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Abstract: Cisplatin is a platinum-based chemotherapeutic that has long since been effective against a
variety of solid-cancers, substantially improving the five-year survival rates for cancer patients. Its use
has also historically been limited by its adverse drug reactions, or cisplatin-induced toxicities (CITs).
Of these reactions, cisplatin-induced nephrotoxicity (CIN), cisplatin-induced peripheral neuropathy
(CIPN), and cisplatin-induced ototoxicity (CIO) are the three most common of several CITs recognised
thus far. While the anti-cancer activity of cisplatin is well understood, the mechanisms driving its
toxicities have only begun to be defined. Most of the literature pertains to damage caused by
oxidative stress that occurs downstream of cisplatin treatment, but recent evidence suggests that the
instigator of CIT development is inflammation. Cisplatin has been shown to induce pro-inflammatory
signalling in CIN, CIPN, and CIO, all of which are associated with persisting markers of inflammation,
particularly from the innate immune system. This review covered the hallmarks of inflammation
common and distinct between different CITs, the role of innate immune components in development
of CITs, as well as current treatments targeting pro-inflammatory signalling pathways to conserve
the use of cisplatin in chemotherapy and improve long-term health outcomes of cancer patients.

Keywords: cisplatin; toxicity; inflammation; pro-inflammatory; signalling; cytokines; chemokines;
combinatorial therapy

1. Introduction

Cis-diaminedichloroplatinum (II), or cisplatin, is a powerful chemotherapeutic agent
that has been in use for decades to treat a multitude of cancers alone or in combination
therapies. Its ability to inhibit cellular division was first discovered by Dr. Burnett Rosen-
burg in 1965—120 years after it was first synthesised—it was licensed for medical use in
chemotherapy shortly after, in 1970 [1–3]. As the first platinum-based antineoplastic drug
approved by the FDA, it has since then pioneered research and development into countless
other transition-metal based chemotherapies [4]. Specifically, the anti-tumoural properties
of cisplatin were linked to its ability to restrict cell division through its intercalation into
the DNA of reproducing cells [5–8]. Cisplatin is aquated when it enters the cell and attacks
the purine bases in the tumoural DNA, with particular affinity for the N7 of guanine. The
formation of intra-strand adducts by covalently binding adjacent guanine or adenosine
bases was found to be strongly associated with its cytotoxic effects, though inter-strand
adducts are also formed with less frequency, as shown in Figure 1. This distorts the DNA
structure and recruits mismatch repair machinery to the nucleus, but ultimately an inability
for cells to repair their DNA induces oxidative stress, cell cycle arrest, and initiation of
pro-apoptotic pathways [5–7]. This mechanism of action allows it to target tumour cells
with particular preference due to the accessibility of replicating DNA and high basal levels
of reactive oxygen species. The simplicity and efficacy of its anti-cancer activity has allowed
cisplatin to become an indispensable drug in cancer therapy, contributing to improved
survival rates in solid-state cancers. Since then, more and more attention has shifted
to the adverse drug reactions caused by cisplatin chemotherapy. Despite its efficacy in
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treating solid-state cancers ranging from the head-and-neck [9,10], to ovarian [11,12], and
testicular [13,14], and several others [15,16], especially childhood-related cancers [17–23],
the toxicity of cisplatin has put serious limitations on its clinical use as well as the long-term
health outcomes and quality of life of cancer survivors. The adverse drug reactions caused
by cisplatin and its toxicity profile have led to the development of several cisplatin-induced
toxicities (CITs) [24–26], which appear to target specific parts of the body such as the kid-
neys, liver, neurons, and inner ear. This is due to the preferential accumulation of cisplatin
in these regions following repeated intravenous administration during treatment [15,27,28].
As such, some of the most commonly reported CITs include cisplatin-induced nephro-
toxicity (CIN) [27,29,30], cisplatin-induced hepatotoxicity (CIH) [31,32], cisplatin-induced
peripheral-neurotoxicity (CIPN) [33–35], and cisplatin-induced ototoxicity (CIO) [36–38].
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Figure 1. Mechanism of action of cisplatin in tumour cells. Cisplatin enters the cell either passively
or through a transporter, where two water molecules replace the chloride groups. As an electrophile,
cisplatin is attracted to the nitrogen on purine bases in the DNA, where it forms inter or intra-strand
crosslinks, interrupting DNA repair and replication processes. Downstream this leads to oxidative
stress and activation of apoptotic signalling pathways.

Over the years, several methods have been developed to alleviate the effects of cis-
platin, though none have proven to be effective as a generic countermeasure against all
forms of CIT due to the diverse nature of its activity and differences in responses to cisplatin
at distinct target sites.

This has led to two primary branches of investigation: one which seeks to develop
drugs related to cisplatin which are intrinsically less toxic (such as carboplatin and oxali-
platin), and one which seeks to identify the underlying mechanisms driving the devel-
opment of CITs so that they may be specifically targeted and inhibited, ideally without
affecting treatment efficacy; see Figure 2 for a summary of specific signalling pathways
activated by cisplatin. The mechanism-based studies seek to preserve the use of cisplatin in
chemotherapy and potentiate its use in clinic, but most research seeking to prevent CITs
has been focused on the nature and impact of reactive oxygen and nitrogen species, which
are known to be the downstream damage-inducing agents in CITs; however, this branch of
research does not focus on identifying the actual instigators of cisplatin-induced damage
and subsequent oxidative stress. Instead, there has been rising interest in another phe-
nomenon that has appeared to be common amongst nearly all forms of CIT: inflammation.
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Hallmarks of inflammation have been used to gauge the severity of CITs since they were
first characterised, and the role of cisplatin-induced inflammation as a direct initiator of
the damage associated with CIT development has grown to be an especially hot topic of
research; see Figure 3 for a summary of the inflammatory mechanisms contributing to
each major CIT. Increasingly, natural and synthetic anti-inflammatory compounds with the
potential to significantly ameliorate CITs have become more prominent and promising.

In this review, we highlighted the immunological traits of cisplatin-induced toxicities
and covered the importance of pro-inflammatory signalling systems in their development,
especially through the innate immune system. We also discussed the prospects of anti-
inflammatory agents as protective combinatorial therapies centred on immunomodulation
to curtail CITs and preserve and potentiate the use of cisplatin in cancer therapy.

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 31 
 

 

has been focused on the nature and impact of reactive oxygen and nitrogen species, which 

are known to be the downstream damage-inducing agents in CITs; however, this branch 

of research does not focus on identifying the actual instigators of cisplatin-induced dam-

age and subsequent oxidative stress. Instead, there has been rising interest in another phe-

nomenon that has appeared to be common amongst nearly all forms of CIT: inflammation. 

Hallmarks of inflammation have been used to gauge the severity of CITs since they were 

first characterised, and the role of cisplatin-induced inflammation as a direct initiator of 

the damage associated with CIT development has grown to be an especially hot topic of 

research; see Figure 3 for a summary of the inflammatory mechanisms contributing to 

each major CIT. Increasingly, natural and synthetic anti-inflammatory compounds with 

the potential to significantly ameliorate CITs have become more prominent and promis-

ing. 

 

Figure 2. Pattern recognition receptors and pro-inflammatory signalling pathways involved in cis-

platin-induced toxicities. Pattern Recognition Receptors interact with a specific array of PAMPs and 

DAMPs to mediate signals that induce pro-inflammatory signalling. Most of these pathways share 

downstream signalling that converge on NF-κB, AP-1, or IRF3, which regulate expression of pro-

inflammatory signalling molecules such as cytokines and chemokines to influence inflammation in 

surrounding cells. These molecules bind receptors like TNF-R and IL6-R in other cells that mediate 

similar signalling pathways. This localised inflammation is exacerbated by cisplatin treatment and 

is involved in various CITs through mechanisms that remain to be elucidated. 

Figure 2. Pattern recognition receptors and pro-inflammatory signalling pathways involved in
cisplatin-induced toxicities. Pattern Recognition Receptors interact with a specific array of PAMPs
and DAMPs to mediate signals that induce pro-inflammatory signalling. Most of these pathways
share downstream signalling that converge on NF-κB, AP-1, or IRF3, which regulate expression of
pro-inflammatory signalling molecules such as cytokines and chemokines to influence inflammation
in surrounding cells. These molecules bind receptors like TNF-R and IL6-R in other cells that mediate
similar signalling pathways. This localised inflammation is exacerbated by cisplatin treatment and is
involved in various CITs through mechanisms that remain to be elucidated.



Int. J. Mol. Sci. 2022, 23, 7227 4 of 30
Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 4 of 31 
 

 

 

Figure 3. Summary of reported innate immune receptors involved in cisplatin-induced ototoxicity, 

peripheral neurotoxicity, nephrotoxicity, or hepatotoxicity. The depicted innate immune receptors 

are involved in either protecting (green arrow) or exacerbating (red arrow) inflammation in re-

sponse to systemically delivered cisplatin, and a few key receptors have been reported in both cases. 

In this review, we highlighted the immunological traits of cisplatin-induced toxicities 

and covered the importance of pro-inflammatory signalling systems in their development, 

especially through the innate immune system. We also discussed the prospects of anti-

inflammatory agents as protective combinatorial therapies centred on immunomodula-

tion to curtail CITs and preserve and potentiate the use of cisplatin in cancer therapy.  

Inflammation and Pro-Inflammatory Signalling 

Immune responses can be classified as either ‘innate’ or ‘adaptive’. Adaptive immune 

responses are activated in response to persistent infection and/or damage; they are tai-

lored to facilitate responses to specific forms of antigens and are carried out by adaptive 

immune cells, such as helper and cytotoxic T-cells, and antibody-producing B-cells. Innate 

immune responses are, conversely, immediate, non-antigen-specific, responses that can 

be triggered by the vast majority of cells and mediated by myeloid phagocytic cells. These 

include, but are not limited to, neutrophils, macrophages, and monocytes [39,40]. 

The process of inflammation is predominantly handled by the systems associated 

with the innate immune system which rely on ‘input signals’ generated by pattern-recog-

nition receptors (PRRs), as well as cytokines and chemokines and their respective unique 

receptors.  

PRRs bind common pathogen-associated molecular patterns (PAMPs) and initiate 

downstream signalling cascades that culminate in the expression of genes required to re-

cruit dedicated immune cells and kickstart inflammation. Often, these PRRs also double 

as damage-recognition receptors, in that they can also bind and trigger responses to host 

cellular damage-associated molecular patterns (DAMPs), such as extracellular genomic 

DNA and mitochondrial DNA (mtDNA), and heat shock proteins. PRRs can be classified 

into four main categories, or families: (1) Toll-Like Receptors (TLRs), (2) Nucleotide-

Figure 3. Summary of reported innate immune receptors involved in cisplatin-induced ototoxicity,
peripheral neurotoxicity, nephrotoxicity, or hepatotoxicity. The depicted innate immune receptors are
involved in either protecting (green arrow) or exacerbating (red arrow) inflammation in response to
systemically delivered cisplatin, and a few key receptors have been reported in both cases.

Inflammation and Pro-Inflammatory Signalling

Immune responses can be classified as either ‘innate’ or ‘adaptive’. Adaptive immune
responses are activated in response to persistent infection and/or damage; they are tailored
to facilitate responses to specific forms of antigens and are carried out by adaptive immune
cells, such as helper and cytotoxic T-cells, and antibody-producing B-cells. Innate immune
responses are, conversely, immediate, non-antigen-specific, responses that can be triggered
by the vast majority of cells and mediated by myeloid phagocytic cells. These include, but
are not limited to, neutrophils, macrophages, and monocytes [39,40].

The process of inflammation is predominantly handled by the systems associated with
the innate immune system which rely on ‘input signals’ generated by pattern-recognition re-
ceptors (PRRs), as well as cytokines and chemokines and their respective unique receptors.

PRRs bind common pathogen-associated molecular patterns (PAMPs) and initiate
downstream signalling cascades that culminate in the expression of genes required to
recruit dedicated immune cells and kickstart inflammation. Often, these PRRs also double
as damage-recognition receptors, in that they can also bind and trigger responses to host
cellular damage-associated molecular patterns (DAMPs), such as extracellular genomic
DNA and mitochondrial DNA (mtDNA), and heat shock proteins. PRRs can be classified
into four main categories, or families: (1) Toll-Like Receptors (TLRs), (2) Nucleotide-Binding
Oligomerisation Domain (NOD)-Like Receptors (NLRs), (3) Retinoic-Acid-Inducible-Gene
(RIG)-Like Receptors (RLRs), and C-Type Lectin Receptors (CLRs) [41].

TLRs localise to the cell surface or intracellular compartments and are thus prime to
detect extracellular or vesicular signs of pathogens, such as bacterial lipopolysaccharides
(LPS) [42]. They are also responsible for the detection of most DAMPs when paired with spe-
cific accessory proteins or coreceptors [43]. Certain TLRs have also been implicated in the
development of unique hypersensitivity/allergic reactions [44–47]. NLRs, conversely, are
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responsible for the recognition of intracellular signifiers of infection, such as bacterial pepti-
doglycan components (iE-DAP), bacterial toxins, and viral nucleic acid structures [48,49].
Upon exposure to any of these potential agonists, NLRs trigger downstream signals that re-
flect that of TLRs but also facilitate the creation of complexes known as inflammasomes that
can additionally modulate/control cell survival/death systems [50–52]. Like NLRs, RLRs
are also responsible for detecting intracellular pathogens, but are equipped to specifically
bind common genetic elements of both viral and intracellular bacterial pathogens [53–55].
CLRs, on the other hand, are more akin to TLRs, binding pathogen-associated carbohy-
drates from the extracellular space to cause pro-inflammatory gene expression changes
identical to that of most other PRRs. Unlike TLRs, however, CLRs have a more direct role in
arbitrating the transition from innate to adaptive immune responses by using captured anti-
gens for presentation and provision to dendritic cells that can explicitly activate adaptive
immune cells [56,57].

The Toll-like Receptors each bind a specific array of PAMPs and DAMPs and, through
several unique and shared downstream signalling systems, activate three key transcription
factors, nuclear factor kappa B (NF-κB), activator protein-1 (AP-1), and interferon regulatory
factor 3, (IRF3), responsible for enabling the expression and secretion of soluble pro-
inflammatory signalling molecules such as cytokines and chemokines.

Most, if not all forms of PRR, conclude in the activation of at least one of three key
gene transcription factors: (1) AP1, (2) NF-κB, and (3) IRFs. It is through these three
transcription factors that the state of inflammation can be modulated [58]. AP1 consists of
homo- or hetero-dimeric complexes which consist of four types of DNA-binding proteins:
Jun-family proteins, Fos-family proteins, activating transcription factors/cAMP response
element binding protein (ATF/CREB)-family proteins, and musculoaponeurotic fibrosar-
coma (MAF) family proteins. Different combinations of these subunits, in the context of
different cells and conditions, can lead to distinct gene expression profiles, including the
upregulation of pro-inflammatory cytokines and chemokines [59–61]. NF-κB can similarly
mediate the upregulation of pro-inflammatory cytokines and chemokines, and can be
considered the primary regulator of inflammation given that it can play a pivotal role in
micromanaging both innate and adaptive immune responses. That said, NF-κB is also the
‘master regulator’ for countless other homeostatic genes, allowing it to also alter cell cycle
progression in conjunction with inflammasomes and other inflammatory factors, activate
dedicated immune cells to manipulate their maturation and differentiation processes, and
influence the expression of tertiary features with additional roles in inflammation, such
as adhesion molecules [62–64]. Juxtaposed to the prior two transcription factors, IRF3
contributes to inflammation by promoting the secretion of a unique class of cytokines,
called Type I Interferons. Unlike AP1 and NF-κB, which are targets shared between almost
all PRR downstream signalling mechanisms, IRF3 is under the purview of only a specific
subset of PRRs—namely, TLR members, TLR3 and TLR4, as well as RLRs. Its activity is also
under the control of a limited set of non-PRR, DAMP-specific, pro-inflammatory complexes
such as cGAS-STING [65,66].

Cytokines and chemokines, unlike PRRs that centre on ‘paracrine’ interactions, can
operate as autocrine and endocrine means of cellular communication, and can direct the
development of inflammation through self-reinforcing signals and long-distance signalling.
Both cytokines and chemokines are small proteins that can vary wildly in function and can
either be pro-inflammatory or anti-inflammatory. Typically, cytokines incite their own set
of downstream signalling events to alter gene expression while chemokines mainly operate
as chemoattractants—recruiting different subsets of immune cells.

Pro-inflammatory cytokines and chemokines in particular are produced and released
as a result of PRR signalling cascades—each PRR family is responsible for the production
and release of specific cytokines and chemokines. The most common pro-inflammatory
cytokines are the interleukins (IL), IL-1β and IL-6 especially, as well as Tumour Necrosis
Factor-α (TNF-α). IL-1β has been identified as a critical factor in the development of fevers
and the pain responses associated with inflammation. IL-6 has been shown to activate
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acute phase responses (APRs)—a set of changes to serum protein concentrations—intended
to render adjacent areas inhospitable to any pathogens present. TNF-α, on the other hand,
helps protect against intracellular threats by making host cells inhospitable environments
and contributing to pro-apoptotic signalling systems.

The most common chemokines in comparison tend to be CXC-motif chemokine
2/keratinocyte-derived chemokine (CXCL2/KC) and CXC-motif chemokine 8/interleukin-8
(CXCL8/IL-8), which control the recruitment of neutrophils as T-cells to sites of infec-
tion/inflammation [67,68]. ‘Positive’ acute-phase proteins are proteins that are increased to
promote inflammation, and include, but are not limited to complement factors, degrada-
tive enzymes, and iron chelators, all of which can also hurt the host with prolonged
exposure [69,70].

2. Pattern Recognition Receptors (PRRs) in Cisplatin-Induced Toxicities
2.1. Toll-Like Receptors (TLRs)

Toll-Like Receptors (TLRs) have been one of several features of immunology heavily
studied in association with cisplatin-induced toxicities. Of the ten different members of
the TLR family, two appear to have a major influence on the progression of CITs and the
damage they can ultimately do: TLR4 and TLR2 (Figure 2).

TLR4 presents on the cell membrane as a homo-dimer and is special in that it can trans-
duce signalling through two intracellular pathways associated with TLRs: Myeloid differ-
entiation primary response 88 (MyD88) dependent and Myd88 independent pathways [71].
MyD88 is an adaptor molecule that allows for signal convergence following TLR stimula-
tion and while other TLRs utilise one or the other pathway, TLR4 can use both, allowing for
significant crossover and potentiation of signalling. It is well known for being stimulated
by a bacterial PAMP called lipopolysaccharide, a component of gram-negative bacterial
cell membranes, as well as some DAMPs with the help of various co-receptors. This allows
it to detect bacterial infection as well as surrounding cell damage, and is necessary for
stimulating a localised immune response and maturation of adaptive immune cells. It has
also been shown to mediate allergic hypersensitivity reactions to transition metals, such as
nickel, cobalt, and palladium [44–47]. Importantly, TLR4 is associated with co-receptors,
myeloid differentiation factor 2 (MD2), and cluster of differentiation 14 (CD14), which are
necessary for signal transduction in response to lipopolysaccharide [42]. In the context of
CIO, TLR4 appears to play an important role in exacerbating inflammation in the inner ear.
Inhibition of TLR4 chemically via small molecule inhibitors or through gene silencing has
been shown to confer protection in the context of the three most prevalent CITs (CIN, CIPN
and CIO), as well as rarer cases, such as cisplatin-induced hepatotoxicity (CIH) [72].

Though the exact mechanism(s) driving the relationship between CITs and TLR4
have yet to be completely elucidated, several aspects have been typified, and a number of
theories proposed. For example, the activation of TLR4 mitogen-activated protein kinase
(MAPK) pathway-associated proteins, c-Jun N-terminal kinase (JNK) and p38, appear to
correspond with toxicity in CIN and inversely correlates with increased cell viability in
TLR4-deficient model organisms [72]. In studies, bone marrow chimeric mice have been
used to showcase the importance of localised cell TLR4 proteins compared to responding
immune cell TLR4s [72]. Transforming growth factor-β-activated kinase 1 (TAK1), a key
component of the TLR4 MyD88-dependent signalling pathway, has also shown promise
as a potentially valuable target for protecting against CIN. The inhibition of TAK1 leads
to reduced activation of the extracellular signal-regulated kinase (ERK) and p38 MAPK
signalling pathways through TLR4—leading to a reduction in tubular damage in the
kidneys [73,74].

In cases of CIO, compounds that block MAPK activation, akin to the calcium channel
antagonist Flunarizine, have been shown to prevent the progression of downstream TLR4
functions as well [75]. Directed inhibition of ERK caused a significant reduction to typical
levels of NF-κB activation and pro-inflammatory cytokine secretion—sufficient to increase
cell viability [75]. It has also been demonstrated that LPS-mediated TLR4 activation has a
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synergistic effect on CIO and that cisplatin induces the upregulation of TLR4, increasing
the extent of toxicity and subsequent hearing loss [76]. This implies that TLR4-mediated
induction of inflammation may be a separately looping but nevertheless contributing factor
to CITs. This same principle has been found to apply to CIN and endotoxin insult and
septic shock [77].

On the other hand, numerous studies exist indicating that cisplatin-induced pro-
inflammatory responses can develop even in presumptively sterile conditions and in an
MD2-independent manner. In 2021, Babolmorad et al. demonstrated that cisplatin-induced
pro-inflammatory cytokine secretion could be induced in human embryonic kidney cells
that express TLR4 but do not express MD2 [78]. The inhibition of TLR4 activation through
commercially available chemical inhibitors like TAK242, and the prevention of TLR4
expression through siRNA and clustered regularly interspaced short palindromic repeats
(CRISPR), all proved sufficient to reduce CIT-associated proinflammatory responses in the
same system [78]. Moreover, it was also demonstrated that TLR4 may specifically interact
with the platinum component of cisplatin to mediate inflammation as it has been shown to
do so for metal allergens, suggesting that potentially direct interactions between cisplatin
and TLR4 could be stimulating CIO; however further evidence is required to confirm this.
In 2015, TLR4-deficient mice and MyD88/TRIF-deficient mice obtained significant to near-
absolute protection from CIPN signified by mechanical allodynia (pain sensitivity) [79,80].
Transcriptomic analyses have identified seven genes that appear to dictate CIPN severity,
almost all of which are linked to immunity, including TLR4 [81]. Ibudilast and isomers
of the opioid antagonists, Naltrexone and Naloxone, have been shown to inhibit TLR4
activity and have all been shown to reduce chemotherapy-induced peripheral neuropathies
similar to CIPN as well [82–84]. The opioid antagonists are believed to operate by co-
opting MD2 to bind and block TLR4 [85]. Recent data suggests that Ibudilast can directly
interact with and inhibit interleukin-1 receptor-associated kinase 1 (IRAK1) to inhibit the
MyD88-dependent signalling pathway of TLR4—among several of its other indirectly
anti-inflammatory modes of action as a phosphodiesterase inhibitor [86].

In contrast to TLR4, TLR2 has a protective role against CITs. TLR2 exists primarily
on cell surface membranes such as TLR4, but is expressed exclusively and pre-emptively
as part of heterodimers with either TLR1 or TLR6. TLR2 facilitates the recognition of
and innate immune responses to a variety of multi-acylated lipopeptides as opposed to
lipopolysaccharides. Multi-acylated lipopeptides, specifically di- and tri-acylated lipopep-
tides, can be found in bacteria, viruses, fungi, and even parasites, making TLR2 an extremely
versatile PRR. TLR2 can nevertheless also mediate responses to typical DAMPs, such as
heat shock proteins and high mobility group box 1 protein (HMGB1).

Like other TLRs, TLR2 depends on particular coreceptors to bolster the recognition of
particular PAMPs and DAMPs. Along with CD14, CD36 also assists with TLR2 activation
in the vast majority of responses. Most TLRs are also known to have one downstream
signalling pathway in common—the MyD88-dependent downstream signalling pathway,
and TLR2 is no exception. Upon binding a ligand, TLR2 initiates the MyD88-dependent
downstream signalling cascade but differentiates itself from TLR4 in that it must undergo
internalisation first to do so, and does not signal through the MyD88-independent sig-
nalling pathway [42,87]. At least two independent studies have shown that TLR2 activation
can provide a considerable degree of protection from CITs. Removal of TLR2-enhanced
CIN specifically, coinciding with a reduction in the markers of autophagy, and a shift to im-
munosuppressive cytokine regimens and adaptive immune responses by resident dendritic
cells [88–90]. Renal stem cell recovery systems, which can limit cisplatin-induced acute
kidney injuries, appear to be at least partly dependent on TLR2 activation as well [91]. Some
studies have shown that depletion of TLR2 is associated with protection and subsequent
reductions in pro-inflammatory IL-17A in CIN, and especially when there is simultaneous
inhibition of TLR4 expression or activity. However, there are also studies that connote to the
opposite [92,93]. Reports on its role in CITs are limited though and it poses an intriguing
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area for further investigation, particularly since it is not clear which heterodimer is more
involved in this process—TLR2/TLR1 or TLR2/TLR6.

Little more is known about the connection between TLRs and CITs beyond that. The
TLR4 and TLR2 agonists present or released following cisplatin treatment and responsible
for dictating the course of cisplatin-induced toxicities have remained unknown. TLR9 has
also recently drawn attention as new reports indicate that it too may play a role in CITs,
albeit differently. TLR9, another TLR PRR, is canonically geared towards the recognition of
DNA structures associated with pathogens (unmethylated CpG-DNA motifs), but it has
also been shown to recognise DNA-related DAMPs and bacterial by-products and com-
ponents [42,94]. As such, TLR9 typically exist in distinct types of endosomes that dictate
the weighting of their signalling cascades towards either pro-inflammatory IRF-dependent
interferons or the typical NF-κB-related repertoire of cytokines and chemokines [42]. In
CIN, it surprisingly limits neutrophil invasion and mediates the recruitment of protective
adaptive immune cells, T-Regulatory-Cells (TRegs) [95]. Cases of chemotherapeutic periph-
eral neuropathy not necessarily limited to just cisplatin alternatively suggest that TLR9
may instead exacerbate CIPN through the recruitment and activation of pro-inflammatory
macrophages [96].

Regardless, while the link between specific TLRs and CITs appears to be robust, it is
not absolute. Neither the inhibition of TLR4, nor the expression of TLR2, can guarantee
complete protection from cisplatin-induced toxicities, suggesting that other factors are also
at play, some of which may be immunological in nature, but not entirely dependent on
TLRs alone.

2.2. NOD-Like Receptors (NLRs) and Inflammasomes

Similar to TLRs, nucleotide-binding and oligomerisation domain (NOD)-like receptors
(NLRs) are also a type of pattern-recognition receptor family. Unlike TLRs, they operate
exclusively in the cytosol and detect various pathogenic and damage signals as well as
homeostatic disruptions in the cell to stimulate a signalling cascade and facilitate activation
of the innate and adaptive immune systems [97,98]. The NLR family is further divided into
sub-families, each of which are defined by their distinct N-terminal domains, leading to
various overlapping signalling pathways that either activate transcriptional activators or
lead to the assembly of inflammasomes, which are large protein complexes in the cytosol
that catalyse apoptotic effector functions. In this review, we do not detail the different
kinds of NLRs and their signal transduction but instead focus on NLRs that appear to
be most closely associated with CIT development (Figure 2). For an extensive discussion
on NLRs and their involvement in human disease, please see the excellent review by
Zhong et al. (2013) [97].

Of the various types of NLRs in mammalian cells, the one that appears to be the most
involved in CIT is the inflammasome-forming NLRP3. While many PRRs are specific to a
certain subset of activating signals, NLRP3 signalling is induced by a wide array of PAMPs
and DAMPs [99]. The activation of the NLRP3 inflammasome is complex and involves
many mediators that lead to increased cell stress; however, in a simplified model, the
sensing of cell stress by NLRP3 is typically preceded by a two-step process [97]. First, there
must be an upregulation of NLRP3 and other inflammasome factors such as caspase 1,
which carries out the effector functions of the NLRP3 inflammasome, and pro-IL-1β, which
is the inactive form of a pro-inflammatory cytokine that is cleaved by caspase 1. This first
step is called the priming step and occurs through activation of other PRRs and receptors
in response to their respective PAMPs and DAMPs. Interestingly, some of these priming
responses overlap with inflammatory signalling pathways we have seen to be involved in
CIT development, including TLR4-LPS interactions or TNFβ and IL-1β stimulation [97,100].
The priming leads to NFκB-mediated transcription of inflammasome components so that
an inactive form of NLRP3 in the cytosol is prepared to respond to cell stress. The second
step is the activation step of the NLRP3 inflammasome, and is mediated by various stimuli
that disturb cell homeostasis such as changes in K+ and Cl− efflux or lysosomal disruption,
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to name a few. The DAMPs or PAMPs involved in stimulating these cellular disturbances
are quite diverse and are not known to interact directly with NLRP3 itself; rather, NLRP3
senses these changes through unknown mechanisms and becomes “activated”, leading
to its oligomerization and initiation of inflammasome formation. The pyrin domain at its
N-terminus allows for interaction with apoptosis-associated speck-like protein containing
a CARD (caspase activation and recruitment domain) (ASC), an adaptor that can then
interact with caspase 1 and complete the assembly of the inflammasome [101,102]. Ulti-
mately, the inflammasome allows for caspase 1-mediated cleavage of the inactive form of
IL-1β and IL-18 to active forms, as well as cleavage and release of the pore-forming gas-
dermin D, which leads to localised cytokine-mediated inflammation or cell death through
pyroptosis, respectively.

The role of NLRP3 in CIT is most commonly reported in the kidneys, specifically owing
to the similarity between the inflammatory profile of NLRP3-mediated diseases, ischemic
(non-chemically induced) acute-kidney injury (AKI) and cisplatin-induced AKI [102–104].
This fostered interest in the role of NLRP3 in cisplatin-induced nephrotoxicity.

Cisplatin-induced renal injury is generally associated with an increase in NLRP3
inflammasome components, but there are conflicting reports about its significance. In a
study investigating cisplatin-induced renal dysfunction, younger male C57BL/6 mice were
found to have increased IL-1β, IL-18, ASC, caspase 1, as well as NLRP3 in the kidneys
3 days following treatment [105]. This study specifically looked at the role of a receptor,
purinergic receptor P2X7 (P2X7R), in exacerbating CIN through NLRP3 activation. This
receptor has been reported to induce NLRP3 inflammasome activation by responding
to extracellular ATP, a DAMP, and inducing pore-formation and K+ efflux, acting as a
component of the second activation step of NLRP3 stimulation [106,107]. Chemical inhi-
bition of this receptor protected mice from renal dysfunction and injury, reduced levels
of inflammasome components and pro-inflammatory cytokines, and protected them from
oxidative stress and apoptosis. Thus, reduction of inflammasome components following
cisplatin treatment was associated with protection against CIN. Similarly, several other
reports found an increase in NLRP3 inflammasome activity following cisplatin treatment
that was associated with kidney injury [108–113]. Specifically, they found increases in
inflammasome components, pro-inflammatory cytokines like IL-1β, IL-18, TNF-α, or even
increased pyroptotic activity. Stimulation of pyroptosis in CIN occurred through increased
levels of Gasdermin D, a protein involved in mediating pyroptosis that is also a substrate
of the NLRP3 inflammasome [111]. Cisplatin-induced NF-κB activity increased NLRP3
inflammasome components as well as pyroptotic activity in mouse kidneys, all of which
could be ameliorated by vitamin D-induced downregulation of NF-κB. Many of these
studies assess processes that occur upstream of NLRP3 activation such as cisplatin-induced
mitochondrial dysfunction or NF-κB upregulation, which speaks to its role as a down-
stream effector of cisplatin-induced inflammation, but not necessarily a causative agent of
CIN. The most direct evidence for NLRP3 involvement in CIN comes from NLRP3-specific
inhibitor experiments that showed protection against CIN. Cisplatin-induced kidney injury
was mitigated by chemical inhibition of NLRP3 with MCC950, demonstrating the role of
the NLRP3 inflammasome in exacerbating CIN directly [114].

In contrast to this, one study found that NLRP3 knockout mice were not protected from
cisplatin-induced AKI and there was little to no change in the pro-inflammatory cytokine
profile in cisplatin-treated wild type versus knockout mice [115]. While they did find that
caspase 1 knockout mice were protected against cisplatin-induced apoptosis and renal
failure [116], follow up studies provided weak evidence that inhibition of NLRP3 activity
protected against cisplatin-induced AKI [115]. Kim et al. (2013) also found an increase
in ASC and caspase 1 in older male C57BL/6 mice after cisplatin treatment, indicating
increased NLRP3 inflammasome activity; however, there was no significant increase in the
NLRP3 protein itself in the mouse kidney [115].

Similarly, Kim et al. (2013) found no increase in IL-1β in-vivo and mouse macrophages
did not show a cisplatin-induced increase in NLRP3 in-vitro, thereby discounting the idea
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that NLRP3 mediated damage could be coming from invading innate immune cells [115].
While the authors did find that the NLRP3 inflammasome appeared to be involved in
ischemic AKI, they concluded that it has no role in cisplatin-induced AKI. Interestingly,
NLRP1 (a different NLRP-inflammasome) and its inflammasome effector caspase, caspase 5,
were shown to be increased in mouse kidneys following cisplatin treatment. This suggests
a role for NLRP1 in cisplatin-induced AKI. Even more intriguing was their finding that
NLRP3 knockout decreased NLRP1 levels following cisplatin treatment, implicating a
dependence of NLRP1 on NLRP3 in CIN. Moreover, NLRP3 inflammasome activity is
associated with various kinds of kidney injury [117–119]. While cisplatin may induce its
activity, the role of the NLRP3 inflammasome in CIN may work in concert with the injury
cisplatin causes in the kidney through other mechanisms.

Due to its reliance on several exogenous signals for activation, the NLRP3 inflamma-
some is in a position where its involvement in CITs is closely tied to other inflammatory
pathways, including other PRRs. Namely, TLR4 stimulation leads to an NF-κB-mediated
increase in NLRP3 in response to cisplatin treatment in kidneys [108]. Cisplatin induces
upregulation of all of these factors, and stimulation of TLR4 allows priming of NLRP3 com-
ponents that are later activated by cisplatin-induced stress. A proton-pump inhibitor called
omeprazole, which should only affect the NLRP3 inflammasome activation portion of this
signalling axis, was effective in ameliorating CIN and decreasing TLR4/NF-κB/NLRP3
levels. In this way, signal convergence from other PRRs like TLR4 may facilitate NLRP3-
mediated CIN.

Along with CIN, cisplatin-induced liver toxicity is also associated with NLRP3 inflam-
masome activity, though this is far less studied. Cisplatin-treated rat liver has increased
NLRP3 protein, IL-1β, and caspase 1 that is correlated with increased oxidative stress,
inflammation, and liver injury [112,120]. These effects were reversed by compounds that
are suggested to inhibit factors such as NF-κB and MAPK, both of which work upstream of
NLRP3 and, in the case of NF-κB, are involved in priming of NLRP3 inflammasome com-
ponents. While this demonstrates its involvement, the direct role of NLRP3 in exacerbating
inflammation in CIH remains to be seen with specific inhibition of NLRP3 in hepatocytes
or gene silencing.

While the abundance of evidence indicating its significance in CIN and CIH imply
NLRP3 to be a fascinating target for protective therapy, suppression of NLRP3 has also
been associated with increased tumour resistance to cisplatin [121]. Cisplatin-resistant
tumour cells in non-small lung cancers had downregulated NLRP3 and upon upregulation
of NLRP3, tumour cells were once again sensitised to cisplatin treatment. This means that,
while it may very well be involved in exacerbation of CITs, it may not be an ideal target for
protection during cancer therapy as it potentially compromises the efficacy of cisplatin’s
anti-tumoural activity.

3. Pro-Inflammatory Messengers (Cytokines and Chemokines)

Resulting from the downstream signalling of PRRs and the consequent activation
of gene transcription factors such as NF-κB are the pro-inflammatory cytokines and
chemokines. Pro-inflammatory cytokines and chemokines, such as IL-1β, IL-6, IL-8, and
TNF-α, essentially serve as easily quantifiable indicators of cisplatin-induced toxicities
since they are expressed directly proportional to the severity of conditions (Figure 2). In all
of the prior publications mentioned, increases in toxicity (such as with TLR2 inhibition)
corresponded with increases in IL-6, IL-1β, and TNF-α by at least 20–50%, while protection
from toxicity corresponded with reductions in secretion by up to 50–80%. This relationship
is also directly related to the dose of cisplatin used and the exposure time.

All in all, the relationship between cytokine secretion and cisplatin toxicity does not
appear to be linear either; pro-inflammatory cytokines appear to actively contribute to the
pathology of prolonged cisplatin exposure in a positive-feedback loop. So et al. (2007)
demonstrated that the provision of recombinant exogenous pro-inflammatory cytokines
associated with CITs could elicit cell viability loss capable of accounting for up to 20% of
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the cell death associated with CIO [122]. More importantly, the group also showed that
the targeted depletion of pro-inflammatory cytokines through blocking antibodies could
sufficiently mitigate the death caused by cisplatin treatment, the most effective of which
being anti-TNF-α [122]. In 2007, Zhang et al. used chimeric mouse models to demonstrate
that the expression of TNF-α by immune cells residing in the kidney was critical for CIN
development as well [123]. That said, the impact of IL-6 expression remains contentious
in CIN, as Faubel et al. indicated that IL-6 deficiencies, alone, provide little to no respite
from CIN [124]. Corroborating evidence came from Kim et al. (2011) who discovered
that STAT6−/− mice produced far less of the characteristic three pro-inflammatory cy-
tokines and were accordingly protected from CIO [125]. Like their predecessors, they
reported that anti-IL-6 and anti-TNF-α provided the greatest resistance to cisplatin cyto-
toxicity. It may also be important to note that pro-inflammatory cytokines, like TNF-α,
have the capacity to trigger conditions associated with CIPN—not just CIO—as well. Both
the natural upregulation of pro-inflammatory cytokines by injured Schwann cells, and
the injection of exogenous pro-inflammatory cytokines like TNF-α, have the potential
to provoke mechanical allodynia and thermal hyperalgesia—common manifestations of
CIPN [126,127]. In-vitro, the provision of TNF-α also confers a permanent degree of hyper-
responsiveness that would presumably lead to pain, and hypersensitivity to subsequent
immune factors [126,127]. This is likely due to the pleiotropic effector functions of both the
IL-6 and TNF-α and their receptors. IL-6 receptors (IL6R/CD126/gp80) can exist as either
membrane-bound or cytosolic receptors, though they typically exist in their soluble “trans-
signalling” form in non-immune cells [128,129]. Soluble IL6R is primarily responsible for
pro-inflammatory induction through the activation of Janus kinase/signal transducer and
activator of transcription 3 (JAK/STAT3) and Src-homology region 2 (SH2)-containing pro-
tein tyrosine phosphatase 2 (SHP2)/MAPK pathways which exert control over monocytic
differentiation, vasculature, immune cell infiltration, and indirectly promote deleterious
ROS production [129–131].

TNF-α receptors (TNFR) also come in two forms, TNFR1 and TNFR2, both of which
drastically affect cisplatin toxicities. TNFR1 is considered one the principal drivers of
pro-apoptotic signalling as a dedicated ‘Death Receptor’ equipped with a Death Domain
that grants access to caspase activation cascades, while TNFR2 is associated with the
propagation of inflammation through dedicated immune cell activity [132]. Inhibition of
at least one TNFR is enough to confer significant protection from CIN, though the exact
importance of each to toxicity remains contentious. Tsuruya et al. (2003) highlighted
protection attributed to TNFR1 deficiency, but Ramesh and Reeves (2003) contrastingly
reported that TNFR2 deficiency provided a greater degree of resistance to toxicity despite
the upregulation of both receptors in murine models of CIN [133–135]. Therapeutics
designed to mimic TNF receptors, such as etanercept, operate by sequestering available
TNF-α from functional membrane forms, and have proven to be sufficient in reducing
aspects of CIO in-vivo [136].

Note that IL-6, IL-1β, and TNF-α may be the most commonly used indicators of
CIT onset but they are historically not the only ones. For example, CIO development
in HEI-OC1s has also correlated with the expression of IL-4 and IL-13, which appear to
trigger the signalling cascade that leads to the phosphorylation and activation of STAT6.
CIO also correlated with an upregulation in IL-5, but it was oddly found irrelevant to
pathology [125]. Cisplatin toxicity has also been measured through the proportional
upregulation or downregulation of IL-8 in the context of both HEK293 and HeLa cells [78].

Attempts to ascertain the entire scope of cytokine and chemokine profile changes
associated with CITs have revealed the relevance of certain effector regulation, including
IL-1/IL-1B, regulated upon activation, normal T-cell expressed, and secreted (RANTES)
(CCL5), MCP-1 (CCL2), MIP2 (CXCL2), Macrophage Migration Inhibitory Factor (MIF),
IP-10 (CXCL10), KC (murine IL-8), IL-17A, IL-18, IFN-γ, and IL-10 [124,125,134,137–148].
However, their role in CITs has only grown in complexity. Cytokines can be extremely
multifaceted; the same cytokine can elicit both pro-inflammatory and anti-inflammatory
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responses depending on circumstance, and this is something that must be contended with
in the pursuit of novel therapies. For example, while IL-6 appears to adhere to its canonical
designation as a pro-inflammatory cytokine, at least in the context of cisplatin-induced
toxicities specifically, IL-4 exerts its influence variably. IL-4 expression is directly related to
the severity of CIO, as mentioned previously, but it is inversely related to the severity of
CIN and CIPN and is a hallmark of protection paired with IL10 [125,143]. IFN-γ similarly
manifests as a pro-inflammatory and toxic effector in CIO (when detectable), but conversely
presents far more phenotypically ‘complex’ in models in CIN [125,145,149–151]. Ultimately,
despite the headway made thus far in the analysis of cytokine and chemokine involvement
in CITs, there is clear room for growth in our understanding of the actual underlying
mechanisms involved.

4. Oxidative Stress and Immunologic Regulation

Cisplatin is well characterised to execute cell damage and death via reactive oxygen
species (ROS) and reactive nitrogen species (RNS) [152–154]. As such, there was previously
an emphasis on employing ROS scavengers and anti-oxidative species such as N-acetyl
cysteine, glutathione, or sodium thiosulfate in treatments for CITs, particularly in CIO [155].
As opposed to immune-mediated CIT, the release of ROS occurs downstream in the
signalling pathway of cisplatin-induced damage in healthy cells. Because the significance
of ROS as the damage-causing agent has been established in CIT, it is only touched on
briefly in this review—specifically in the context of cisplatin-induced inflammation. It is
becoming more and more apparent that immunologic signalling is the initiator of damage
effects under cisplatin treatment, and targeting components upstream of ROS work to
block the actual cisplatin interface of this signalling pathway. Many reports highlight the
close ties between innate immune stimulation and oxidative stress, with each positively
regulating the activity of the other [75,154,156]. Incidentally, immunogenic signalling and
oxidative stress appears to be important in potentiating cisplatin’s anti-cancer efficacy
as well [157,158]. As such, general targeting of ROS and DAMP signalling in all cells
may interfere with cisplatin functionality. While oxidative stress is a widespread effect
that plays a role in both CITs as well as cisplatin’s anti-tumour effects, immune receptors
appear to be predominantly involved in CIT development. In this way, targeting oxidative
stress is becoming a less favorable target to anti-inflammation-based therapy, which could
allow selectivity for non-tumour cell protection while not interfering with cisplatin’s
anti-cancer activity.

CIO is associated with a depletion of endogenous anti-oxidant factors and enzymes in
the cochlea, as well as an increase in oxidative enzymes such as the NADPH oxidase [154,158],
all leading to an increase in oxidative stress under cisplatin treatment. This elevated ROS
profile following cochlear injury mirrors effects that are seen following noise-induced
injury as well [159]. Consequently, antioxidants protect against both cisplatin-induced
and noise-induced hair cell death in the cochlea of the inner ear [154,160]. In keeping
with the tightly regulated relationship between ROS generation and immune signalling,
increased inflammatory signalling has been found to precede ROS generation in CIO [121],
but upregulation of transcription factors involved in anti-oxidation effects like nuclear
factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) can attenuate pro-
inflammatory cytokine secretion and resulting CIO [74,161], suggesting a positive feedback
mechanism between oxidative stress and inflammation in CITs. Similarly, NADPH oxidases
enhance TLR4-mediated inflammation in models of sepsis, where a lack of Nrf2 exacerbates
inflammation and ROS generation [156]. It has been suggested that this positive feedback
effect in CIO may occur via regulators like STAT1, which enhance both pro-inflammatory
cytokine production like TNF-α as well as oxidative species like iNOS [135]. Of course, the
role of ROS is not limited to CIO but is also involved in CIN and CIH, where oxidative
stress is stimulated by inflammatory mediators, or by cisplatin-induced mitochondrial,
endoplasmic reticular, or homeostatic dysfunction [104,112,162–164].
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Cisplatin-induced cell stress and ROS generation facilitate the release of DAMPs which
exacerbate inflammation and activation of cell death pathways. For more depth on the
role of ROS in CITs, please see a more comprehensive review [153]. For the purposes of
this review, our focus is on the role of inflammation as an instigator of CITs as a result of
the growing interest in identifying specific mechanisms and targets upstream of cisplatin-
induced damage.

5. Anti-Inflammatory Remedies

The prevention and treatment of cisplatin-induced toxicities thus far have been limited.
The most common course of action to prevent CIT onset has been to reduce dosage, risking
reduced efficacy of chemotherapy. Certain conditions, such as cisplatin-induced nephrotox-
icity, do have established standard of care procedures. These often only alleviate symptoms
rather than prevent or reverse the damage accumulated throughout the chemotherapeutic
process. Some strategies may even pose direct negative effects on the efficacy of cancer
treatment. There is thus considerable interest in the use of natural products and the develop-
ment of pharmaceuticals capable of preventing or ameliorating cisplatin-induced toxicities
with extreme specificity. Of the numerous compounds that have been investigated, the
most extensively studied have had anti-inflammatory properties as either their primary
or secondary mode of action. Other reviews have covered the entire gamut of potential
remedies; in the following, there will be a particular focus on the most well-established,
and most wide-acting, antioxidant and anti-inflammatory options.

For preclinical, all-natural remedies of CITs, the options are abundant (Table 1). At
the same time, there is a strong trend in preclinical research towards repurposing natu-
ral compounds for scientific and medical purposes as de novo drug discovery and drug
synthesis is both time-consuming and expensive. Notably, there is a discrepancy in trends
between preclinical natural remedies (Table 1) and current preclinical pharmacological
‘repurposed’ options (Table 2). Moreover, there is likely a great desire to determine whether
ancient forms of medicine hold up to academic scrutiny. Of those chosen and listed, the
vast majority do show promise as no-cost or low-cost dietary supplements, derived from
naturally occurring, edible plants and/or fauna. Whether their aptitude for rescue in-vitro
and in-vivo will translate to success in medical practice has yet to be seen; at the moment,
only two colloquially-considered natural products have cleared at least Phase I of clinical
testing for CIT therapy: Ginko Biloba Extract, for CIO, and Silymarin, for CIN (Table 3),
neither of which predominantly operate through specifically anti-inflammatory mecha-
nisms. While there is a substantial number of naturopathic treatments that test a variety of
explicitly anti-inflammatory mechanisms, of which this is not a comprehensive list, there is
a distinct lack of an anti-inflammatory focus in the pool of anti-CIT pharmaceuticals. Based
on current and extensive reviews on the most promising therapeutics and therapeutic
targets, there are really quite few pharmacological intervention options available that are
explicitly anti-inflammatory by design. Most of the preclinical and clinical pharmaceuticals
under investigation indicate a trend towards a focus on antioxidation, even if several of
them do boast potent, secondary, anti-inflammatory qualities.

Table 1. Examples of Prospective Natural Anti-Inflammatory CIT Remedies.

Classification Name Anti-Inflammatory
Mechanism(s) of Action Targeted CITs Reference(s)

Non-
Flavonoid

Polyphenol
Phytoalexin

Resveratrol

Inhibits TLR4 Signalling
Inhibits IL-6, TNF-α,

Inhibits NF-κB Signalling
Radical Scavenging

Metal Chelation

CIO
CIOV (Ovarian)

CIU (Uterine)
CIN

[165–176]
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Table 1. Cont.

Classification Name Anti-Inflammatory
Mechanism(s) of Action Targeted CITs Reference(s)

Bee Products

Honey Inhibits IL6, TNF-α, MCP-1, ICAM1 CIN [177]

Caffeic Acid Radical Scavenging CIO [178]

Bee Pollen Extract Inhibits IL6, IL1β
Inhibits NF-κB Signalling

CIN
CIH [179]

Mellit
(Bee Venom)

Inhibits IL-6, IL-1β, TNF-α
Upregulates IL-10

Alters/Inhibits Mθ Invasion
Enhanced T-Reg Activity

Inhibits COX2

CIN
CIPN (Potential) [180–182]

Flavonoid

Curcumin

Inhibits IL-6, IL-1β, TNF-α, MCP-1
Upregulates/maintains IL-10

Free Radical Scavenging
Inhibits COX

Inhibits JAK/STAT Signalling
Inhibits NF-κB Signalling

CIN
CIO

CIPN
CIH

[183–193]

Epigallocatechin
Gallate
(EGCG)

Inhibits MAPK Signalling
Dis-regulates STAT1/STAT3

Signalling
Inhibits IL-6, IL-1β, TNF-α
Inhibits NF-κB Signalling

Upregulates Nrf2

CIN
CIH

CICN
(Cerebral

Neurotoxicity)

[194–199]

Quercetin
Inhibits NF-κB Signalling
Potential COX Inhibition
Potential iNOS Inhibition

CIO
CIN [200–205]

Baicalein

Inhibits IL-6, TNF-α
Inhibits NF-κB

Inhibits TLR-2, TLR-4 Signalling
Upregulates Nrf2
Upregulates HO-1

CIN [93,206]

Wogonin
Inhibits IL-6, IL-8, IL-1β, MCP-1, TNF-α

Inhibits NF-κB Signalling
Inhibit COX2

CIN [207–209]

Glycyrrhizic Acid
(Licorice)

Inhibits IL-1β, TNF-α
Inhibits NF-κB Signalling
Reduces DAMP Release

CIN
CIH [210–212]

Hesperetin

Inhibits MAPK Signalling
Upregulates TNF-α Signal Inhibitor

Upregulates Nrf2
Upregulates HO-1

CIN [213]

D-Pinitol Inhibits IL-6, IL-1β, TNF-α CIN [214]

Sappanone A

Inhibits IL-6, IL-1β, TNF-α
Inhibits NF-κB Signalling

Inhibits COX2
Upregulates Nrf2

CIN [215–217]

Xanthohumol
Inhibits IL-6, IL-1β, TNF-α
Inhibits TLR4 Expression
Inhibits NF-κB Signalling

CIN [218]

Puerarin
Inhibits IL-6, TNF-α

Inhibits TLR4 Signalling
Inhibits NF-κB

CIN
CIO [219,220]
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Table 1. Cont.

Classification Name Anti-Inflammatory
Mechanism(s) of Action Targeted CITs Reference(s)

Icariin
Inhibits IL-1β, TNF-α

Inhibits NF-κB Signalling
Inhibits iNOS

CIN [221,222]

Genistein
Inhibits ICAM-1, MCP-1
Inhibits Mθ Infiltration

Inhibits NF-κB Signalling

CIN
CIO [223,224]

Galangin
Inhibits IL-6, IL-1β, TNF-α
Inhibits MAPK Signalling
Inhibits NF-κB Signalling

CIN [225,226]

Luteolin
Inhibits TNF-α

Inhibits NF-κB Signalling
Inhibits COX2

CIN [227]

Saponins Ginsenosides
(Several)

Inhibit IL-1β, TNF-α
Inhibit NF-κB Signalling

Inhibit COX2
Inhibit iNOS

CIN
CIO [228–233]

Alkaloids

Berberine

Inhibits IL-6, IL-1β, TNF-α
Inhibits MAPK Signalling
Inhibits NF-κB Signalling

Upregulates IL-10 s
Antioxidant Effect (Reduced ROS

Generation)

CIPN
CIO [234,235]

Betaine Inhibits IL-6, IL-1β, TNF-α
Inhibits NF-κB Signalling CIN [236,237]

Tetramethylpyrazine

Inhibits IL-1β, TNF-α
Inhibits TLR4 Signalling
Reduces DAMP Release

Upregulates Nrf2s

CIN
CIO (Potential) [238,239]

Other
Natural

Compounds

Astragaloside

Inhibits IL-1β, TNF-α
Inhibits Caspase-1 & NLRP3

Inhibits NF-κB Signalling
Upregulates Nrf2

CIN [113,240]

Sinapic Acid

Inhibits IL-6, IL-1β, TNF-α
Inhibits NF-κB Signalling

Upregulates Nrf2
Upregulates HO-1

CIN [241,242]

Vanillin

Inhibits IL-18, TNF-α
Inhibits NF-κB Signalling

Inhibits iNOS
Upregulates IL-10
Upregulates Nrf2

CIN [243,244]

Table 2. Examples of preclinical anti-inflammatory therapeutics for cisplatin-induced toxicities.

Classification Name Anti-Inflammatory
Mechanism(s) of Action Targeted CITs Reference(s)

Anti-Inflammatory
(Iridoid Glycoside) Aucubin

Inhibits TNF-α
Inhibits STAT3/MAPK

Signalling
Inhibits NF-κB

Signalling
Upregulates HO-1

CIN [245]
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Table 2. Cont.

Classification Name Anti-Inflammatory
Mechanism(s) of Action Targeted CITs Reference(s)

Anti-Inflammatory
(COX2 Inhibitor) Etoricoxib

Inhibits TNF-α
Inhibits iNOS
Inhibits COX2

CIN [173]

Anti-Inflammatory
(Clove Oil) Eugenol Inhibits IL-6, TNF-α

Inhibits COX2

CIO
CIN
CITT

(Testicular)

[246–249]

Anti-Inflammatory
(Iridoid Monoterpinoid) Monotropein Upregulated HO-1

Upregulated Nrf2 CIN [250–252]

Anti-Inflammatory
(Synthetic Luteolin) Isoorientin

Inhibits MAPK
Signalling

Reduces DAMP Release
Inhibits NF-κB

Signalling
Upregulated HO-1
Upregulates Nrf2

CIN [253]

Anti-Inflammatory
(Calcium Antagonist) Flunarizine

Inhibits IL-6, IL-1β, TNF-α
Inhibits MAPK

Signalling
Inhibits NF-κB

Signalling
Upregulates Nrf2
Upregulates HO-1

CIO
CIUN

(Uremic Neuropathy)
[75,254–256]

Anti-Inflammatory
R-

Phenylisopropyladenosine
(R-PIA)

Inhibits TNF-α
Inhibits MAPK

Signalling
Inhibits STAT1

Signalling
Inhibits iNOS
Inhibits COX2

CIO [257]

Solubilised Membrane
Protein Thrombomodulin Alfa Thrombin-Mediated

DAMP Degradation Chemotherapy-IPN [258–260]

Anti-Inflammatory
(Nrf2 Activator) Dimethyl Fumarate

Inhibits Immune Cell
Infiltrations

Upregulation of Nrf2s
Inhibits IL-6, IL4, IL-10, TNF-α

Chemotherapy-IPN
CIPNs

CIN
[261–263]

Table 3. Therapeutics for CITs in clinical trials [264,265].

Clinical Trial Status Intervention
(Name) Mechanism(s) of Action Listed Target

Condition (CIT)
Additional

Reference(s)

Recruiting N-Acetylcysteine Antioxidant CIO
(CIN) [266–269]

Terminated Sodium Thiosulfate
(Trans-Tympanic Gel) Antioxidant CIO [270,271]

Completed Ginkgo Biloba Extract
(GBE761)

Antioxidant
Anti-Inflammatory CIO [272–275]

Completed Sodium Thiosulfate Antioxidant CIO [270,271]

Not Recruiting Sodium Thiosulfate
(+Mannitol) Antioxidant CIO [270,271]
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Table 3. Cont.

Clinical Trial Status Intervention
(Name) Mechanism(s) of Action Listed Target

Condition (CIT)
Additional

Reference(s)

Recruiting Rosuvastatin

Cholesterol Reduction
(HMG-CoA Inhibition)

Antioxidant
Anti-Inflammatory

CIO
CIN [276–282]

Completed Dexamethasone
(Synthetic Corticosteroid)

Anti-Inflammatory
Antioxidant CIO [283–288]

Terminated
OTO-104

(Dexamethasone
Hydrogel)

Anti-Inflammatory
Antioxidant CIO [289]

Recruiting
Tempol

(SOD and Catalase
Mimetic)

Antioxidant CIN
CIO [290–293]

Completed Silymarin Antioxidant
Anti-Inflammatory CIN [294–296]

Completed Mannitol
(Intravenous) Osmotic Diuretic CIN [297–300]

Completed Preloaded Magnesium
Homeostatic

Cisplatin Efflux Regulation
(Downregulated Transporters)

CIN [301–306]

Completed
Acetazolamide

+ Mannitol,
(+N-Acetylcysteine)

Alkaline Diuretic
(Carbonic Anhydrase Inhibitor) CIN [307,308]

Recruiting Pantoprazole
Cisplatin Influx Regulation

(OCT2 Inhibitor)
Anti-Inflammatory

CIN [309,310]

This is not necessarily unusual, or unexpected. The use of anti-inflammatory drugs can
be complicated—especially within the framework of cancer and chemotherapy. The use of
anti-inflammatory prescription medication is extremely regulated. Regimens must be well
optimised, if not outright personalised, to avoid dangerous levels of immunosuppression
and risk of complications. Patients undergoing chemotherapy are often rendered immuno-
suppressed to some extent already, so the introduction of additional anti-inflammatory
agents may certainly prove to be problematic. There is, for instance, quite a complicated re-
lationship between non-steroidal anti-inflammatory drugs (NSAIDs) and cisplatin efficacy
already. Most NSAIDs operate by inhibiting the actions of the pro-inflammatory factor,
COX2—as many of the preclinical natural and pharmaceutical anti-inflammatory options
listed. Unlike those therapeutics, however, meta-analyses have identified cases wherein
NSAIDs have, unexpectedly, resulted in either the inhibition of cisplatin treatment or the
promotion of CITs—CINs and CICs specifically [311]. Despite this, research into NSAID
use during chemotherapy has continued, and several NSAIDs appear capable of improving
the outcomes of cisplatin chemotherapy in-vitro and in-vivo [312]. Etoricoxib, as described
above, qualifies as a typical NSAID and is representative, in truth, of quite a number of
NSAIDs, such as the salicylates, with demonstrable capacity to alleviate CITs, such as CIO
and CIN, with little to negative effects on chemotherapy. There are reports of salicylates
selectively boosting the cytotoxicity of cisplatin against tumours as chemosensitisers as
well [313–316]. Indeed, there are numerous studies that suggest that anti-inflammatory
approaches, even beyond the use of NSAIDs, may actually improve the outcomes of
chemotherapy [312,317–321]. More importantly, literature detailing the potential of afore-
mentioned compounds (Tables 1 and 3) as chemosensitisers for chemotherapy—cisplatin
included—is growing likely extensively enough to warrant its own review [322–327].
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As such, there is still a substantial area of research open in CIT therapeutics for targeted,
anti-inflammatory therapies that would be designed to interfere with the initiation of the
inflammatory signalling cascade, a prospect that is not available for therapies that rely on
scavenging of ROS. Given the current landscape of this research and its shift from anti-
oxidative to anti-inflammatory therapies, we are closer than ever before to understanding
the mechanism of CIT and intercepting the pathways to inflammation, and subsequent ROS
generation, to prevent toxicities before they are able to occur. Further insights into these
pathways and development of combinatorial therapies with cisplatin and inflammation-
based protectants may play an important role in improving long-term health outcomes for
cancer patients.
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