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Abstract: Patients with immune-mediated inflammatory diseases (IMIDs), such as rheumatoid arthri-
tis and inflammatory bowel disease, are at increased risk of infection. International guidelines
recommend vaccination to limit this risk of infection, although live attenuated vaccines are contraindi-
cated once immunosuppressive therapy has begun. Biologic therapies used to treat IMIDs target the
immune system to stop chronic pathogenic process but may also attenuate the protective immune
response to vaccines. Here, we review the current knowledge regarding vaccine responses in IMID
patients receiving treatment with biologic therapies, with a focus on the interleukin (IL)-12/23 in-
hibitors. B cell-depleting therapies, such as rituximab, strongly impair vaccines immunogenicity,
and tumor necrosis factor (TNF) inhibitors and the cytotoxic T-lymphocyte-associated antigen-4
(CTLA-4) fusion protein abatacept are also associated with attenuated antibody responses, which
are further diminished in patients taking concomitant immunosuppressants. On the other hand,
integrin, IL-6, IL-12/23, IL-17, and B-cell activating factor (BAFF) inhibitors do not appear to affect
the immune response to several vaccines evaluated. Importantly, treatment with biologic therapies
in IMID patients is not associated with an increased risk of infection with severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) or developing severe disease. However, the efficacy of SARS-
CoV-2 vaccines on IMID patients may be reduced compared with healthy individuals. The impact of
biologic therapies on the response to SARS-CoV-2 vaccines seems to replicate what has been described
for other vaccines. SARS-CoV-2 vaccination appears to be safe and well tolerated in IMID patients.
Attenuated but, in general, still protective responses to SARS-CoV-2 vaccination in the context of
certain therapies warrant current recommendations for a third primary dose in IMID patients treated
with immunosuppressive drugs.

Keywords: vaccine; immune-mediated inflammatory diseases; immune response; interleukins

1. Introduction

Immune-mediated inflammatory diseases (IMIDs) are a diverse group of clinically
unrelated conditions, including, among others, rheumatoid arthritis (RA), psoriatic arthri-
tis (PsA), psoriasis (PsO), and inflammatory bowel disease (IBD). They share molecular
mechanisms and are characterized by altered immune homeostasis that results in chronic
excessive inflammation leading to tissue injury in affected organs and eventually functional
disability [1].

Due to their inflammatory nature, IMIDs are often treated with immunosuppres-
sants or immunomodulators, including steroids, methotrexate (MTX), thiopurines, small-
molecule inhibitors, and a range of biologic therapies that target key molecules or cells
involved in the inflammatory response. Patients with IMIDs are often at increased risk
of infections because of the disease itself, the immunosuppressive or immunomodulators
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used to treat the disease, comorbidities, and/or hospitalizations caused by disease flares
or complications [2–4]. Infections can be prevented through the use of chemoprophylaxis
and/or vaccination; in fact, guidelines for the management of IMID patients recommend
vaccination in accordance with local immunization schedules and patient-specific risks,
unless there are contraindications [5–9].

The current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pan-
demic and the advent of population-wide vaccination programs raise questions about the
safety and efficacy of SARS-CoV-2 vaccination in IMID patients, especially those under
immunomodulatory or immunosuppressive therapy. A range of SARS-CoV-2 vaccines are
available or in development. Most employ non-replicating viral vectors or mRNA for the
spike protein of the virus, but some use more conventional technology, such as inactivated
virus or live attenuated virus [10,11]. It is likely that the vaccine’s ability to generate an
effective immune response against SARS-CoV-2 will be affected by the type of medications
patients are receiving. The aim of this narrative review is to summarize current knowledge
regarding vaccine responses in IMID patients treated with biologic therapies, with a focus
on agents that inhibit interleukin (IL)-12 and/or -23, as various new IL-23 inhibitors are
being approved for several IMID conditions.

2. Increased Risk of Infections in Patients with IMIDs

Patients with IMIDs have an increased risk of infections compared with unaffected
individuals, firstly, because of the immune dysfunction that characterizes these conditions
and, secondly, due to the immune modulatory therapies used to treat them. Corticosteroids
are associated with the highest risk of infections [12,13], and thiopurines and MTX also
increase the risk of infections compared with placebo [14–16], but the magnitude of the risk
increase is not as high as with corticosteroids.

Some biologic therapies used to treat IMIDs may also increase the risk of infections, but
the risk is not uniform across all agents. The European Society of Clinical Microbiology and
Infectious Disease (ESCMID) reviewed the evidence for biologic therapies and concluded
that TNF inhibitors increase the risk of active tuberculosis and other granulomatous infec-
tions and may also increase the risk of other serious bacterial, fungal, opportunistic, and
certain viral infections [17]. The infection risk associated with biologic therapies targeting
IL-6 or the IL-6 receptor is similar to the risk with TNF inhibitors [18]. IL-1 inhibitors are
associated with a moderate increase in the risk of infections, which are generally mild
to moderate in most patients [18]. IL-17 inhibitors are associated with an increased risk
of Candida infections [19]. IL-12/23 inhibitor ustekinumab is not associated with an ap-
preciable increase in the risk of infections [18]. Anti-integrins do not appear to increase
the risk of infections, except for anti-α4 integrins that increase the risk of progressive
multifocal leukoencephalopathy (PML) by Polyomavirus JC [20]. Agents targeting CD20
(e.g., rituximab) increase the risk of infections, the most common being respiratory tract
infections, hepatitis B (and, to a lesser extent, hepatitis C) reactivation, and varicella zoster
infection [21].

Current data suggest that patients with IMIDs are not at increased risk of acquiring
SARS-CoV-2 infection or of hospitalization/death compared with the general popula-
tion [22–25]. However, older age, comorbidities, and the use of non-biologic systemic
therapy (particularly corticosteroids) increases the risk of severe COVID-19 disease and/or
hospitalization in patients with IBD, PsO, or rheumatic IMIDs [26–31]. Biologic thera-
pies (except for the B-cell depleting agent rituximab [32]) were not associated with an
increased risk of developing severe COVID-19 [33,34], and some of these therapies may
in fact be protective against COVID-19-related hospitalization and death among infected
patients [26–29,35,36].

Based on the increased risk of infection, preventive measures are an important strategy
for limiting serious illness in patients with IMIDs, either by appropriate vaccination or
by chemoprophylaxis to prevent reactivation of latent infections, such as tuberculosis,
Pneumocystis, or hepatitis B.
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3. Vaccines and IMIDs

Multiple sets of international guidelines recommend vaccination to limit the risk of
infection in patients with IMIDs [5–9]. Before initiating systemic immunosuppressive
therapy, a vaccination and infectious disease history should be undertaken to identify gaps
in the patient’s vaccination schedule, and vaccinations should be administered according
to the recommendations for the general population and for the specific patient group.

Ideally, patients should be vaccinated before immunosuppressive therapy is started,
as therapies could impact vaccine efficacy. Moreover, live attenuated vaccines could
cause disease in immunocompromised patients and are therefore contraindicated once
immunosuppressive therapy has been initiated, unless the potential benefit of preventing
the infection outweighs the risk of administering a live vaccine [37]. Inactivated vaccines
are generally safe and do not increase the risk of IMID exacerbation, although some studies
reported increased joint pain following the administration of some vaccines in patients
with rheumatologic conditions [38,39].

Regular influenza and pneumococcal vaccinations are deemed particularly important
in IMID patients on biologic therapy. Physicians may also consider vaccination against
Haemophilus influenzae type b, Neisseria meningitidis, hepatitis B, diphtheria, and tetanus,
depending on the patient’s vaccination history and clinical profile [6–8,40].

Despite the importance of vaccination in IMID patients, suboptimal vaccination rates
are reported. Possible reasons include lack of awareness of recommendations, inadequate
communication between specialist and primary care physicians, and concerns about the
efficacy and safety of vaccines [7,41,42].

4. Immune Response Necessary to Generate Immunity

Vaccines are one of the key developments of modern medicine; they prevent thousands
of infections and deaths worldwide and represent an important advance in public health.

Vaccination provides protective immunity by eliciting a pathogen-specific immune
response against the antigenic material present in the vaccine; this immune response is
often boosted by adjuvants within the vaccine that enhance the magnitude and durability of
the response [43]. The main immune effectors of vaccine responses are antibodies (humoral
immunity) and T cells (cellular immunity). Antigen(s) are taken up by antigen-presenting
cells (APCs) and are presented to B and T cells to generate antigen-specific B- and T-cell
responses [44]. Antibodies may prevent or reduce infection by binding to the pathogen,
while T cells mediate elimination of infected cells. CD4+ helper T cells (Th) orchestrate the
immune response by providing T-cell help to primed B cells and CD8+ cytotoxic T cells. In
addition, Th cells secrete cytokines that aid pathogen clearance. In lymphoid follicles, T
follicular helper cells (Tfh cells) provide T-cell help to B cells and mediate their activation
and differentiation into antibody-producing plasma cells and memory B cells.

Once an infection is cleared, most of the antigen-specific cells die off through apoptosis,
but antibodies and long-lived plasma cells persist along with memory B and T cells, which
can mount an anamnestic response upon re-exposure to the antigen [45].

In most cases, to induce an antibody response, B cells need the aid of Tfh cells (T cell-
dependent B-cell response). However, non-protein antigens, such as pure polysaccharide
vaccines, activate B cells and elicit antibody production without the involvement of T cells
(T cell-independent B-cell response). This T-independent response is generally considered
to produce low affinity IgM antibodies and to be short-lived [44].

Vaccine-induced immune responses are often measured as a correlate of vaccine
efficacy; most commonly, the humoral immune response is measured by quantifying
antigen-specific antibodies in plasma (e.g., total IgG antibodies measured by ELISA) or, if
feasible, functional antibodies (e.g., neutralizing antibodies). Some studies report seropro-
tection and/or seroconversion rates; seroprotection is defined as the antibody level needed
to achieve protection, while seroconversion refers to a fold-rise in antibody levels from pre-
to post-vaccination. The measurement of cellular immunity is less common and is based
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in the detection of antigen-specific CD4+ and CD8+ T cells and the cytokines they release
following in vitro stimulation.

A key goal of vaccination is to induce long-lasting immunity; however, while some
vaccine responses are durable (e.g., hepatitis A, B, and diphtheria), others are short-lived
and require multiple administrations (e.g., influenza). The magnitude and duration of
vaccine-induced immunity is determined by host, environmental and vaccine factors
(structure of the antigen; adjuvants; dose; schedule, site, route, and timing of administration;
and concomitant medications) [45,46].

5. Approved Biologic Therapies and Their Impact on Responses to Vaccines

Immunosuppressive/immunomodulatory drugs used to treat IMIDs target the im-
mune system to stop pathogenic chronic inflammation, but, in many cases, these therapies
may also impact the ability to properly respond to infections and to vaccines. A range
of biologic therapies are used in IMIDs; they act at different stages of the inflammatory
response, by depleting certain immune cells, or by blocking their activation or their mi-
gration. Below, we review the impact of biologic therapies on vaccine immunogenicity in
IMID patients; the evidence is also summarized in Tables 1 and 2.

Table 1. Effect of biologic therapies on response to vaccination in IMID patients.

Biologic Therapy Vaccine Population Impact on Vaccine Response

Integrin inhibitors

Natalizumab (anti-α4β1) Influenza MS Reduced humoral response [47,48]
Tetanus MS Normal humoral response [49]

Vedolizumab (anti-α4β7)

Influenza IBD Normal humoral response [50]

Oral cholera Healthy
volunteers Reduced humoral response [51]

Hepatitis B Healthy
volunteers Normal humoral response [51]

CTLA-4 fusion protein

Abatacept

PPV-23 RA
Reduced antibody titers, but normal functional
antibodies [52]
Normal humoral response [53]

PCV-7 RA Impaired humoral response [54]

Influenza RA Normal humoral response [53]
Impaired humoral response [55]

CD20 inhibitor

Rituximab

PPV-23 RA Impaired humoral response [56]
IMIDs Impaired humoral response [57]

PCV-7 RA Impaired humoral response [54]
IMIDs Impaired humoral response [57]

Hepatitis B IMIDs Impaired humoral response [58]
Tetanus RA Preserved humoral response to recall antigen [56]

Influenza
RA Impaired humoral [59–62], but preserved cellular

response [59]
IMIDs Impaired humoral response [63]
RA or vasculitis Impaired humoral response [64,65]

BAFF inhibitor

Belimumab PCV-13 SLE Normal humoral response [66]
PPV-23 SLE Normal humoral response [67]

TNF inhibitors (aggregated)

PPV-23

SpA Reduced humoral response [68]
PsA Normal humoral response [69]

RA Reduced humoral response [70]
Normal humoral response [71–73]

IBD Reduced humoral response [74–77]

PCV-13 then
PPV-23 IBD Impaired humoral response [77]

PCV-13 RA Impaired humoral response [78]
CD Impaired humoral response [74]

Hepatitis B SpA Reduced humoral response [68]

IBD Impaired humoral response [79,80], or seroconversion
rates similar to thiopurine or MTX [81]

Hepatitis A RA Impaired humoral response [82]
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Table 1. Cont.

Biologic Therapy Vaccine Population Impact on Vaccine Response

Influenza

RA Normal humoral response [71,72,83–87]
AS Normal humoral response [83]
SpA Reduced humoral response [85]
PsA or PsO Normal humoral response [88]
IBD Reduced humoral response [89–92]
IMIDs Reduced humoral response [93,94]

MMR JIA Normal humoral and cellular response [95]
Yellow fever RA Preserved antibody response to revaccination [96]

IL-17 inhibitors

Secukinumab

Meningococcal
conjugate

Healthy
volunteers Normal humoral response [97]

Influenza
Healthy
volunteers Normal humoral response [97]

PsA or AS Normal humoral response [98]

Ixekizumab
PPV-23 Healthy

volunteers Normal humoral response [99]

Tetanus Healthy
volunteers Normal humoral response [99]

IL-6 inhibitor

Tocilizumab

PPV-23 RA Normal humoral response [100–102]
PCV-13 then
PPV-23 IMIDs Normal humoral response [57]
PCV-7 RA Normal humoral response [54]

Influenza RA Normal humoral response [64,102,103]
SJIA Normal humoral response [104]

Tetanus RA Normal humoral response [100]

IL-12/IL-23 inhibitors

Ustekinumab

PPV-23 PsO Normal humoral response [105]
PsO or MS Normal humoral response [106]

Influenza CD Normal humoral response [107]

Tetanus PsO or MS Normal humoral response [106]
PsO Normal humoral response [105]

AS, ankylosing spondylitis; BAFF, B-cell activating factor; CD, Crohn’s disease; CTLA-4, cytotoxic T-lymphocyte-
associated protein 4; IBD, inflammatory bowel disease; IL, interleukin; MS, multiple sclerosis; IMID, immune-
mediated inflammatory diseases; JIA, juvenile idiopathic arthritis; MMR, measles-mumps-rubella; MS, multiple
sclerosis; NSAID, non-steroidal anti-inflammatory drugs; PCV-7 or PCV-13, 7-valent or 13-valent pneumococcal
conjugate vaccine; PPV-23, 23-valent pneumococcal polysaccharide vaccine; PsA, psoriatic arthritis; PsO, psoriasis;
RA, rheumatoid arthritis; SJIA, systemic juvenile idiopathic arthritis; SLE, systemic lupus erythematosus; SpA,
spondyloarthropathy; TNF, tumor necrosis factor.

Table 2. Graphical summary on the effect of biologic therapies on response to vaccination in IMID
patients.

Biologic Therapy Impact on Vaccine Response a

CD20+ cell depletion
CTLA-4 fusion protein
TNF inhibitors
Integrin inhibitors Oral cholera
BAFF inhibitor
IL-17 inhibitors
IL-6 inhibitor
IL-12/IL-23 inhibitors

a Red shading indicates impaired humoral response, orange indicates reduced humoral response, and green
indicates normal humoral response. BAFF, B-cell activating factor; CTLA-4, cytotoxic T-lymphocyte-associated
protein 4; IL, interleukin; TNF, tumor necrosis factor.

5.1. Integrins
5.1.1. Anti-α4 (Natalizumab)

Integrin antagonists inhibit the trafficking of circulating immune cells to the site of
inflammation. Natalizumab, a monoclonal antibody (mAb) against the α4 chain common
to the α4β1 and α4β7 integrins, blocks the migration of leukocytes to the central nervous
system and gastrointestinal (GI) tract by blocking the interaction between α4β1 and vas-
cular cell adhesion molecule 1 (VCAM-1) and between α4β7 and mucosal addressin cell
adhesion molecule 1 (MAdCAM-1), respectively. It is widely approved for the treatment of
multiple sclerosis (MS) but carries a risk of PML. In the US, natalizumab is also available
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through a restricted access program for patients with moderate to severe active Crohn’s
disease (CD) who have an inadequate response or cannot tolerate other therapeutic options.

Data on the effect of natalizumab on vaccine response are scarce (Table 1). Two small
studies showed a reduced rate of seroconversion after seasonal influenza vaccination in MS
patients compared with healthy controls [47,48]. Additionally, in a randomized open-label
study in MS patients treated or not with natalizumab, all patients achieved protective
levels of antibodies to a recall antigen (tetanus toxoid) or a neoantigen (keyhole limpet
hemocyanin [KLH]—a carrier protein used to research antibody production) [49].

5.1.2. Anti-α4β7 (Vedolizumab)

Vedolizumab inhibits the extravasation of leukocytes to the intestinal mucosa by
selectively blocking the integrin α4β7, which targets MAdCAM-1, a cell adhesion molecule
that is expressed by endothelial cells in the GI tract [108]. Vedolizumab is indicated for the
treatment of CD and ulcerative colitis (UC).

The effect of vedolizumab on vaccine responses was evaluated in a phase 1, random-
ized, double-blind, placebo-controlled trial. Healthy individuals received a single intra-
venous dose of vedolizumab of 750 mg (approved dose is 300 mg) (Table 1). Vedolizumab
did not alter the response to a parenterally administered vaccine (hepatitis B), as antibody
titers were similar between placebo and vedolizumab groups. However, the humoral
response to an enterally administered vaccine (oral cholera vaccine) was significantly re-
duced, probably due to the gut-specific effect of this agent [51]. A recent study analyzed
the immunogenicity of the trivalent or quadrivalent influenza vaccine in 19 patients with
IBD who were receiving vedolizumab. The humoral response (antibody titers, seroprotec-
tion, and seroconversion rates) to seasonal influenza vaccine was similar in patients on
vedolizumab and in the 20 healthy controls [50].

5.2. Co-Stimulators of T Cells

CTLA-4 Fusion Protein (Abatacept)
Abatacept is a soluble fusion protein comprising the extracellular domain of human cy-

totoxic T-lymphocyte-associated antigen-4 (CTLA-4). It acts by blocking T-cell activation, as
it competes with CD28 for binding to CD80/86 on APCs, a required second co-stimulatory
signal needed for T-cell activation [109]. Abatacept is indicated for the treatment of RA,
PsA, and polyarticular juvenile idiopathic arthritis (JIA).

Vaccination effectiveness while on abatacept therapy has been assessed only in RA
patients (Table 1). The response to the 23-valent polysaccharide pneumococcal vaccine
(PPV-23), which induces a T cell-independent response, was analyzed in a randomized,
double-blind, controlled trial, and a diminished IgG response was observed with abatacept.
However, in a functional assay (opsonization index), no differences were found between
groups (abatacept, MTX, or control) [52]. Moreover, in two open-label sub-studies with
no control group, RA patients receiving abatacept mounted a proper immune response to
PPV-23 and influenza vaccine [53]. However, the antibody response to the pneumococcal
conjugate vaccine (PCV), which induces a T cell-dependent response, was shown to be
impaired in a small cohort of RA patients receiving abatacept (mostly in combination with
MTX) [54]. Similarly, abatacept treatment was associated with a significantly reduced IgG
response to the monovalent A/H1N1 influenza vaccine compared with MTX treatment [55].

In addition to studies evaluating vaccine response during treatment with abatacept,
a study in children aged 2–5 years found that starting abatacept treatment did not affect
pre-existing protective antibody levels to tetanus and diphtheria vaccinations administered
21–79 months before abatacept initiation [110].

5.3. B Cells

B cells are essential for humoral immune responses but have also been implicated as
drivers of several autoimmune and IMID conditions. B-cell targeted biologic therapies
are now available for the treatment of IMIDs [111]. These include the CD20-specific B-cell
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depleting therapies, such as rituximab, and the B-cell activating factor (BAFF) inhibitor
belimumab [112,113].

5.3.1. Anti-CD20 (Rituximab)

Rituximab is a mAb that binds to the B-cell surface protein CD20 and leads to the
depletion of B lymphocytes. It is indicated for RA, MS, and B-cell related hematologic
malignancies and has been investigated in the treatment of systemic lupus erythematosus
(SLE) [111,114].

Since B cells are responsible for humoral immune responses, it is unsurprising that
patients receiving rituximab show reduced antibody levels after vaccination. Bingham and
colleagues found that, compared with RA patients taking MTX alone, a lower proportion
of patients taking rituximab + MTX mounted a protective antibody response to the T-cell
independent vaccine PPV-23. In contrast, a similar proportion responded to the T-cell
dependent tetanus toxoid vaccine [56].

The magnitude of the antibody response to PCV, and the proportion of patients
mounting a protective antibody response, was also reduced in patients with RA receiving
rituximab monotherapy and in those receiving rituximab + MTX compared with those
receiving MTX monotherapy [54]. Similarly, in the Red de Investigación en Inflamación y
Enfermedades Reumáticas (RIER) study, which investigated the response to vaccines among
patients receiving biologics for various IMIDs (arthropathies, connective tissue diseases,
PsO, or IBD), functional antibody levels were lower after pneumococcal vaccination with
PCV-7 and PPV-23 in patients receiving rituximab than in those receiving other biologic
therapies [57]. The same study also reported that a lower proportion of patients under
rituximab developed protective antibody titers after hepatitis B vaccination compared with
patients receiving other types of biologics [58].

Response to the trivalent influenza vaccine in patients currently receiving or recently
completing treatment with rituximab has been examined in several studies. Patients with
RA who had received rituximab showed an impaired humoral response compared with
RA patients receiving non-biologic disease modifying anti-rheumatic drugs (DMARDs) or
healthy controls [59–63]. However, the cellular immune response to influenza vaccination
was not affected by rituximab, with similar levels of influenza-specific CD4+ cells in
patients treated with rituximab or DMARDs [59]. Interestingly, antibody response might
be improved by a longer dose-administration schedule between rituximab administration
and influenza vaccination [61,63].

Similar to responses to the trivalent influenza, a diminished antibody response to the
monovalent H1N1 influenza vaccine has been reported in patients taking rituximab [64,65].
Adler and colleagues examined the response to H1N1 vaccination in IMID patients, of
whom eight were receiving rituximab and none of them developed seroprotective antibody
levels [65]. In a study from Sweden, RA patients receiving rituximab had a significantly
reduced humoral response compared with those receiving MTX [64].

Due to the impact of rituximab treatment on vaccine immunogenicity, several guide-
lines have made recommendations regarding timing of vaccination while on rituximab.
IMID patients normally receive rituximab cycles every 6 months and the general recommen-
dation is to administer inactivated vaccines at least 5 months following the last rituximab
dose to allow for some B-cell reconstitution [115,116].

5.3.2. Anti-BAFF (Belimumab)

The BAFF inhibitor belimumab acts by neutralizing BAFF (also known as B lympho-
cyte stimulator), a key cytokine involved in B-cell survival and differentiation [114,117].
Belimumab is indicated for SLE, the first biologic approved for this condition [113]. The B
cell-depleting effect of belimumab is not as intense as that of rituximab, since belimumab
preferentially targets transitional and naïve B cells while leaving conventional memory B
cells unaffected [118]; therefore, the two different classes of B cell-depleting therapies may
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have different effects on the vaccine response [114]. Nevertheless, because it targets B cells,
belimumab may negatively impact the response to vaccines.

Currently, data on the effects of belimumab are limited (Table 1), but studies have
shown that SLE patients receiving belimumab who were immunized with PCV generated
a similar antibody response to SLE patients receiving other standard immunosuppressive
therapies (DMARDs, azathioprine, MTX, and/or corticosteroids) [66].

Moreover, in a phase 4, open-label study, immunization of SLE patients with PPV-
23 4 weeks before or 24 weeks after starting belimumab resulted in similar humoral
response [67].

Consistent with preservation of memory B cells by belimumab, pre-existing anti-
body titers to pneumococcus, tetanus, or influenza vaccinations received before starting
belimumab were shown to be preserved in a sub-study from the phase 3 randomized
placebo-controlled trial [119].

5.4. Pro-Inflammatory Cytokines
5.4.1. Anti-TNF

TNF is a proinflammatory cytokine that is important in immune responses, particularly
to intracellular pathogens. However, dysregulated TNF production leads to excessive
inflammation and survival of pathogenic autoreactive immune cells and, as such, TNF
plays a central pathophysiologic role in a range of IMIDs [120,121].

Agents targeting TNF are widely used in the treatment of PsA, PsO, RA, spondy-
loarthropathies, and IBD and include infliximab, etanercept, adalimumab, golimumab, and
certolizumab pegol. Due to the central role of TNF in immunity and the widespread use of
TNF inhibitors, the impact of anti-TNF therapy on vaccine responses has been extensively
studied (Table 1).

Since some of the proinflammatory actions of TNF include maturation of APCs, costim-
ulation of T cells, induction of the germinal center (GC), and stimulation of immunoglobulin
synthesis [68], it is possible that inhibition of TNF may impair vaccine responses.

The antibody response to PPV-23 appears to be moderately affected by TNF inhibitor
treatment, although the data are affected by the choice of comparator and by concomitant
medications. Studies in patients with rheumatological IMIDs have shown that, compared
with patients taking placebo or NSAIDs, those receiving TNF inhibitors generate a less
robust antibody response to PPV-23 [68,71,74,75,78]. However, other studies showed no
difference in antibody titer or the proportion of patients achieving protective antibody
levels after PPV-23 between RA patients receiving TNF inhibitors and those receiving
placebo [69,72]. Studies comparing the vaccine response in patients receiving TNF in-
hibitors and those receiving MTX have generally shown no significant difference between
the two groups of patients [69,70,73,122], but MTX itself blunts the humoral response to
PPV-23 [123,124]. The effect of TNF inhibitors and MTX administered together appears
to be additive, since the most marked effect of TNF inhibitors on the antibody response
to PPV-23 has been shown in patients taking concomitant MTX [69,72]. Most of these
studies were undertaken in patients with rheumatological IMIDs, but studies in patients
with IBD also showed lower antibody titers after PPV-23 in patients receiving TNF in-
hibitors ± immunosuppressive therapy (azathioprine) than in those receiving mesalamine
or immunosuppressive monotherapy [74–77].

Impaired humoral responses to PCV vaccination were also seen in patients with RA,
spondyloarthropathies, or IBD taking TNF inhibitors [39,74,78], particularly in the presence
of concomitant MTX [39].

Lower rates of seroconversion to the hepatitis B vaccine have been reported during
TNF inhibitor therapy in patients with spondyloarthropathies [68] or IBD [79,80], although
another study found no difference in seroconversion rates between IBD patients receiving
TNF inhibitors, or immunomodulators, or their combination [81]. The seroprotection
rate after hepatitis B vaccine tends to be diminished in patients with IBD [81], but this is
especially marked among IBD patients receiving TNF inhibitors [80]. Some authors suggest
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that IBD patients receiving TNF inhibitors should receive two full courses of hepatitis B
vaccine, instead of one, to achieve protection [80]. Similarly, many patients receiving TNF
inhibitors and/or MTX do not achieve seroprotection after a single dose of hepatitis A virus
(HAV) vaccine [82].

A diminished antibody response to seasonal influenza vaccine in patients receiving
TNF inhibitors has been reported in several studies [83–85,89,90,93,94]; however, some
other studies have reported a normal humoral response [86–88]. The timing of the antibody
assessment in these studies may explain this discrepancy, for example, a longitudinal
study in IBD patients showed a preserved antibody response at 3 weeks but a lower
antibody titer at 6 months and 2 years in TNF inhibitor recipients vs. controls [91]. As
with the PPV-23 vaccine, the response to influenza vaccination may be further blunted
in patients who take concomitant immunosuppressants in combination with the TNF
inhibitor [89,90,92,125,126].

Live attenuated vaccines are contraindicated in patients under anti-TNF therapy;
however, some small studies have reported some cases of exposure. The humoral and
cellular response to measles-mumps-rubella (MMR) was preserved in 5 children with
JIA on low-dose MTX in combination with etanercept [95]. Moreover, in a Brazilian case
series of 17 RA patients under infliximab therapy, yellow fever revaccination resulted in
an adequate humoral response [96]. Importantly, these two studies did not report adverse
effects or secondary severe infections after vaccination with live attenuated vaccines. Sim-
ilarly, a study evaluating the safety of the live attenuated herpes zoster (HZ) vaccine in
551 IMID patients under anti-TNF therapy did not find cases of varicella or HZ 42 days
after vaccination [127]. Despite these encouraging results, larger studies are needed to
evaluate the risks with this type of vaccines.

Despite a somewhat attenuated antibody response to vaccines in patients receiving
TNF inhibitors, a high proportion of patients nevertheless achieve protective antibody
levels, supporting current recommendations to vaccinate these patients.

5.4.2. Anti-IL-1

IL-1 is a family of 11 cytokines involved in the innate immune response, with both
pro- and anti-inflammatory functions. IL-1β and IL-1α, specifically, have pro-inflammatory
properties and are involved in the development of rheumatic diseases [128].

Anakinra, a recombinant IL-1 receptor antagonist, blocks the interaction of IL-1β
and IL-1α with its receptor and is indicated for RA and cryopyrin-associated periodic
syndromes (CAPS). Canakinumab, an anti-IL-1β mAb, is approved for periodic fever
syndromes (such as CAPS) and systemic JIA.

The RIER study included only one patient taking anakinra in their analyses of the
response to influenza or hepatitis B vaccines; therefore, no meaningful assessment of the
effect of anakinra on vaccine response was possible [58,129].

To date, vaccine responses in patients under canakinumab therapy have been studied
in children with CAPS. In an open-label phase 3 study, canakinumab had no effect on
antibody titers after immunization with non-live childhood vaccines [130].

5.4.3. Anti-IL-17

IL-17 cytokines are produced by type 17 cells, which include Th17 cells, subsets of
γδ T cells, invariant NK T cells, ‘natural’ Th17 cells, type 3 innate lymphoid cells (ILCs),
and mucosal-associated invariant T (MAIT) cells [131]. IL-17 plays a role in protective
immunity against extracellular bacterial and fungal infections [132]. IL-17-producing cells
accumulate at mucosal surfaces where they are responsible for the maintenance of barrier
integrity, production of antimicrobial peptides, and recruitment of neutrophils. Increased
numbers of IL-17-producing cells have been found in the skin of patients with PsO and the
joints of patients with RA [133,134], and increased levels of type 3 ILCs have been found in
the synovia and blood of patients with PsA, which correlate with disease activity [135]. In
CD, increased expression of IL-17A has been reported in the intestinal mucosa [136]. In
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spite of that, IL-17 inhibitors have proven to be ineffective in patients with IBD, and cases
of de novo IBD or IBD exacerbation have been reported [137].

IL-17 inhibitors include the anti-IL-17A mAbs ixekizumab and secukinumab and the
IL-17RA mAb brodalumab [113]. Secukinumab and ixekizumab are approved for plaque
PsO, PsA, and axial spondyloarthropathies, whereas brodalumab is only approved for PsO.

The impact of IL-17 inhibition on vaccine responses has only been assessed in three
small studies (Table 1). In an open-label randomized study, healthy subjects received a
single 150 mg dose (approved dose 300 mg) of secukinumab or no treatment 2 weeks
prior to vaccination with influenza and group C meningococcal vaccine. Seroconversion
rates 4 weeks later were similar between the two groups [97]. Similarly, a separate study
showed that the humoral response to the seasonal influenza vaccine in patients with PsA
or ankylosing spondylitis receiving secukinumab was similar to the response observed in
healthy controls [98]. In a randomized study in healthy adults, administration of two doses
of ixekizumab (2 weeks before and on the day of tetanus and PPV-23 vaccination) did not
significantly reduce the seroprotection rates when compared with individuals not receiving
ixekizumab [99].

5.4.4. Anti-IL-6

IL-6 is a master cytokine that regulates innate and adaptive immune responses. IL-
6 is secreted during infection or inflammation by many cell types, such as endothelial
and synovial cells in joints [138,139]. Dysregulation of IL-6 signaling can cause persistent
synovial inflammation and damage to the articular cartilage and underlying bone and
eventually leads to the development of inflammatory arthritis [140]. Currently available
IL-6 receptor inhibitors include tocilizumab and sarilumab, both of which are approved for
RA; tocilizumab is also approved for systemic JIA.

Vaccine efficacy in patients receiving IL-6 inhibitors might be affected for several
reasons: IL-6 plays an important role in naïve T cell differentiation, it is a growth factor for
B cells, and promotes the development of Tfh cells [139]. However, studies investigating the
impact of tocilizumab in response to PPV-23 (Table 1) suggest that tocilizumab did not sig-
nificantly reduce the antibody response compared with patients receiving other treatments
(MTX, anti-TNF, or conventional DMARDs) [100–102], Similarly, the humoral response
to the conjugate pneumococcal vaccine was similar in RA patients receiving tocilizumab
and those not receiving biologic therapy [54]. Tocilizumab does not appear to affect the
antibody response to influenza vaccination, including in children with JIA [64,102–104],
but concomitant treatment with MTX does abrogate the antibody response in tocilizumab
recipients [102,103]. Lastly, in a single randomized study, tocilizumab had no effect on the
antibody response to tetanus toxoid vaccine [100].

6. Vaccine Response in Patients Treated with IL12/23 and IL-23 Inhibitors

IL-12 and IL-23 are produced by innate immune cells, mainly macrophages and
dendritic cells, and are an important link between innate and adaptive immunity. They
are structurally similar but exert different functions in immunity against pathogens, as
well as in the pathogenesis of disease. IL-12 and IL-23 are heterodimeric cytokines; IL-12 is
composed of the p40 and p35 subunits, while IL-23 is formed by p40 and p19. In addition
to sharing the p40 subunit, IL-12 and IL-23 also share receptor chains. Their corresponding
receptors are heterodimeric complexes, the receptor for IL-12 consists of IL-12Rβ1 and of
IL-12Rβ2, whereas the receptor for IL-23 is made up of IL-12Rβ1 and IL-23R (Figure 1) [141].

In 1989, IL-12 was identified as a potent growth factor and activator of NK cell func-
tions, including interferon-γ (IFN-γ) production and cytotoxic activity [142]. Subsequently,
IL-12 was found to drive the differentiation of naïve CD4+ T cells into Th1 cells, which
orchestrate adaptive immune responses [143]. Binding of IL-12 to its receptor leads to IFN-γ
production, which plays a critical role in host defense against intracellular pathogens [144].
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For many years, IL-12-mediated Th1 responses were thought to be responsible for
several autoimmune and autoinflammatory conditions. This notion was based on ex-
perimental animal models using mice deficient in p40 or IL-12Rβ1 and suggested that
IL-12 could be an interesting therapeutic target. The discovery of IL-23 in 2000 [145] led
to a paradigm-changing study by Cua and colleagues in 2003, in which the authors de-
scribed that IL-23 and not IL-12 (as previously thought) was the culprit for the initiation of
autoinflammation in a murine model of experimental autoimmune encephalomyelitis [146].

IL-23 stimulates type-17 cells to produce IL-17A, IL-17F, and IL-22 and is also responsi-
ble for the maintenance and expansion of Th17 cells, which have been implicated in chronic
inflammation and are thought to be the drivers of several IMIDs. In fact, single nucleotide
polymorphisms in IL-23R have been linked with the development of several IMIDs [147],
highlighting the role of the IL-23/Th17 axis in the pathogenesis of IMIDs.

Several mAbs have been developed to target IL-12 and/or IL-23. Ustekinumab, a
human mAb against the p40 subunit targets both IL-12 and IL-23, is approved for the
treatment of PsO, PsA, CD, and UC. Appreciation of the predominant role of the IL-
23/Th17 axis in the pathogenesis of IMIDs led to the development of antibodies against the
p19 subunit, which exclusively target IL-23. Guselkumab, tildrakizumab, and risankizumab
are all approved for the treatment of PsO; guselkumab and risankizumab are also approved
for PsA.

More recently, IL-12 and IL-23 have also been implicated in the differentiation of
CD4+ Tfh cells, which provide B-cell help in the GC to generate high-affinity antibodies
and to promote the differentiation of B cells into memory B cells or long-lived plasma
cells [148,149]. Owing to their functions, Tfh cells are key to immune responses to pathogens
and vaccines and may be potentially impacted by IL-12/23 inhibition.

To date, there are limited clinical data on the effects of IL-12/23 inhibition on vaccine
responses, but available data suggest that a sufficient vaccine response is likely in patients
taking ustekinumab and, by extension, IL-23-specific inhibitors. In addition, data from
individuals with complete genetic deficiency of these cytokines or their receptors may shed
some light on the impact of IL-12/23 inhibition on responses to pathogens and vaccines.

Monogenic inborn errors leading to complete deficiency of IL-12 and/or IL-23 or their
receptors are often characterized by an increased susceptibility to infections with poorly
pathogenic mycobacteria and salmonella due to impaired IFN-γ production in otherwise
healthy individuals. However, penetrance is not complete, and the phenotype differs
between individuals [150–152].

Due to the role of IL-12/23 in Tfh cell commitment, it was hypothesized that its
deficiency would impact antibody responses. Subjects lacking IL-12Rβ1 (abolished IL-
12 and IL-23 signaling) are still able to generate Tfh cells [148] and are not prone to B cell-
deficient associated infections [153]. Moreover, they show normal serum specific IgG titers
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for tetanus toxoid, rubella, Epstein-Barr virus, cytomegalovirus, and varicella virus [148]
and preserved humoral and cellular immune responses to influenza vaccination [150].
These antibodies may be generated independently of the GC response, and therefore would
be expected to show low avidity for their antigen. In fact, the avidities of specific IgG
against the tetanus toxoid were lower in IL-12Rβ1-deficient subjects, but the avidities of
rubella virus-specific IgG were comparable to healthy subjects [148].

During the early development of ustekinumab, humoral response to immunization
with KLH was assessed in cynomolgus monkeys during the preclinical toxicology study.
Monkeys were treated with multiple doses of ustekinumab or placebo for 26 weeks, and
anti-KLH antibody titers were similar in both groups, even when using ustekinumab levels
exponentially higher than those approved in humans [106].

Responses to vaccination were also assessed during phase 1 studies in patients with
PsO and MS who had received a single dose of ustekinumab. Humoral recall response to the
PPV-23 and tetanus toxoid vaccines were similar between patients receiving ustekinumab
or placebo (Table 1) [106].

Two further studies evaluated the impact of ongoing use of ustekinumab on vaccine
responses (Table 1) [105,107]. The response to tetanus toxoid and PPV-23 vaccines was
assessed in a subset of PsO patients who had received ustekinumab for at least 3 years
in the phase 3 PHOENIX 2 clinical trial (n = 60) and a control group of PsO patients
not receiving systemic therapy (n = 56) [105]. Humoral and cellular immune responses
were comparable between ustekinumab-treated and control groups. Four weeks after
vaccination, seroconversion rates to the tetanus and PPV-23 vaccines were similar in the
control group and in those receiving ustekinumab. Importantly, this study investigated
the impact on vaccine responses of long-term treatment with ustekinumab in patients
with PsO. Moreover, these data show that inhibition of IL-12/23 with ustekinumab does
not compromise immune response to T-dependent (tetanus) or T-independent (PPV-23)
vaccines in patients with PsO during long-term use of ustekinumab [105].

Similarly, a recent small prospective study evaluated the humoral and cellular immune
response to seasonal influenza vaccine in patients with CD treated with ustekinumab and
in healthy controls. Three months after vaccination, functional antibody responses were
measured using hemagglutinin inhibition assays, and based on these results, seroprotection
and seroconversion rates to the three influenza strains in the vaccine were calculated.
Seroprotection and seroconversion rates were high and comparable between ustekinumab-
treated patients and healthy controls. Importantly, this study also showed that ustekinumab
did not impair cellular immune responses, as assessed by the proliferation of influenza-
specific CD3+, CD4+, and CD8+ T cells [107]. The lack of effect of ustekinumab on cellular
immune responses is encouraging and important since this measure of vaccine response is
not always included in assessments of vaccine immunogenicity.

In conclusion, pharmacologic inhibition of IL-12/23 is probably milder than complete
congenital immunodeficiency. In fact, the increased susceptibility to infections with poorly
pathogenic mycobacteria and salmonella observed in immunodeficient patients has not
been reported in patients treated with ustekinumab. Regarding impaired Tfh functions,
data on congenital immunodeficient patients show a mild effect, whereas these functions
seem to be preserved during treatment with IL-12/23 inhibitors [148,154,155].

Data are not yet available on the effects of IL-23 inhibition on vaccine responses;
however, since inhibition of both IL-12 and IL-23 with ustekinumab does not seem to affect
the immune response induced by several vaccines, it is likely that IL-23-specific inhibition
will similarly show minimal impact on protective immunity after vaccination.

7. SARS-CoV-2 Vaccination in IMID Patients

Given the scale of the global COVID-19 pandemic, it is crucial that vaccination provides
effective protection against SARS-CoV-2 infection. The current vaccines, which were rapidly
developed and, in some cases, incorporate novel technologies, have proven to be effective
in healthy individuals. However, patients receiving immunosuppressive therapies were
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excluded from the phase 3 trials, raising questions about the effectiveness and safety of the
vaccines in these patients. All available SARS-CoV-2 vaccines, as well as almost all in the
development pipeline, are non-live vaccines that employ non-replicating viral vectors or
mRNA [156], so theoretically they are not contraindicated in patients with IMIDs receiving
systemic immunosuppressive or immunomodulatory therapies.

At the time of writing this review, several reports are being published on the immuno-
genicity and safety of SARS-CoV-2 vaccines in IMID patients and the impact of biologic
therapy (summarized in Table 3).

Table 3. Immunogenicity and safety of SARS-CoV-2 vaccines in IMIDs.

SARS-CoV-2 Vaccine Patient Population Biologic Therapy Effect on
Immunogenicity Safety Reference

mRNA-1273 and
BNT162b2 CID (n = 133)

29% receiving anti-
TNF, 9% anti-integrin,

8% anti-CD20, 8%
anti-IL-12/23 or

anti-IL-23, 2%
anti-BAFF, 2%

CTLA-4, and 1% each
anti-IL-6 and anti-IL-1

Corticosteroids and B
cell-depleting

therapies strongly
impaired humoral
response. JAKi and
antimetabolites (e.g.,

MTX) blunted
humoral responses.

Anti-
TNF, UST, and VDZ
had minimal impact

Not reported Deepak et al. 2021
[157]

BNT162b2 IMID (n = 84)

13% receiving
anti-TNF, 8%
anti-IL-17, 7%
anti-IL-23, 4%

anti-IL-6, 1% anti-IL-1,
1% anti-integrin

Impaired humoral
response compared

with healthy controls
independent of

treatment

AE similar to general
population Simon et al. 2021 [158]

mRNA-1273 and
BNT162b2 CID (n = 26)

50% receiving
anti-TNF, 12%

anti-IL-17, and 4%
each anti-IL-6,

anti-IL-12/23, and
anti-integrin

Slightly reduced
humoral response

AE comparable to
general population
and no flares of CID

Geisen et al. 2021 [159]

BNT162b2 IRD (n = 264)

24% receiving
anti-TNF, 18%

anti-CD20, 15%
anti-interleukins, and

3% CTLA-4

Significant humoral
response in majority
of patients, except

those receiving RTX

Minor adverse effects
and no flares of IRD

Braun-Moscovici et al.
2021 [160]

mRNA-1273 and
BNT162b2 RA (n = 53) 47% receiving biologic

therapy

Significantly lower
antibody response in
patients with RA vs.
healthy individuals.

Lowest rate of
response in patients

receiving JAKi

Not reported Rubbert-Roth et al.
2021 [161]

BNT162b2
RA (n = 83)
PsA (n = 29)
SpA (n = 28)

44% receiving
anti-TNF, 21%
CTLA-4, 14%

anti-IL-12/23, and
10% anti-IL-6

Impaired
immunogenicity after
one dose in patients
treated with MTX,

glucocorticoids, and
abatacept. No effect of

cytokine inhibitors

Not reported Bugatti et al. 2021
[162]

BNT162b2 and
ChAdOx1-S

IMID (n = 120), mostly
PsO

83% receiving biologic
therapy

Impaired
immunogenicity after
one dose in patients
treated with MTX

compared to biologics

Not reported Al-Janabi et al. 2021
[163]

BNT162b2 PsA (n = 40) 100% receiving
anti-TNF

Anti-TNF numerically
(not significantly)

decreased humoral
response vs. healthy

controls; MTX,
glucocorticoids, and
sulfasalazine had no

impact

AE similar to general
population; no

changes in clinical
disease activity

Venerito et al. 2022
[164]
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Table 3. Cont.

SARS-CoV-2 Vaccine Patient Population Biologic Therapy Effect on
Immunogenicity Safety Reference

BNT162b2

IMID (n = 51) mostly
PsO and/or PsA

(n = 24)
RA (n = 22)

55% receiving biologic
therapy

Impaired humoral and
cellular responses in

patients receiving
MTX vs. IMID

patients on other
DMARDS or healthy

controls

Not reported Haberman et al. 2021
[165]

BNT162b2 PsO (n = 48)

44% receiving
anti-TNF, 27%
anti-IL-23, 17%

anti-IL-12/23, 13%
anti-IL-17

Reduced humoral
response in patients

receiving biologics in
combotherapy vs.

monotherapy

No increase in AEs
and no flares

Cristaudo et al. 2021
[166]

BNT162b2 PsO (n = 84) 80% receiving biologic
therapy

Impaired humoral
response with MTX
after first dose but

preserved with
biologics; after 2 doses,
responses comparable

to controls

Not reported Mahil et al. 2021, 2022
[167,168]

mRNA-1273 and
BNT162b2 IBD (n = 48)

33% receiving
anti-TNF, 42%

anti-integrin, 8%
anti-IL-12/23, and 2%

anti-IL-23

100% seropositivity
after 2 doses but

reduced serologic
response in patients
on anti-TNF or VDZ

Not reported Wong et al. 2021 [169]

mRNA-1273,
BNT162b2 and

ChAdOx1-S

IBD (n = 72)
Healthy controls

(n = 72)

37% receiving
anti-TNF, 26%

anti-integrin, and 19%
anti-IL-12/23

Slightly decreased
antibody titers in IBD
patients compared to

healthy controls

Well tolerated with
only mild side effects

Classen et al. 2021
[170]

mRNA-1273 and
BNT162b2 IBD (n = 317)

42% receiving
anti-TNF, 15%

anti-integrin, and 12%
anti-IL-12/23

95% had detectable
antibodies Not reported Kappelman et al.

2021a [171]

mRNA-1273,
BNT162b2 and
Ad26.COV2.S

IBD (n = 1909)
47% receiving
anti-TNF, 15%

anti-IL-12/23, and
12% anti-integrin

96% achieved positive
antibody response;
age, corticosteroids,

and anti-TNF + IMM
associated with
reduced odds of

antibody response

Not reported Kappelman et al.
2021b [172]

mRNA-1273 and
BNT162b2 IBD (n = 176)

27% receiving
anti-TNF, 27%

anti-IL-12/23, and
11% anti-integrin

Significantly lower
antibody titers and

more rapid decay with
anti-TNF ± IMM vs.

UST, VDZ, or no
therapy

Not reported Charilaou et al. 2021
[173]

mRNA-1273 and
BNT162b2 IBD (n = 75)

51% receiving
anti-TNF, 23%

anti-IL-12/23, and 8%
anti-integrin

Detectable antibodies
6 months after 2-dose
vaccination; patients
receiving anti-TNF
had lower antibody

titers

Not reported Frey et al. 2022 [174]

BNT162b2 and
ChAdOx1-S IBD (n = 126)

76% receiving
anti-TNF, 12%

anti-IL-12/23, and
12% anti-integrin

Majority of patients
receiving anti-TNF
and VDZ and all on
UST seroconverted;

neutralizing antibody
concentrations were
higher with UST and

VDZ

Not reported Shehab et al. 2021
[175]

BNT162b2 and
ChAdOx1-S IBD (n = 2977)

69% receiving
anti-TNF and 31%

anti-integrin

Five-fold reduction in
humoral response
with IFX vs. VDZ;

more rapid decay in
antibody levels in

IFX-treated patients

Not reported
Kennedy et al. 2021

[176]
Lin et al. 2021 [177]

BNT162b2 and
ChAdOx1-S

IBD (n = 28)
Healthy controls

(n = 27)

32% receiving
anti-TNF, 29%

anti-IL-12/23, 11%
anti-integrin

Comparable T-cell
responses between
IBD patients and
healthy controls

Not reported Reuken et al. 2021
[178]
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Table 3. Cont.

SARS-CoV-2 Vaccine Patient Population Biologic Therapy Effect on
Immunogenicity Safety Reference

mRNA-1273,
BNT162b2 and
Ad26.COV2.S

IBD (n = 303)
35% receiving
anti-TNF, 43%

anti-IL-12/23 or
anti-integrin

Preserved T-cell clonal
response with UST

and VDZ and
augmented by

anti-TNF

Not reported Li et al. 2021 [179]

BNT162b2
IBD (n = 12,231) and

matched patients
(n = 36,254)

11% receiving
anti-TNF, 4%

anti-integrin, and 2%
anti-IL-12/23

Similar risk of
infection between
controls and IBD

patients, with no effect
of immune-modifying

therapies

Not reported Ben-Tov et al. 2021
[180]

mRNA-1273 and
BNT162b2 IBD (n = 14,697) Not reported

Two-dose vaccination
reduced the hazard of
infection by 69%, with
an estimated efficacy

of 80.4%

Not reported Khan et al. 2021 [181]

mRNA-1273 and
BNT162b2 PsO (n = 50) 100% receiving

biologic therapy Not reported AE similar to general
population

Musumeci et al. 2021
[182]

mRNA-1273,
BNT162b2 and
Ad26.COV2.S

IBD (n = 3316)
46% receiving
anti-TNF, 15%

anti-IL-12/23, and
12% anti-integrin

Not reported

Low rates (2%) of IBD
flare following

vaccination and
relatively few

vaccine-related AEs

Weaver et al. 2021
[183]

mRNA-1273 and
BNT162b2 IBD (n = 246)

37% receiving
anti-TNF, 17%

anti-IL-12/23, and
13% anti-integrin

Not reported AE similar to general
population

Botwin et al. 2021
[184]

mRNA-1273 and
BNT162b2 IBD (n = 524) 89% receiving biologic

therapy Not reported

Post-vaccination
symptoms after third

dose are generally
milder and less

frequent than after
second dose

Li et al. 2021 [185]

AE, adverse event; CID, chronic inflammatory diseases; CTLA-4, cytotoxic T-lymphocyte-associated protein
4 fusion protein; IBD, inflammatory bowel disease; IFX, infliximab; IL, interleukin; IMID, immune-mediated
inflammatory diseases; IMM, immunomodulator; IRD, inflammatory rheumatic diseases; JAKi, Janus kinase
inhibitors; MTX, methotrexate; PsA, psoriatic arthritis; PsO, psoriasis; RA, rheumatoid arthritis; RTX, rituximab;
SpA, spondyloarthritis; TNF, tumor necrosis factor; UST, ustekinumab; VDZ, vedolizumab. mRNA-1273 (Moderna,
Cambridge, US), BNT162b2 (Pfizer-BioNTech, NYC, US), Ad26.COV2.S (Janssen, Beerse, Belgium), and ChAdOx1-
S (AstraZeneca, Cambridge, UK).

7.1. Humoral Responses to SARS-CoV-2 in IMIDs

The COVaRiPAD study in the US is a prospective, observational study to assess the
immunogenicity of mRNA vaccines in 133 patients with chronic inflammatory diseases
(CID); the most common conditions were IBD and RA. One to two weeks after the second
dose of vaccine, CID patients showed a reduced humoral response compared with healthy
controls. Regarding immunosuppressive medications, corticosteroids and B cell-depleting
therapies substantially affected vaccine immunogenicity, with 36- and 10-fold reductions
in humoral response, respectively. Janus kinase (JAK) inhibitors and antimetabolites (e.g.,
MTX) were also associated with attenuated antibody and neutralization titers, whereas
TNF, IL-12/23, and integrin inhibitors had minimal impact on humoral response [157].

Similarly, two German studies reported that patients with CID or IMIDs may develop
a less robust humoral response compared with healthy individuals; however, most pa-
tients will develop a sufficient response to be considered protected [158,159]. Simon and
colleagues showed lower titers of anti-SARS-CoV-2 IgG antibodies in 84 IMID patients
compared with healthy controls after vaccination with the BNT162b2 (Pfizer-BioNTech)
mRNA vaccine. They found that the impaired immune response was not associated with
any individual immunomodulatory treatment but rather the disease itself [158]. Similarly,
Geisen and colleagues found a lower anti-SARS-CoV-2 antibody titer 7 days after vacci-
nation with mRNA vaccines in a small cohort of CID patients (n = 26) than in healthy
controls, but all the vaccinated individuals developed a protective level of neutralizing
antibodies [159].



Vaccines 2022, 10, 297 16 of 28

Data from Israeli patients with inflammatory rheumatic diseases showed a significant
humoral response (antibody concentration >50 U/mL) in most patients (86%) following two
doses of BNT162b2 (Pfizer-BioNTech) mRNA vaccine, although those receiving rituximab
showed significantly impaired humoral response, particularly in older patients [160].

A Swiss study evaluated the humoral response to mRNA vaccines in 53 RA patients
receiving DMARDs and found that anti-SARS-CoV-2 titers were significantly lower in
RA patients compared with healthy volunteers. In fact, after one dose, only 10% of RA
patients versus 90% of controls developed antibody levels associated with protection
(>15 U/mL). After the second dose, 88% of RA patients and 100% of controls achieved
protective antibody levels. The lowest response was found in those patients receiving JAK
inhibitors, with only 67% reaching protective levels [161].

Researchers from the University Hospital of Pavia, Italy, analyzed the immunogenic-
ity of a single dose of the BNT162b2 (Pfizer-BioNTech) mRNA vaccine in patients with
rheumatologic IMIDs. Among patients not receiving glucocorticoids or MTX, the rate
of response (antibody concentration > 15 U/mL) was 85.4%, similar to that reported in
registration trials, whereas patients receiving both glucocorticoids and MTX showed a
decreased seroconversion rate (33%). In contrast, anti-cytokine therapy showed no impact
on immunogenicity [162]. Similarly, two monocentric studies showed reduced vaccine
immunogenicity in IMID patients treated with MTX compared with biologics or non-MTX
oral medications [163]. In contrast, Venerito and colleagues found preserved humoral re-
sponses to BNT162b2 (Pfizer-BioNTech) mRNA vaccine in PsA patients irrespective of the
immunomodifying therapy (TNF inhibitors, MTX, glucocorticoids, or sulfasalazine) [164].

In PsO patients who received two doses of the BNT162b2 (Pfizer-BioNTech) mRNA
vaccine, humoral response (antibody concentration > 15 U/mL) was comparable to that of
healthy controls. However, antibody titers were reduced in patients treated with infliximab
and MTX compared with those on biologic monotherapy [166]. In another longitudinal
PsO cohort, MTX was also found to impair humoral immune response after one dose of
the BNT162b2 (Pfizer-BioNTech) mRNA vaccine, while the response was preserved in
patients receiving biologic therapy [167]. However, after two doses of the vaccine, humoral
response in patients receiving MTX was comparable to that of healthy controls [168].

A wider breadth of evidence regarding response to SARS-CoV-2 vaccination in IMID
patients comes from the IBD field. The ICARUS-IBD study evaluated the serologic response
to mRNA vaccines in 48 IBD patients. All IBD patients were seropositive after completing
two-dose vaccination and anti-S IgG titers were comparable to those of healthy volunteers.
A multiple linear regression analysis showed no association between humoral response and
timing of the infusion. They also found reduced immunogenicity in patients on anti-TNF
therapy or vedolizumab, although the small sample size and clinical characteristics of the
patients may have influenced the result [169]. In contrast, a single-center German cohort
study found slightly reduced antibody levels in 72 IBD patients compared with matching
healthy controls after two-dose vaccination; however, levels were still considered to be
protective. Regarding immunomodulatory therapies, there was no impact on humoral
response, but higher antibody titers were observed in patients with a longer interval
between the last dose of medication and vaccination [170].

Larger registry studies with improved power to analyze the impact of different
immune-modifying drugs are being published. The PREVENT-COVID study is a US
prospective, observational cohort study of IBD patients. In an initial report, they noted 95%
seropositivity in 317 IBD patients after two doses of mRNA COVID-19 vaccine [171]. In a
more recent study of 1909 IBD patients, a positive antibody response within 90 days of the
last vaccine dose was observed in 96% of patients receiving mRNA vaccination and in 81%
of patients receiving adenovirus vector vaccination. Multivariate analysis found that age,
corticosteroids, and anti-TNF in combination with immunomodulators were associated
with lack of antibody response. In contrast, patients on vedolizumab or ustekinumab
showed a more robust humoral response [172]. Similarly, additional studies have also
reported reduced humoral responses in IBD patients treated with TNF inhibitors versus
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those treated with ustekinumab or vedolizumab [173–175], with one study noting more
rapid decay in antibody titers in patients receiving TNF inhibitor therapy [173].

The CLARITY IBD study prospectively examined the impact of TNF inhibitor (inflix-
imab) and vedolizumab on SARS-CoV-2 infection and immunity in more than 3000 patients
with IBD in the UK. Humoral responses were impaired in infliximab-treated patients fol-
lowing SARS-CoV-2 infection and were further attenuated in those receiving concomitant
immunomodulators [186]. After a single dose of either the BNT162b2 (Pfizer-BioNTech)
or ChAdOx1-S (AstraZeneca) vaccine, rates of seroconversion (antibody concentrations
> 15 U/mL) were lower in patients receiving infliximab than in those receiving vedolizumab,
irrespective of the vaccine administered, with only one-third of infliximab-treated patients
achieving protective antibody levels [176]. In a more recent report from the CLARITY IBD
study analyzing humoral and T-cell responses after a second dose of SARS-CoV-2 vaccine,
antibody concentrations were reduced five-fold in infliximab recipients compared with
vedolizumab recipients. However, most patients seroconverted after the second dose,
with only 6.1 and 1.3% not achieving seroconversion with infliximab and vedolizumab,
respectively (p < 0.0001). The antibody response was less durable in infliximab-treated
patients, with antibody concentrations decaying towards the seroconversion threshold
14–18 weeks after the second dose [177]. Evidence of long-term durability of humoral re-
sponse is emerging, with several studies reporting reduced durability of humoral response
in patients treated with anti-TNF [159,173,174,177].

7.2. Cellular Responses to SARS-CoV-2 in IMIDs

Apart from humoral response, cellular immune response is also crucial to generate
immune protection against COVID-19. In the CLARITY-IBD study, in which cellular
immune response was analyzed in 225 infliximab- and 76 vedolizumab-treated patients, T-
cell response was comparable among patients treated with infliximab or vedolizumab, with
20% failing to mount a detectable T-cell response [177]. A smaller study of 28 IBD patients
found comparable T-cell response among IBD patients (all receiving immunosuppressive
medication) and age- and sex-matched healthy controls [178]. Interestingly, preliminary
data from a study analyzing the T-cell clonal response in 303 IBD patients found that
antibody and T-cell clonal responses were only modestly correlated, with low T-cell clonal
response observed in patients with high antibody levels. The T-cell clonal response was
preserved with ustekinumab and vedolizumab and paradoxically augmented by TNF
inhibitors [179]. In PsO patients, a lower proportion of patients receiving MTX or biologic
therapy showed detectable T-cell response compared with the control group (62 and 71%
vs. 100%, respectively) [168]. Moreover, in 51 IMID patients, activated CD8+ T cells were
not induced after vaccination in MTX recipients unlike healthy controls or patients on other
therapies [165]. In the COVADIS study, which analyzed T-cell response in patients with
systemic inflammatory diseases, MTX dramatically impaired T-cell response after two-dose
BNT162b2 mRNA vaccination and remained impaired even after the third dose. In contrast,
patients on rituximab, despite having poor humoral response, showed T-cell response that
were similar to that of controls and further increased after a third dose [187].

7.3. Revaccination and New Variants

Indeed, revaccination has been shown to be safe and effective in patients with IMIDs.
In a recent study evaluating the effectiveness of SARS-CoV-2 revaccination in IMID patients
who failed to respond (seroconversion) to two-dose mRNA vaccination, 80% of patients
not previously exposed to rituximab achieved seroconversion after revaccination, whereas
only 20% of those treated with B-cell depleting agents seroconverted [188].

Since the start of the pandemic, new SARS-CoV-2 variants have arisen, and some
studies have analyzed the effectiveness of vaccination against these new variants in IMID
patients. In PsO patients, after two-dose BNT162b2 mRNA vaccination, neutralizing
antibody titers against wild-type SARS-CoV-2, Alpha (B.1.1.7), and Delta (B.1.617.2) variants
were comparable in patients receiving MTX, biologics, and in healthy controls [168]. In
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patients with systemic inflammatory diseases, the percentage of patients with neutralizing
antibodies against the Delta variant was reduced compared with the Alpha variant for all
therapies analyzed [187].

7.4. Vaccine Protection against SARS-CoV-2 Infection in IMIDs

The above-mentioned studies evaluated the ability to generate a protective humoral
or cellular immune response after SARS-CoV-2 vaccination. However, the most clinically
relevant question relates to the ability of these vaccines to prevent infection in patients
with IMIDs. An Israeli database study analyzed the real-world effectiveness of two doses
of BNT162b2 (Pfizer-BioNTech) vaccine in 12,231 patients with IBD and 36,254 matched
patients. They found high vaccine effectiveness with a very low infection rate (0.1%)
independent of immune-modifying treatment [180]. Another study evaluating the efficacy
of mRNA vaccines against infection in a Veterans Affairs cohort of 14,697 IBD patients in
the US (20% were taking TNF inhibitors) found that full vaccination status reduced the
risk of infection by 69%, showing that the effectiveness of a two-dose course of an mRNA
vaccine was 80.4% in this cohort, which is lower to the efficacy reported in the registration
trials [181].

7.5. Safety of SARS-CoV-2 Vaccines in IMIDs

SARS-CoV-2 vaccination appears to be safe in patients with IMIDs, with adverse
effects comparable to those observed in healthy individuals and no flares of the underlying
condition [158,159]. Safety was also studied in PsO patients following mRNA vaccination,
with none reporting any adverse effects or a psoriatic flare [182]. Similarly, mRNA vaccines
were also safe and well tolerated in a small cohort of PsA patients [164]. In a cohort of
3316 patients with IBD, the PREVENT-COVID registry reported low rates of vaccine-related
adverse effects, with only 2% reporting IBD exacerbations following vaccination [183]. In
addition, preliminary data from the Corale-IBD registry suggest that the risk of vaccine-
related adverse events is not increased after vaccination with mRNA vaccines [184] and
that post-vaccination symptoms after the third dose were similar, milder, and less frequent
than those after a second dose [185].

7.6. Guidelines on SARS-CoV-2 Vaccination in IMIDs

Guidelines on SARS-CoV-2 vaccination in patients with IMIDs are beginning to emerge
from major international organizations, including the US National Psoriasis Foundation
(NPF) [22], American Academy of Dermatology [189], American College of Rheumatology
(ACR) [115], European Academy of Dermatology and Venereology [190], British Society of
Gastroenterology [191], and the International Organization for the Study of IBD [25]. All
recommend SARS-CoV-2 vaccination for patients with IMIDs, including those on biologic
therapy [22,25,115,189–192]. Most of these guidelines were released prior to any data being
available and recommend continuing biologic therapy in patients receiving SARS-CoV-
2 vaccines. However, the ACR guidelines recommend withholding MTX and JAK inhibitors
for 1 week after each vaccine dose and withholding abatacept for 1 week before and 1 week
after the first vaccine dose. They also recommend delaying rituximab for 2–4 weeks after
the second vaccine dose if the patient’s disease activity allows [115]. The lower rate of
seroconversion after one dose highlights the importance of the timing of the second dose
in immunocompromised patients. Moreover, the rapid decline in antibody levels after
the second dose, the emergence of new variants such as Omicron, and preliminary data
showing the benefits of a third dose, underline the importance of a third primary dose
for individuals who are immunocompromised (i.e., those with immunocompromising
conditions or receiving immunosuppressive therapy, which includes many IMID patients),
as it is now recommended by the European Medicines Agency [193], the UK Joint Commit-
tee on Vaccination and Immunisation [194], and the US Centers for Disease Control and
Prevention [195].
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7.7. Evidence Summary on SARS-CoV-2 Vaccination in IMIDs

SARS-CoV-2 vaccination in IMID patients treated with biologic therapies appears to
be safe and well tolerated. Under most immune-modifying therapies, humoral and cellular
immune responses were preserved, except for B-cell depleting agents, where humoral
immune response was impaired, MTX which impaired humoral and cellular response, and
TNF inhibitors which blunted humoral immunity.

8. Conclusions

Patients with IMIDs may be at increased risk of developing vaccine-preventable
infections, and therefore vaccination strategies are an important preventive measure in
these patients. Despite blunted immunogenicity observed with some agents, vaccination
is effective and safe and therefore patients and physicians should not be dissuaded from
vaccination. The greatest reduction in vaccine response has been observed in patients
taking B cell-depleting agents, followed by TNF inhibitors, and the CTLA-4 fusion protein
abatacept; however, no attenuation has been noted with anti-integrin α4β7, anti-BAFF, anti-
IL-6, anti-IL-17, or anti-IL-12/23 agents. Data on the novel SARS-CoV-2 vaccines in IMID
patients are rapidly accumulating and seem to coincide with what is known about other
vaccines. In general, SARS-CoV-2 vaccines are safe and effective in most IMID patients,
although they may benefit from a third dose as currently indicated.
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