale
changes to network behavior. In Szczecinski et al. (2017b), we
not only designed “signal transmission” pathways as in this
work, but also “signal modulation” pathways, in which one
neuron could modify the gain of another neuron’s response to
its synaptic inputs. When we tested signal modulation pathways

built from spiking neurons and synapses, the results were
poor (data not shown). Due to the discrete nature of spikes,
modulation was inconsistent, leading to unpredictably varying
firing frequencies from the “modulated” neuron. However, it
may be advantageous to instead construct networks in which
signals are transmitted via spiking neurons, but modulated
via non-spiking neurons. These non-spiking neurons in effect
model neuromodulatory neurons, whose voltage reflects the
concentration of a neuromodulator in the network, and whose
non-spiking synapses represent the activation of receptors
sensitive to that particular neuromodulator. Such pathways may
change the resting potential, membrane conductance, and time
constant of other neurons throughout the network (for a review,
see Miles and Sillar, 2011). Such non-spiking neurons would
have long time constants, enabling them to modify network
performance on much longer timescales than that of a single
spike. Such neurons could receive either descending input from
the brain, or ascending input from local sensory neurons. The
result would be a model that can modulate its control system
based on exteroception and interoception, and exhibit truly
adaptive, context-dependent behavior.
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