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Abstract
Objectives To assess whole-liver texture analysis on T1 maps for risk stratification of advanced fibrosis in patients with
suspected nonalcoholic fatty liver disease (NAFLD).
Methods This retrospective study included 53 patients. Histogram and texture parameters (volume, mean, SD, median, 5th
percentile, 95th percentile, skewness, kurtosis, diff-entropy, diff-variance, contrast, and entropy) of T1 maps were calculated
based on the semi-automatically segmented whole-liver volume. A two-step approach combining the Nonalcoholic Fatty Liver
Disease Fibrosis Score (NFS) and Fibrosis-4 Index (FIB-4) with the liver stiffness measurement (LSM) for the risk stratification
was used. Univariate analysis was performed to identify significant parameters. Logistic regression models were then run on the
significant features. Diagnostic performance was evaluated with receiver operating characteristic (ROC) analysis.
Results In total, 33 (62%) subjects had a low risk and 20 (38%) subjects had an intermediate-to-high risk of advanced fibrosis.
The following significantly different parameters with the best performance were diff-entropy, entropy, and diff-variance, with
AUROC 0.837 (95% CI 0.73–0.95), 0.821 (95% CI 0.71–0.94), and 0.807 (95% CI 0.69–0.93). The optimal combination of
median, 5th percentile, and diff-entropy as a multivariate model improved the diagnostic performance to diagnose an
intermediate-to-high risk of advanced fibrosis with AUROC 0.902(95% CI 0.79–0.97).
Conclusions Parameters obtained by histogram and texture analysis of T1 maps may be a noninvasive analytical approach for
stratifying the risk of advanced fibrosis in NAFLD.
Key Points
• Variable flip angle (VFA) T1 mapping can be used to acquire 3D T1 maps within a clinically acceptable duration.
•Whole-liver histogram and texture parameters on T1 maps in patients with NAFLD can distinguish those with an intermediate-
to-high risk of advanced fibrosis.

• The multivariate model of combination of texture parameters improved the diagnostic performance for a high risk of advanced
fibrosis and clinical parameters offer no added value to the multivariate model.
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HDL High-density lipoprotein
LDL Low-density lipoprotein
LSM Liver stiffness measurement
NAFLD Nonalcoholic fatty liver disease
NSF Nonalcoholic fatty liver disease fibrosis score
ROC Receiver operating characteristic
VFA Variable flip angle
VOI Volume of interest

Introduction

Nonalcoholic fatty liver disease (NAFLD) is the most com-
mon cause of chronic liver disease and is estimated to affect
25% of the general population in the Asia-Pacific region [1].
The presence of fibrosis, particularly advanced fibrosis, is the
most important prognostic factor in NAFLD and is correlated
with liver-related outcomes and mortality [2, 3]. Monitoring
fibrosis progression and recognizing those individuals at high
risk of advanced fibrosis is important because those patients
might benefit from a tailored therapeutic strategy [4].
However, biopsy is invasive and problematic for frequent
monitoring. Moreover, its interpretation is in part subjective
[5]. For these reasons, noninvasive and objective techniques
are under investigation, including fibrosis-specific serum
markers, ultrasound elastography, magnetic resonance (MR)
elastography, and diffusion-weighted MR imaging [6].

Recently, the quantification of T1 relaxation time on para-
metric maps demonstrated its great potential as a reliable and
accurate method for noninvasively monitoring liver fibrosis,
because T1 relaxation time increased with fibrosis progression
and decreased with regression [7, 8]. The prolonged T1 relax-
ation time was likely caused by the structural and pathophys-
iological alterations associated with induced liver
fibrogenesis, which is characterized by edema, inflammation,
and excess deposition of extracellular matrix (ECM) [9, 10].
The true potential of T1 mapping techniques for the detection
of fibrosis in NAFLD remains unclear, because steatosis and
iron deposition that are characteristic of NAFLD progression
might shorten the T1 time [11] and act as a confounder when
only T1 value is used to detect fibrosis.

Texture analysis allows the assessment of the internal or-
ganization of a tissue. It also detects tissue changes that are
imperceptible to the human eye. Recently, its application to
liver fibrosis has been described in the setting of hepatitis B
virus (HBV) infection, NAFLD, and in animal models, dem-
onstrating the potential of texture analysis for staging liver
fibrosis [12–14].

Thus, the purpose of our study was to assess the diagnostic
potential of texture analysis applied to T1 maps for the risk
stratification of advanced fibrosis in NAFLD.

Materials and methods

Patients

A series of 129 consecutive patients suspected of having
NAFLD (defined as the presence of steatosis on ultrasound or
abnormal liver tests (high levels of alanine aminotransferase,
aspartate aminotransferase, g-glutamyl transferase in the blood))
who underwent bothMRI andMRS examinations in our hospital
between August 2018 and July 2019 were enrolled in the study.
Liver MRI, transient elastography, and fasting blood samples
were completed within 2 weeks. A total of 76 patients were
excluded for the following reasons: significant alcohol intake
(n = 12), use of medications that can cause fatty liver (n = 7),
viral hepatitis B andC infection, and other causes of chronic liver
disease (n = 28), incomplete clinical data (n = 6), poor-quality
images of patients (n = 8), and unreliable transient elastography
(n= 15). Finally, 53 patients with a median age of 46 years (age
range, 24–73 years), including 22 (42%) women and 31 (58%)
men, were enrolled in this retrospective study (Fig. 1). Our insti-
tutional review board approved this retrospective study and
waived the requirement for written informed consent.

MR imaging

MR imaging was performed on a MAGNETOM Aera 1.5T
MR system (Siemens Healthcare). The MR examinations in-
cluded high-speed T2-corrected multiecho single-voxel spec-
troscopy (HISTO) [15], B1 mapping, and T1 mapping se-
quences in the transversal plane.

The HISTO sequence for liver fat fraction estimation was
executed with the following parameters: repetition time
(TR) = 3000 ms; TE = 12/24/36/48/72 ms; averages = 1;
bandwidth = 1200Hz/pixel; voxel size = 3 × 3 × 3 cm3; vector
size = 1024; and acquisition duration = 15 s in one breath-
hold. The ROI was positioned on the right lobe of the liver,
avoiding major hepatic vessels. The T2-corrected fat fraction
was calculated inline by the scanner based on the multiecho
spectroscopy data after acquisition.

B1 mapping using Turbo-FLASH acquisition was executed
before T1 mapping, with the following parameters: TR/TE =
4280/2.04 ms; field of view = 380 mm×309 mm; flip angle =
8°; matrix = 64 × 64; slice thickness = 8 mm; slice distance fac-
tor = 100%; number of slices = 18; and duration = 9 s.

The transversal T1 map was obtained using volume inter-
pretation breath-hold examination (VIBE) sequence and the
variable flip angle (VFA) method with flip angles of 3° and
15°, which were automatically calculated by the software
based on the TR and the estimated target T1 of 1000 ms.
The position of the center slice of T1 map was kept consistent
with that of the B1 map. Other scan parameters were as fol-
lows: TR/TE = 4.61/2.26 ms; field of view = 380 mm ×
309 mm; matrix = 179 × 256; slice thickness = 3.5 mm; slices
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per slab = 72; bandwidth = 350 Hz/pixel; and duration = 19 s.
The T1mapwas inline generated after the data acquisition. B1
field correction was automatically executed using the interpo-
lated B1 map during the calculation of the T1 mapping.

For the measurement of inter-examination repeatability,
five volunteers underwent three consecutive, same-day MR
examinations including B1 mapping and T1 mapping.
Between examinations, volunteers left the scanner for 5 min
and were then repositioned on the scanner table; then, the
phased-array coil was reconnected, and the next examination
was performed.

Histogram and texture analysis

Whole-liver histogram and texture analysis of the T1 map
were performed with the prototype MR multiparametric

analysis software (Siemens Healthcare) by the radiologist
(X.X.). The 3D analysis of the T1 map included the following
four steps:

1. Data loading: Original images with a flip angle of 15° and
the T1 map were loaded onto the software.

2. Seed points drawing: Foreground seed points were man-
ually drawn inside the liver parenchyma which represent
regions within the volume of interest (VOI). Background
seed points were manually drawn outside the liver paren-
chyma and inside the liver blood vessels which contain
voxels outside the VOI. In axial plane, foreground and
background seed points were drawn on the slices which
are close to the top, the middle, and the bottom of the
liver. In sagittal and coronal plane, seed points were
drawn on the slices with the maximum liver cross-section.

Fig. 1 Flowchart of stratifying risk of advanced fibrosis
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3. Segmentation: The whole liver was segmented by the
software based on the seed points using a random walker
algorithm. The segmentation region (pink) was then
checked slice by slice; manual adjustments were per-
formed if the initial segmentation result was not satisfac-
tory. The final 3D-segmented volumes created on the
original images with 15° were then automatically propa-
gated to the T1 map.

4. Histogram and texture analyses: The whole-liver his-
togram and texture analyses on the T1 map were
automatically performed by a one-push button. A
total of eight histogram-based statistical features
and four texture-based features were extracted. The
histogram-based features included the volume, mean,
standard deviation (SD), median, percentiles (5th
and 95th), skewness (defined as a measure of asym-
metry of the probability distribution), and kurtosis
(measure of the shape of the probability distribu-
tion). Texture-based features included entropy (mea-
sure of the randomness of the gray levels), contrast
(measure of the amount of gray-level variations),
difference entropy (diff-entropy, measure of the en-
tropy difference), and difference variance (diff-vari-
ance, measure of variation in the difference in gray
levels between voxel pairs).

Steps 2, 3, and 4 are illustrated in Fig. 2.
To test the reproducibility of all the histogram and texture

parameters, whole-liver histogram and texture analysis were
repeated twice after a pause of 2 weeks in a randomly selected
subgroup of 20 study participants by the same reader for intra-
observer analysis and by another reader (H.M.L., with 6 years
of experience in liver MRI) for the inter-observer analysis.
Both readers were blinded to the results of the first reading,
as well as all the clinical data. Lastly, total time of four steps
and the time required for drawing seed points was recorded by
both readers.

Risk stratification of advanced fibrosis

Blood fibrosis tests

The Nonalcoholic Fatty Liver Disease Fibrosis Score (NFS)
was calculated using the following formula: − 1.675 +
0.037 × age (years) + 0.094 × body mass index (kg/m2) +
1.13 × impaired glucose tolerance or diabetes mellitus (yes =
1, no = 0) + 0.99 × aspartate aminotransferase to alanine ami-
notransferase ratio − 0.013 × platelet (109/L) − 0.66 × albumin
(g/dL).

The Fibrosis-4 Index (FIB4) was calculated using the fol-
lowing formula: age (years) × aspartate aminotransferase/
[platelet (109/L) × square root (alanine aminotransferase)].

Liver stiffness measurement

Liver stiffness measurements were performed using vibration-
controlled transient elastography technology (FibroScan de-
vice; Echosens), using an M probe.

An examination was considered successful if there were at
least 10 valid measurements and were reliable if the IQR/
median of the LSM was 30% or less, or if the LSM was less
than 7.1 kPa when the interquartile range/median of the LSM
was greater than 30% [16].

Combining blood fibrosis tests and liver stiffness
measurement for risk stratification of advanced fibrosis

A 2-step approach (blood fibrosis test—first-line, LSM—sec-
ond-line) has recently been proposed in the guidelines of the
European Association for the Study of the Liver (EASL) [4,
17, 18].

The approach uses NFS or FIB-4 [18, 19] as the first-line
procedure (Fig. 1): Patients with FIB-4 < 1.3 or NFS < − 1.455
were considered to be at low risk of advanced fibrosis; patients
with FIB-4 = 1.3 to 3.25 or NFS = − 1.455 to 0.672 were con-
sidered to be at intermediate risk, patients with FIB-4 > 3.25 or
NFS > 0.672 were considered to be at high risk of having
advanced fibrosis.

When the first-line test showed an intermediate or high
risk, a second-line evaluation of LSM was performed: an
LSM of less than 8 kPa was considered to be low,
8 kPa~10 kPa was considered intermediate, and 10 kPa or
greater was considered to be a high risk of having advanced
fibrosis.

Statistical analysis

Intra- and inter-observer agreement in the measurement of all
of the T1 map histograms and texture parameters were esti-
mated by calculating the intraclass correlation coefficient
(ICC) (0.000–0.200, poor; 0.201–0.400, fair; 0.401–0.600,
moderate; 0.601–0.800, good; and 0.801–1.000, excellent).
An ICC value greater than 0.80 was considered to indicate
excellent agreement. The repeatability of T1 mapping was
assessed between three acquisitions. ICCs with 95% confi-
dence intervals were calculated using a two-way mixed
model.

All quantitative variables were expressed as means ±
standard deviation (SD) and were first tested with the
Shapiro-Wilk test for normality analysis. With the univari-
ate analyses, the significant parameter selection was per-
formed using the Student’s t test when the data were nor-
mally distributed orMann-WhitneyU test when not normal-
ly distributed. Binary logistic regression analysis with a
backward stepwise selection procedure was performed to
identify the independent parameter for differentiating the
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low-risk from the intermediate-to-high-risk group.
Multivariate model calibration was assessed with the
goodness-of-fit Hosmer-Lemeshow test through a calibra-
tion plot. The diagnostic performance of each histogram-
and texture-extracted parameter was tested via receiver op-
erating characteristic (ROC) analysis. Cutoff values were
established by calculating the maximal Youden index
(Youden index = sens i t iv i ty + spec i f i c i ty − 1) .
Intermediate-to-high risk of advanced fibrosis was defined
as a positive result. The DeLong test was used to compare
the area under the ROC curve (AUC) between the multivar-
iate model and individual parameters and between the mul-
tivariate model and noninvasive fibrosis tests. All statistical
analyses were performed using SPSS 22.0 (IBM) and
MedCalc 15.6.1 (MedCalc). A two-tailed p value of < 0.05
indicated statistical significance.

Results

Patient clinical characteristics

The flowchart of risk stratification of advanced fibrosis is
shown in Fig. 1. As the proportion of subjects at intermediate
risk of advanced fibrosis was low (5.7%), we regrouped all
patients into either a low-risk group or intermediate-to-high-
risk group. Among 53 patients included in our final study
population, 33 (62.2%) were in the low-risk group and 20
(37.8%) were in the intermediate-to-high-risk group. The pa-
tient characteristics are shown in Table 1. The proportion of
patients with diabetes mellitus (DM), aspartate aminotransfer-
ase (AST), and triglycerides in the intermediate-to-high-risk
group was significantly higher than those in the low-risk
group (p = 0.008, 0.003, and 0.007, respectively). The platelet

Fig. 2 Workflow of the histogram and texture analysis. a–c Foreground
and background seed points were manually drawn inside the liver (green
color) and outside the liver/in main vessels (red color) on the three

multiplane reconstruction planes of images with a flip angle of 15°. d–f
Whole-liver segmentation created on post-contrast images. g–j
Histograms for the T1 maps
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count in the low-risk group was significantly higher than that
in the intermediate-to-high-risk group (p = 0.017). No signif-
icant differences were found across groups with respect to age,
sex, BMI, or other blood tests, as shown in Table 1 (all
p > 0.05).

Comparison of fat fraction

The liver fat fraction estimated via HISTO was compared
between patients with a low risk and intermediate-to-high risk
of advanced fibrosis (Fig. 3). The intermediate-to-high-risk
group demonstrated an increased amount of fat comparedwith
the low-risk group (19.31 vs. 12.98%, p = 0.014).

Comparison of histogram- and texture-extracted pa-
rameters of T1 map

The univariate analyses of the extracted features are shown in
Table 2. Eleven histogram and texture parameters (volume,
mean, SD, median, 5th percentile, 95th percentile, kurtosis
diff-entropy, diff-variance, contrast, and entropy) showed sig-
nificant differences between the low-risk group and
intermediate-to-high-risk group (all p < 0.05, respectively).
Representative histogram and texture analysis on the T1 maps
of two patients are shown in Fig. 4.

The significantly different histogram and texture parame-
ters showed diagnostic performances with AUCs in ROC
analyses ranging from 0.679 to 0.837 when used as a single

parameter in a model, except for kurtosis (Table 3). Diff-
entropy had the highest AUC of 0.837 (95% CI 0.73–0.95,
sensitivity 84.6%, specificity 77.8%). Binary logistic regres-
sion analysis was run on the eleven parameters with a forward
stepwise selection procedure; the optimal combination includ-
ed the median, 5th percentile, and diff-entropy (ESM1), yield-
ing an AUC of 0.902 (95% CI 0.788–0.966, sensitivity of
80.0%, specificity of 90.9%) (Table 3). We defined this as
the first multivariate model, which was assessed with the
goodness-of-fit Hosmer-Lemeshow test (p = 0.731). A
DeLong test showed that AUC of the multivariate model
was significantly higher than that of individual parameters
(volume, mean, SD, median, 5th percentile, 95th percentile,

Table 1 Patient characteristics

Characteristics All NAFLD patients
(n = 53)

Low risk of advanced fibrosis
(n = 33)

Intermediate-to-high risk of
advanced fibrosis (n = 20)

p

Age (years) 46 ± 15 46 ± 15 43 ± 15 0.551

Male (n, %) 31 (58.4) 18 (54.5) 13 (65) 0.458

BMI (kg/m2) 26.02 ± 3.35 25.38 ± 2.70 27.07 ± 2.98 0.147

DM (n, %) 13 (24.5) 4 (12.1) 9 (45) 0.008*

Bilirubin (μmol/L) 20.25 ± 25.61 21.8 ± 32.1 17.7 ± 6.8 0.409

ALT (IU/L) 77 ± 59 69 ± 62 89 ± 53 0.062

ALP (IU/L) 80 ± 20 82 ± 21 77 ± 19 0.263

Albumin (g/L) 47 ± 3 47 ± 3 47 ± 3 0.331

GGT (IU/L) 72 ± 56 67 ± 61 81 ± 45 0.104

AST (IU/L) 52 ± 31 46 ± 34 62 ± 23 0.003*

Platelet count (× 109/L) 210 ± 62 227 ± 48 183 ± 73 0.017*

Cholesterol (mmol/L) 5.14 ± 1.38 5.29 ± 1.04 4.86 ± 1.87 0.559

HDL (mmol/L) 1.21 ± 0.35 1.25 ± 0.37 1.13 ± 0.32 0.252

LDL (mmol/L) 3.42 ± 1.00 3.52 ± 0.90 3.23 ± 1.20 0.240

Triglycerides (mmol/L) 2.15 ± 1.04 1.82 ± 0.79 2.13 ± 1.12 0.007*

Values shown as mean ± standard deviations, unless stated otherwise. *Significant differences. Shapiro-Wilk test for normality used. *p < 0.05. DM,
diabetes mellitus; ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; FIB4, Fibrosis-4; GGT, gamma glutamyl
transferase; ALP, alkaline phosphatase; HDL, high-density lipoprotein; LDL, low-density lipoprotein

Fig. 3 Liver fat fraction comparison between low and intermediate-to-
high risk of advanced fibrosis
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diff-variance, contrast, and kurtosis, all p < 0.05) (Table 4),
except for diff-entropy (p = 0.071) and entropy (p = 0.050).

When adding significantly different clinical parame-
ters (DM proport ion, AST, platelet count, and

Fig. 4 T1-map from the liver of a 40-year-old female with a low risk of advanced fibrosis (a–d) and a 39-year-old-male with a high risk of advanced
fibrosis (e–h). Color maps of T1 map (a, b, c, e, f, g) and histogram of T1 map (d, h)

Table 2 Histogram and texture analysis-based extracted parameters of T1 map between low and intermediate-to-high risk of advanced fibrosis

Parameters Low risk of advanced fibrosis (n = 33) Intermediate-to-high risk of advanced fibrosis (n = 20) p

Volume (cm3) 1075.88 ± 318.75 1485.41 ± 531.52 < 0.001*

T1 mean (ms) 954.25 ± 278.17 1265.9 ± 351.06 0.001*

SD (ms) 290.09 ± 178.64 481.60 ± 244.44 0.005*

Median (ms) 915.83 ± 257.46 1176.91 ± 315.55 0.002*

5th percentile (ms) 627.51 ± 176.85 744.78 ± 152.82 0.030*

95th percentile (ms) 1359.80 ± 605.78 2079.55 ± 967.95 0.004*

Kurtosis 34.58 ± 24.71 17.84 ± 16.10 0.010*

Diff-entropy 1.27 ± 0.27 1.67 ± 0.35 < 0.001*

Diff-variance 2.37 ± 2.42 4.56 ± 3.67 < 0.001*

Contrast 6.01 ± 6.88 13.27 ± 11.08 < 0.001*

Entropy 2.07 ± 0.43 2.63 ± 0.44 < 0.001*

Skewness 3.31 ± 2.52 2.49 ± 1.61 0.117

Data are expressed as mean ± standard deviations. *p < 0.05
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triglycerides) and MRS_FF to the first multivariate
model, diagnostic performance showed no better than
that of the first multivariate model (p = 0.974, Z =
0.032). The optimal combination included platelet count,
5th percentile, and diff-entropy yielding an AUC of
0.900 (95% CI 0.786–0.965, sensitivity of 85.0%, spec-
ificity of 87.9%). So we choose the first multivariate
model with three parameters (median, 5th percentile,
and diff-entropy) for further analysis.

Comparing the noninvasive fibrosis test with
multivariate model for differentiating the
intermediate-to-high-risk group from the low-risk
group

The diagnostic performance of multivariate model was com-
pared with noninvasive fibrosis tests including NFS, FIB-4,
and LSM, respectively (Fig. 5, Table 4). The multivariate
model indicated significantly better performances when com-
paring with NFS (p = 0.0186, Z = 2.353) and FIB-4 (p =
0.0067, Z = 2.709). However, as only a slight difference of
0.098 of AUC was observed between multivariate model
and LSM (p = 0.022, Z = 2.286), the diagnostic performance
of multivariate seemed no better than LSM.

Intra- and inter-observer variability and expenditure
of time

The ICC analysis for inter- and intra-observer variability is
summarized in Tables 5, respectively. Intra-observer ICCs
ranged from 0.827 (0.613–0.958) for diff-entropy to 0.992
(0.969–0.998) for entropy. Inter-observer ICCs ranged from
0.808 (0.597–0.951) for diff-variance to 0.984 (0.937–0.996)
for median.

ESM 2 reports mean times required by each reader for
drawing seed points and total time for four steps. For both
readers, the total four steps required significantly more time
than drawing seed points (both p < 0.05); manual adjustments
are needed nearly in all cases. Finally, by comparing time
between readers, no significant difference was found in the
time of drawing seed points and total time (p > 0.05), though
the more experienced reader 2 had a slightly shorter time for

Table 3 ROC analyses of liver volumetric histogram- and texture-extracted parameters in differentiating low risk from intermediate-to-high risk of
advanced fibrosis

Parameters AUC 95% confidence interval Cutoff value Youden index Sensitivity (%) Specificity (%) p

Volume 0.780 0.64–0.91 1289.85 0.58 70.0 87.9 0.001*

T1 Mean 0.771 0.64–0.91 987.52 0.51 84.6 66.7 0.001*

SD 0.733 0.60–0.88 331.63 0.44 76.9 66.7 0.005*

Median 0.757 0.62–0.90 914.50 0.51 84.6 66.7 0.002*

5th percentile 0.679 0.52–0.83 721.5 0.47 69.2 77.8 0.030*

95th percentile 0.736 0.59–0.83 1541.5 0.51 76.9 74.1 0.004*

Kurtosis 0.289 0.15–0.43 0.48 0.04 100 3.7 0.010*

Diff-entropy 0.837 0.73–0.95 1.40 0.62 84.6 77.8 0.000*

Diff-variance 0.807 0.69–0.93 2.05 0.51 84.6 66.7 0.000*

Contrast 0.793 0.67–0.92 5.29 0.55 84.6 70.4 0.000*

Entropy 0.821 0.71–0.94 2.33 0.55 84.6 70.4 0.000*

Multivariate model 0.902 0.79–0.97 0.46 0.71 80.0 90.9 0.000*

AUC, area under receiver operating characteristic curve. *p < 0.05. Cutoff values were established by calculating the maximal Youden index (Youden
index = sensitivity + specificity −1)

Table 4 Comparison of AUC between multivariate models and each
parameter or blood fibrosis test

Parameters Difference between AUC (95%CI) Z p

Volume 0.121 (−0.022–0.264) 1.663 0.0063*

T1 mean 0.130 (0.028–0.233) 2.486 0.0129*

SD 0.168 (0.066–0.270) 3.226 0.0013*

Median 0.145 (0.034–0.255) 2.560 0.0105*

5th percentile 0.402 (0.317–0.486) 9.321 < 0.0001*

95th percentile 0.402 (0.317–0.486) 9.321 < 0.0001*

Kurtosis 0.190 (0.065–0.315) 2.993 0.0028*

Diff-entropy 0.065 (− 0.006–0.136) 1.807 0.0707

Diff-variance 0.095 (0.016–0.173) 2.362 0.0182*

Contrast 0.108 (0.022–0.195) 2.449 0.0143*

Entropy 0.079 (− 0.000–0.158) 1.958 0.0503

FIB-4 0.247 (0.068–0.426) 2.709 0.0067*

NSF 0.223 (0.037–0.408) 2.353 0.0186*

LSM 0.098 (0.0141–0.183) 2.286 0.0222*

AUC, area under receiver operating characteristic curve. *p < 0.05. NSF,
Nonalcoholic Fatty Liver Disease Fibrosis Score (NFS); FIB-4, fibrosis-4
index; LSM, liver stiffness measurement
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each case (399 ± 212 s vs 433 ± 252 s in seed point drawing
and 794 ± 481 s vs 678 ± 367 s in total time).

Inter-examination repeatability

Inter-examination ICCs for volume, mean, SD, median, 5th
percentile, 95th percentile, skewness kurtosis, diff-entropy,
diff-variance, contrast, and entropy were 0.970, 0.994,
0.997, 0.974, 0.960, 0.999, 0.947, 0.877, 0.981, 0.991,
0.990, and 0.982 respectively (ESM 3).

Discussion

In this study, we assessed the potential of whole-liver histo-
gram and texture analysis of T1 map in stratifying the risk of
advanced fibrosis in the fatty liver. In a selected participant
cohort with suspected NAFLD, a 2-step approach, combing
NFS/FIB-4 and liver stiffness, was performed to distinguish
individuals as being in the intermediate-to-high risk of ad-
vanced fibrosis group and low-risk group. The NFS [20] and
FIB-4 [21, 22] index have been externally validated in popu-
lations of different ethnicities with consistent results. LSM is
clinically useful to monitor the severity of hepatic fibrosis and
is recommended in the current guidelines on management of
NAFLD [4, 23].

The presence of advanced fibrosis in NAFLD identifies
patients in need of in-depth hepatological investigation, and
it is an independent predictor of liver-related mortality [2].
The monitoring of fibrosis progression is necessary at variable
time intervals. The need for a noninvasive alternative to liver
biopsy has led to the extensive investigation of predictive
methods, including the serum fibrosis test, elastography by
US and MRI, and other imaging methods. Although MR-
based elastography techniques have demonstrated the best
performance for staging hepatic fibrosis in patients with
NAFLD [24], a prospective acquisition with dedicated hard-
ware is required.

Histogram and texture analyses as statistical tools have
been increasingly used in staging liver fibrosis in chronic liver
disease [25, 26]. Here, we extracted histogram and texture
parameters on the T1 map for the following reasons: (i) Its
implementation does not require any additional hardware or
contrast agent and could be applied in almost every MR ma-
chine without any extra cost; (ii) NAFLD progression in-
cludes various pathological and micro-structural changes that
might not be detectable by the human eye, like steatosis,

Table 5 Intra- and inter-observer
variability for whole-liver histo-
gram and texture parameters

Parameters Intra-observer ICC (95% CI) Inter-observer ICC (95% CI)

Volume 0.977 (0.927–0.993) 0.910 (0.683–0.977)

T1 Mean 0.834 (0.693–0.958) 0.971 (0.967–0.988)

SD 0.859 (0.745–0.956) 0.877 (0.584–0.968)

Median 0.974 (0.918–0.992) 0.984 (0.937–0996)

5th percentile 0.828 (0.545–0.957) 0.864 (0.548–0.964)

95th percentile 0.930 (0.753–0.984) 0.878 (0.687–0.968)

Skewness 0.945 (0.792–0.987) 0.910 (0.683–0.977)

Kurtosis 0.828 (0.615–0.978) 0.826 (0.616–0.953)

Diff-entropy 0.827 (0.613–0.958) 0.887 (0.672–0.976)

Diff-variance 0.962 (0.880–0.989) 0.808 (0.597–0.951)

Contrast 0.979 (0.918–0.995) 0.837 (0.643–0.978)

Entropy 0.992 (0.969–0.998) 0.945 (0.794–0.986)

ICC, intraclass correlation coefficient; CI, confidence interval

Fig. 5 Receiver operating characteristic (ROC) curve for the differentia-
tion between a low and intermediate-to-high risk of advanced fibrosis.
The multivariate model was derived from the logistic regression analysis
of the histogram and texture parameters. NSF, Nonalcoholic Fatty Liver
Disease Fibrosis Score; FIB-4, Fibrosis-4 Index; LSM, liver stiffness
measurement
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fibrosis, inflammation, and iron deposition, which promotes
fibrosis progression. All the substances above will affect the
T1 values. We assumed that the texture from the T1 map
might provide comprehensive and important information
concerning liver fibrosis.

In our study, the histogram-based (volume, mean, SD, me-
dian, 5th percentile, and 95th percentile) and texture-based
(diff-entropy, diff-variance, contrast, and entropy) parameters
all demonstrated a good diagnostic performance, with high
sensitivity ranging from 69.2 to 84.6% and specificity from
66.7 to 87.9%, except for kurtosis. All parameters showed
excellent inter- and intra-observer agreement. Consistent with
other studies [26–29], the most promising parameters of our
study are diff-entropy, entropy, and diff-variance, achieving
an AUC value greater than 0.8 (p < 0.001) in differentiating
intermediate-to-high-risk advanced fibrosis from low risk.

Although the texture of T1map was rarely studied in the
abdomen, animal experiments have found that the texture pa-
rameters of T1 map can be used for detection of hepatic fibro-
sis [26]; studies in patients with NAFLD have shown that
entropy on T1-weighted images can help measure hepatic
fibrosis [27]; Fujimoto et al [28] have reported that entropy
of ADC map correlated with pathologic fibrosis stage in
chronic hepatitis C; Yang et al [29] have demonstrated that
histogram analysis of susceptibility-weighted imaging, partic-
ularly the variance, can be used for predicting advanced liver
fibrosis. Histopathologically, the early accumulation of fat
within the liver tends to be diffuse and uneven distributed in
NAFLD [30]; the fatty acids (secreted from the fat) can con-
tribute to the formation of lipotoxic species, oxidant stress,
and inflammasome activation. These processes are responsi-
ble for accumulation of excess ECM, which might lead to
advanced fibrosis [31]. As the distribution of those substances
(fat, inflammation, ECM, fibrosis) becomes more heteroge-
neous, the distribution of T1 value therefore becomes more
random, and the entropy increases. Variance also increases
when T1 map becomes more heterogeneous. In total, the ob-
servation of increased diff-entropy, entropy, and diff-variance
of T1 map at volumetric texture analysis may therefore be a
potential biomarker that reflects increased heterogeneity of
hepatic parenchyma in diffuse liver disease. Histogram-
based parameters (volume, mean, SD, median, 5th percentile,
and 95th percentile) could provide insight into the distribution
of T1 values over the entire liver. All these parameters dem-
onstrated a good diagnostic performance in our study.

In addition, texture analysis performed in other organs in-
dicated that the combination of parameters might increase the
clinical diagnostic performance [32–35]. Our results indicated
that the combination of histogram and texture parameters
using binary logistic regression analysis showed a better diag-
nostic performance compared with most individual parame-
ters or conventional blood fibrosis tests (NFS and FIB-4). In
order to verify whether clinical parameters could improve the

diagnostic efficiency, we added all significantly different clin-
ical indicators to the multivariate model and found that there
was no difference in AUCs (0.902 vs 0.900), indicating that
the clinical parameters do not offer added value to the model.

& There is a small set of previous studies [12, 27] focusing in
a similar fashion on a homogeneous participant cohort
with NAFLD. Notably, the parameters in those studies
were extracted using a single circular ROI placed on a
slice, which have caused the loss of heterogeneity infor-
mation of the whole liver. In the current study, we utilized
the whole volume analysis on the entire liver, which could
extract more comprehensive information on the whole liv-
er. The influences of the hepatic vessels and intrahepatic
bile duct were avoided by excluding them during the
semi-automatic segmentation processing. We acquired
the 3D T1 map by using the variable flip angle method
[32] in a single breath-hold period. B1 correction was
applied on the T1 map to ensure the accuracy of the T1
estimation. We found the repeatability of T1mapping after
repositioning to be excellent, as the inter-examination
ICCs were all > 0.85.

Our study had several limitations. First, the patient popula-
tion was relatively small (n = 53), so the diagnostic criteria
proposed in our study should be validated in another cohort.
Second, due to the study design, liver biopsy was not possible,
we instead used MRS-FF as a noninvasive gold standard of
steatosis, and a 2-step approach to evaluate advanced fibrosis
risk in NAFLD patients, which have been proposed in the
guidelines of the European Association for the Study of the
Liver (EASL) [4] and confirmed by several published studies
using histology as the reference standard [36, 37]. Third, the
current semi-automatic segmentation-based analysis is time-
consuming. It took an average of ~ 13 min for reader 1 who is
unexperienced and ~ 11 min for reader 2 who is more experi-
enced per case for the whole process in our study; further
texture analysis from automatic liver segmentation and vessel
exclusion might help; fourth, we only analyzed T1 maps on
1.5T scanner. The accuracy of histogram and texture parame-
ters using 3T scanner or another sequence remains unknown,
and needs further study. Finally, our retrospective study
allowed the evaluation of the potential role of whole-liver
texture analysis on T1 maps for the risk stratification of ad-
vanced fibrosis in NAFLD; however, selection bias can occur
in retrospective cohort studies as the patient outcome is known
at baseline at the time the study is initiated. To validate our
findings, a randomized prospective study should be
performed.

In conclusion, whole volume histogram and texture analy-
sis on T1 maps has the potential to discriminate between low-
risk and intermediate-to-high-risk advanced fibrosis. The
combination of significant texture parameters yielded a better
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performance for the risk stratification of advanced fibrosis in
NAFLD, and clinical parameters offers no added value. These
results warrant further studies with a larger patient population
to confirm our findings.
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