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Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine and metabolic
disorder in women, which is characterized by androgen excess, ovulation dysfunction,
and polycystic ovary. Although the etiology of PCOS is largely unknown, many studies
suggest that aberrant DNA methylation is an important contributing factor for its
pathological changes. In this study, we investigated DNA methylation characteristics
and their impact on gene expression in granulosa cells obtained from PCOS patients.
Transcriptome analysis found that differentially expressed genes were mainly enriched in
pathways of insulin resistance, fat cell differentiation, and steroid metabolism in PCOS.
Overall DNA methylation level in granulosa cells was reduced in PCOS, and the first
introns were found to be the major genomic regions that were hypomethylated in PCOS.
Integrated analysis of transcriptome, DNA methylation, and miRNAs in ovarian granulosa
cells revealed a DNA methylation and miRNA coregulated network and identified key
candidate genes for pathogenesis of PCOS, including BMP4, ETS1, and IRS1. Our
study shed more light on epigenetic mechanism of PCOS and provided valuable
reference for its diagnosis and treatment.
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INTRODUCTION

Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder. According
to the Rotterdam or Androgen Excess and Polycystic Ovary Syndrome diagnosis criteria, PCOS
is characterized primarily by hyperandrogenism and accompanied by hirsutism, androgenetic
alopecia, and acne (Fauser et al., 2004; Azziz et al., 2009). Other features include polycystic
ovarian morphology (PCOM) and ovulation dysfunction, such as oligo-ovulation and anovulation
(Qi et al., 2019). PCOS affects approximately 5–20% of women of reproductive age (Fauser
et al., 2004). Girls with hereditary PCOS begin to develop hyperinsulinemia as early as age
4 years, and premature pubarche and menstrual irregularity during adolescence affect their health.
Postmenopausal women with PCOS have increased risk of cardiovascular and cerebrovascular
diseases (Macut et al., 2017). Furthermore, long-term morbidity of PCOS is associated with various
complications. Many patients suffer from metabolic syndrome, which increases the prevalence of
type 2 diabetes mellitus (T2DM) (Moran et al., 2010; Gambineri et al., 2012) and gestational diabetes
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(Pan et al., 2015). Some studies also indicated that women with
PCOS are more likely to suffer from depression and anxiety
(Dokras et al., 2011). Moreover, recent studies have shown
that the gut microbiota is changed in individuals with PCOS
(Qi et al., 2019).

Genetic and lifestyle factors contribute to pathogenesis of
PCOS (Edgar Ricardo et al., 2019). Maternal hyperandrogenism
and insulin resistance can be transmitted to offspring, and
obesity induced by imbalance of food intake and energy
expenditure can lead to increased androgen and influence the
severity of insulin resistance, which in turn contribute to the
development of PCOS (Carmina, 2003; Merkin et al., 2016).
However, no single gene has been identified as the common
etiology of PCOS, and recent studies have turned attention
to the epigenetic mechanism of PCOS. Multiple genome-wide
studies suggested that epigenetic factors, such as non-coding
RNAs and DNA methylation, are closely associated with PCOS
(Yu Y.Y. et al., 2015; Mu et al., 2021). microRNA is involved
in proliferation, apoptosis, and steroid production of ovarian
cells (Sirotkin et al., 2010). The miR-513a-3p is expressed in
human ovarian granulosa cells (GCs) and plays a central role
in ovarian follicular maturation, ovulation, and maintenance
of corpus luteum (Liu S. et al., 2015). However, in PCOS
patients, miR-99a and miR-323 target insulin-like growth factor
1 receptor (IGF-1R) and IGF-1, respectively, to regulate GC
apoptosis (Geng et al., 2019; Wang et al., 2019). In addition,
hundreds of lncRNAs were aberrantly expressed in cumulus
cells from PCOS patients (Huang et al., 2016), and CTBP1-AS
was identified as an androgen-responsive lncRNA that promotes
transcriptional activity of androgen receptor and cell cycle
progression (Liu et al., 2017).

DNA methylation, as an important content of epigenetics,
plays an important role in pathogenesis of PCOS. Studies
showed that DNA methylation is increased in the promoter
region of the peroxisome proliferator-activated receptor
gamma 1 (PPARGC1A) and represses its expression.
Reduced PPARGC1A expression is associated with insulin
resistance, high serum androgen levels, and reduction of
mitochondrial DNA content in women with PCOS (Zhao et al.,
2017). Conversely, DNA methylation level of LHCGR gene
promoter is reduced in PCOS, and its overexpression leads
to increased LH in GCs, which in turn leads to gonadotropin
disorder in PCOS women (Mutharasan et al., 2013). In
addition, many studies reported that expression of genes
involved in cellular processes, such as lipid and steroid
synthesis and sugar metabolism, is altered by abnormal
DNA methylation and also contributes to the pathogenesis
of PCOS (Salehi Jahromi et al., 2018) (Huang et al., 2007;
Kokosar et al., 2016).

In this study, we tried to elucidate the epigenetic regulatory
mechanism of PCOS by integrating DNA methylation,
transcriptome, and miRNA profile in GCs of PCOS. Our
study depicted the DNA methylation characteristic of PCOS.
Importantly, we predicted a DNA hypomethylation and miRNA
coregulated network in PCOS and identified several marker
genes using bioinformatics method. The findings of study
provide valuable reference for diagnosis and treatment of PCOS.

MATERIALS AND METHODS

Dataset Collection
The data used in this study was downloaded from Gene
Expression Omnibus (GEO) (Mao et al., 2021). The RNA-seq
data were obtained under accession number GEO: GSE155489.
The DNA methylation MBD-seq data were obtained under
accession number GEO: GSE138573. The miRNA data sequenced
by small RNA-seq were obtained under accession number GEO:
GSE138572. The data were generated using GCs obtained from
PCOS and normal ovaries. Four duplicate samples of PCOS
and control GCs were included in RNA-seq data, respectively.
Three duplicate samples of PCOS and control GCs were included
in MDB-seq, respectively. Five duplicate samples of PCOS and
control GCs were included in miRNA data, respectively.

Differentially Expressed Genes and
Differentially Expressed miRNAs Analysis
Genes with averaged FPKM < 0.1 in all individual samples were
removed, and the remaining genes were considered as expressed
genes. Similarity, only miRNAs with averaged FPKM > 0.1 in all
individual samples were used in the analysis (Cao et al., 2014). R
package DEseq2 was used in differentially expressed gene (DEG)
analysis and differentially expressed miRNA (DEmiR) analysis,
and read count was used as input. Genes and miRNAs with
absolute log2 fold change (FC) > 1 and q < 0.05 were defined
as DEGs and DEmiRs, respectively, where q value is the result of
p value correction (Cao et al., 2020; Ping et al., 2020).

Analysis of Differentially Methylated
Regions
SMART2 package of Python was used for the differentially
methylated region (DMR) analysis. The parameter setting
was as follows: CpG Distance: 500, AbsMeanMethDiffer: 0.3,
p_DMR: 0.05, Euclidean_Distance: 0.2, Segment_Length: 20,
and Methylation_Specificity: 0.5 (Liu H. et al., 2015). DNA
methylation level of the gene was represented by average DNA
methylation level of CpG segments in gene promoters, and | 1β|
> 0.2 was used to define differentially methylated gene (Gao et al.,
2018). Hypermethylation and hypomethylation marks of each
group were determined by the one-sample t test in SMART2.

PPI Network Analysis
DNA hypomethylation-affected upregulated genes were
identified by integrated analysis of transcriptome and
DNA methylation. The human protein interaction pairs
(9606.protein.links.v11.0) were downloaded from the STRING
database1 and used as background network. The pairwise
interaction genes in the DNA hypomethylation regulated gene
modules were defined as seed nodes, and the Pearson correlation
coefficient was used as the weight of the edges. By combining
the background PPI network and the co-expression networks
composed of the seed nodes, two gene co-expression networks
of candidate markers were obtained (Mao et al., 2021). MCODE

1https://string-db.org/
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FIGURE 1 | Transcriptional profile of human PCOS. (A) Principal component analysis (PCA) of global transcriptomes in GCs obtained from PCOS and control
ovaries. The samples are represented by different colors as indicated in the right. (B) Volcano plot showing differentially expressed genes (DEGs) obtained by a
pairwise comparison between PCOS and control GCs. Upregulated and downregulated genes were colored in red and blue, respectively. (C) Analysis of PCOS
transcript profiles and genes function. (D) The GO chord showing the biological processes and genes that participate in PCOS. (E) KEGG analysis of differentially
expressed genes between PCOS and control.
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application was used for models mining. The parameters settings
of MCODE application were as follows: degree cutoff: 2, node
score cutoff: 0.2, K-Core: 2, and maximum depth: 100.

Construction of miRNAs Target Gene
Network
The target genes of DEmiRs were identified using TarBase
database (7.0)2 (Vlachos et al., 2015). The intersection of miRNA

2http://diana.cslab.ece.ntua.gr/tarbase/

target genes and DEGs between PCOS and controls were
considered as genes that were regulated by miRNA in PCOS.

Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes Pathway
Analysis
Functional annotation was performed with the DAVID database3

(Dennis et al., 2003; Sun et al., 2020). Gene Ontology (GO)
terms and Kyoto Encyclopedia of Genes and Genomes (KEGG)

3https://david.ncifcrf.gov/home.jsp

FIGURE 2 | The methylome changes of human PCOS. (A) Violin plot of DNA methylation levels of PCOS and control GCs. (B) Heatmap of DMRs between PCOS
and control GCs. Each row represents a DMR, and averaged CpG methylation levels are represented by different colors. (C) Chromosome distribution of DMRs. The
number of dots represents the distribution of DMR across different chromosomes.
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pathways for each functional cluster were summarized to a
representative term, and p values were plotted to show the
significance (Bao et al., 2019, 2021).

Statistical Analysis and Data
Visualization
The R/Bioconductor software packages4 and Python package
were used in the statistical analysis (ChiPseeker, dplyr, psych
add SMART2) (Yu G. et al., 2015; Reece and Hulse, 2020). All
networks were visualized using the software Cytoscape (Shannon
et al., 2003). R packages (pheatmap, UpSetR, CMplot, ggplot2,
and GOplot) were used for data visualization [heatmap, upset

4http://www.bioconductor.org

plot, Manhattan plot, principal component analysis (PCA) plot,
Go chord plot] (Conway et al., 2017; Ni et al., 2019; Cao et al.,
2020; Zhou et al., 2020).

RESULTS

Transcriptional Profiles of GCs in Human
PCOS
PCOS is a metabolic disease whose etiology has not been fully
understood (Li S. et al., 2016). Accumulating evidences suggest
that abnormal gene expression is one of the main contributing
factors for the development of PCOS. In order to take a deeper
insight into the potential molecular mechanism of PCOS, we

FIGURE 3 | Genomic region preference and functional analysis of DMRs. (A) GO term analysis of hypo DMRs in GCs obtained from PCOS and control ovaries.
(B) KEGG analysis of hypo DMRs in GCs obtained from PCOS and control ovaries. (C,D) Genomic distribution of the hypo DMRs and hyper DMRs. Pie charts
represent proportion of DMRs in different genomic contexts. Upset graphs represent the number of DMRs distributed in single or combined genomic regions.
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conducted genome-wide transcriptome analysis based on RNA-
seq data in GCs obtained from PCOS and normal ovaries.

PCA was first performed to investigate the transcriptional
difference between GCs of PCOS and normal ovaries
(Figure 1A). The PC1 axis contributed to the main difference
between PCOS and normal GCs, accounting for 73%. On
this axis, PCOS and normal GCs were split into two separate
clusters showing distinct gene expression profiles. The control
samples did not gather together on PC2 axis, which may due
to the heterogeneity of normal individuals. This finding was
consistent with the clustering of sample correlation coefficient
analysis (Supplementary Figure 1A). We further identified 470
upregulated genes and 548 downregulated genes in GCs from
PCOS (padj < 0.05 and |log2FC| > 1; Figure 1B). Among them,
PCK1 is the rate-limiting enzyme that regulates gluconeogenesis,
and CYP1B1 plays an important role in estrogen metabolism,
probably corresponding to the phenotype of obesity and
hormonal disturbance in PCOS patients, respectively.

Then we performed unsupervised hierarchical clustering
analysis of these DEGs and confirmed a significantly different
gene expression pattern between PCOS and the controls
(Figure 1C). We further conducted GO analysis and found
the DEGs were significantly enriched in biological processes
such as steroid metabolic process, response to insulin, female
pregnancy, estrous cycle, response to lipopolysaccharide, and
fat cell differentiation (Figure 1C), implying that abnormal
transcriptional changes in these biological processes may
contribute to the development of PCOS. In support of our
hypothesis, some genes involved in these biological processes
have already been reported to play important roles in PCOS
pathogenesis. For example, nuclear receptor subfamily 4 group
A member 1 (NR4A1) is upregulated in ovarian GCs and
participates in upregulation of androgen in PCOS patients
(Song et al., 2019). CEBPD is a leucine zipper transcription
factor involved in inflammation and adipogenesis in PCOS
(Ma et al., 2020; Figure 1D). Except for the reported findings,
we found one set of genes including ID1, ID2, and ID3 was
significantly enriched in biological processes of the circadian
rhythm and speculated that insomnia in some PCOS patients
may due to the abnormal expression of these genes. In order
to take a closer look at the changes in signaling pathways,
we carried out KEGG analysis and found that the DEGs were
enriched in signaling pathways of tumor necrosis factor (TNF),
transforming growth factor β (TGF-β), and metabolic and steroid
hormone biosynthesis (Figure 1E). These results suggested that
the biological processes and signaling pathways in which the
DEGs are enriched could contribute to the development of PCOS.

The Methylome Profile of GCs in Human
PCOS
Previous studies have shown that epigenetic changes including
DNA methylation are crucial for the development of PCOS.
To characterize the abnormal DNA methylation in PCOS, we
evaluated overall DNA methylation levels and found remarkable
hypomethylation in GCs from PCOS compared with the normal
GCs (Figure 2A). In order to take a closer look at the

potential regulatory mechanism of aberrant DNA methylation
in PCOS, we performed DMR analysis using Python package
“SMART2” (Figure 2B) and identified hyper-DMRs and hypo-
DMRs, respectively (Figure 2C). The hypo-DMRs accounted for
the majority of DMRs (n = 495), whereas there were only 25
hyper-DMRs that account for 5% of the DMRs. These results
indicated that hypomethylation is a key characteristic of PCOS
and prompted us to focus on it. GO analyses found that the hypo-
DMRs genes were mainly enriched in GO terms of adipose tissue
development, glucose homeostasis, and pancreas development,
which correspond to the characteristics of acne, obesity, and
insulin resistance in PCOS patients (Figures 3A,B). In the KEGG
enrichment analysis, the hypo-DMRs genes were found to be
mainly involved in insulin secretion, diabetes, dopaminergic
synapse, and thyroid hormone signaling pathways, which may
associate with the diabetes and hormonal disorders in PCOS
patients. Taken together, hypo-DMR plays a critical role in PCOS
by altering gene expression in important biological processes and
signaling pathways.

In order to investigate the genomic regional preference, the
DMRs were mapped to the whole genome. Distribution map
of DMRs showed that hypo-DMRs were more prevalent in
promoter region near TSS than hyper-DMRs (Supplementary
Figures 1C,D). Interestingly, besides the longer genomic regions
such as the distal intergenic regions and other intron regions,
the DMRs were predominantly located in the first intron. This
suggested that DNA hypomethylation in the first intron probably
plays an important role in regulating gene expression in PCOS
(Figures 3C,D).

Integrated Analysis of DNA Methylation
and Transcriptome in PCOS
To further explore the role of aberrant DNA methylation in
PCOS, we carried out an integrated analysis of the transcriptome
and DNA methylome. The genes affected by abnormal DNA
methylation were identified by comparing changes in gene
expression and methylation levels between PCOS and the normal
GCs. Genes with significant changes in DNA methylation levels
(abs change >0.2) and expression levels (abs log2 FC > 1)
were defined as “methylation-affected genes” (Figure 4A). All
genes were divided into methylation-affected genes with either
repressed or activated expression. As DNA hypomethylation is an
important characteristic of GCs in PCOS and DNA methylation
inversely associates with gene expression, we identified a subset
of hypomethylation-affected upregulated genes (n = 94) and
calculated the Pearson correlation coefficient between gene pairs
and performed unsupervised hierarchical clustering (Figure 4A).
Then, two closely related gene modules with strong correlations
were generated for subsequent analysis (Figure 4B). Thus, our
analysis identified a number of important PCOS-related genes
whose expression level was regulated by DNA hypomethylation.

Analysis of Gene Coexpression Network
Based on the pairwise interaction genes in the aforementioned
two modules (Figure 4B) and human–protein interaction
pairs (9606.protein.links.v11.0) downloaded from the STRING
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FIGURE 4 | Identification of the hub methylation marker genes in PCOS. (A) Scatterplots showing the comparison between transcriptome and the DNA methylome.
Genes with significant changes in DNA methylation levels (abs change >0.2) and expression levels (abs log2 fold change >1) were defined as “methylation-affected
genes.” Hypermethylation-affected downregulated genes were labeled in blue; Hypomethylation-affected upregulated genes were labeled in red. (B) Heatmap
showing the module clustering of 94 methylation-affected upregulated genes by Pearson correlation coefficient. (C,D) Network diagrams showing interaction of
genes in the two modules that were obtained in panel (B). Hub node genes were highlighted by yellow. The genes in the small networks are highly connected in the
networks calculated by module mining.
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database, two-gene coexpression interaction networks were
constructed by Cytoscape (Figures 4C,D). Based on topological
properties of the networks, genes with high degree of node (hub
node genes) were identified as candidate genes. Then, three
small modules composed of 10 highly connected genes were
extracted from the two networks using the Cytoscape application
“MCODE” (Figures 4C,D). The genes in these modules were
considered as marker genes regulated by hypomethylation,
including BMP4, KLF5, PER1, EST1, CRY1, and FAT4. Some
of the candidate genes have been reported to play key roles
in PCOS such as ETS1 and NR4A1 (Kasch et al., 2018;
Song et al., 2019). Among the other genes, BMP4 regulates
conversion of white and brown fat and is closely related to
the occurrence of T2DM (Hoffmann et al., 2017); the circadian
gene PER1 senses progesterone signal during human endometrial
decidualization (Zhang et al., 2019). These genes may be involved
in the development of PCOS by regulating insulin metabolism,
adipocyte differentiation, and circadian biological processes. In
general, we constructed two-gene coexpressed networks of PCOS
and identified several PCOS-related target markers regulated by
DNA hypomethylation.

The miRNAs Profiles of GCs in Human
PCOS
Abnormal expression of miRNAs in female reproductive organs
such as uterus, fallopian tubes, and ovaries is involved in
pathological changes of the organs (Bagga et al., 2005). To
illustrate the regulatory functions of miRNAs in PCOS, we
compared miRNA profiles of GCs in PCOS and normal ovaries.
We identified 19 upregulated miRNAs and 10 downregulated
miRNAs in PCOS, respectively (padj < 0.05 and |log2FC| > 1;
Figure 5A). Unsupervised hierarchical clustering analysis of the
DEmiRs showed distinct expression patterns in the PCOS and
control GCs (Figure 5B). Of note, miR-141-3p was one of the
key miRNA significantly downregulated in PCOS, which was
reported to inhibit cell proliferation and promotes apoptosis (Lin
et al., 2014). Consistent with previous report in cumulus cells
(Liu S. et al., 2015), miR-508-3p was upregulated in GCs of PCOS
patients. In order to further explore the function of miRNAs in
PCOS, we performed GO and KEGG enrichment analysis on the
target genes of the DEmiRs. The target genes of the DEmiRs
were mainly enriched in GO terms of circadian rhythm, apoptotic
process, cell proliferation, and lipopolysaccharide. In the KEGG
enrichment analysis, the target genes were mainly involved in
circadian rhythm, TGF-β signaling pathway, and TNF signaling
pathway (Figures 5C,D). These results indicated that the DEmiRs
contribute to the development of PCOS by regulating some key
biological processes and signaling pathways.

It is well known that miRNA can lead to the degradation
or translational inhibition of mRNA (Bartel, 2004). Taking the
intersection of miRNA target genes and DEGs between PCOS
and controls, we identified genes that were most likely regulated
by miRNA in PCOS, including upregulated miRNA target genes
(n = 106) and downregulated miRNA target genes (n = 56),
respectively (Supplementary Figure 1E). In order to elucidate
possible regulatory function of miRNAs in gene expression,

we performed miRNA–gene interaction networks analysis using
Cytoscape (Figures 5E,F). Some of the genes in the networks,
such as GDF15, INSIG2, have already been reported to be
involved in PCOS. For example, GDF15 is closely related to
insulin resistance, hyperandrogenemia, and menstrual disorder
in PCOS (Berberoglu et al., 2015). Apart from the reported genes,
we newly identified one set of genes that were represented by
CD44, IRSI, CYP1B1, and HMGA1. These genes play important
roles in ovarian function and androgen metabolism and are
likely to be involved in pathogenesis of PCOS. For example,
the deficiency of endometrial epithelial CD44 adhesion complex
contributes to the endometrial infertility (Paravati et al., 2020)
and likely to be involved in the pathogenesis of PCOS by affecting
ovarian function. In conclusion, we constructed the miRNAs
regulatory networks of PCOS and identified several important
target genes regulated by aberrant miRNAs.

Importantly, we found 13 genes including BMP4, ETS1,
IRS1, FGFR1, CYP1B1, and KLF5, which were coregulated
by downregulated miRNAs and hypo-DNA methylation
(Figure 6A). Some of the genes such as ETS1 and FGFR1 have
been reported to participate in the development of PCOS (Song
et al., 2019; Patil et al., 2020). Among the other genes, KLF5
is an important transcription factor that regulates androgen-
AR signaling (Li et al., 2020); CYP1B1, a dioxin-inducible
oxidoreductase, is involved in the metabolism of estradiol
(Muneeb et al., 2014); IRS1 is an insulin receptor substrate
gene that mediates the control of various cellular processes
by insulin (Kasch et al., 2018; Park et al., 2018). These genes
were significantly enriched in biological processes of adipocyte
differentiation, insulin resistance, female pregnancy, and
circadian rhythm, indicating they are likely to be involved in
pathogenesis of PCOS. Taken together, our analysis predicted a
DNA methylation and miRNA-mediated coregulation profile in
PCOS (Figure 6B).

DISCUSSION

Accumulating evidences indicated that epigenetic alterations
occur in the peripheral and umbilical cord blood, as well as
in ovary, adipose tissue, and skeletal muscle in women with
PCOS (Sirotkin et al., 2010; Roth et al., 2014; Edgar Ricardo
et al., 2019). These epigenetic alternations are correlated with
systemic and tissue-specific dysfunctions in PCOS, highlighting
their importance in PCOS pathogenesis (Edgar Ricardo et al.,
2019). As GCs establish a very close relationship with the female
gametes even before oogonia differentiation and better represent
molecular characteristics of PCOS, we focused on ovarian GCs to
investigate the epigenetic regulatory mechanism of PCOS.

Many previous studies suggested that lifestyle and genetic
factors contribute to the development of PCOS (Li S. et al.,
2016). However, the etiology of PCOS remains unclear. In this
study, we investigated DNA methylation characteristics and
screened potential epigenetic markers. We identified several key
genes, such as IRS1, KLF5, CYP1B1, ETS1, and BMP4, and
some signaling pathways including steroid metabolic process,
response to insulin, female pregnancy, estrous cycle, and fat cell
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FIGURE 5 | The miRNA profiles of Human PCOS. (A) Volcano plot comparing miRNA expression profiles of PCOS and control GCs. Upregulated and downregulated
miRNAs were colored in red and blue, respectively. (B) Heatmap of differentially expressed miRNAs between PCOS and control GCs. Each row represents a miRNA,
and colors represent expression levels. (C,D) GO and KEGG analysis of differentially expressed miRNA target genes GCs obtained from PCOS and control ovaries.
(E) Network diagram showing interaction between upregulated miRNAs and their target genes. (F) Network diagram showing interaction between downregulated
miRNAs and their target genes. Colored nodes represent miRNA; gray nodes represent target genes; colored edges indicate miRNA-target interaction.
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FIGURE 6 | The DNA methylation and miRNA coregulation profile in PCOS. (A) Venn diagram showing the genes that are coregulated by downregulated miRNAs
and reduced DNA methylation in PCOS. (B) Coregulation of DNA methylation and miRNA in PCOS. The key molecular markers and pathways are labeled in different
colors. The hollow box represents the signaling pathway where the marker genes are involved, and the solid box represents the genes that are coregulated by
miRNA and DNA methylation.

differentiation. The alternation of these genes’ expression and
signaling pathways could contribute to the symptoms of PCOS,
such as the type 2 diabetes, infertility, hormonal disorders, and
obesity (Combs et al., 2021; Mao et al., 2021). Additionally,
we found some DEGs were significantly enriched in circadian
rhythm signaling pathway (Figure 1E), suggesting that insomnia
observed in some of the PCOS patients might be due to the
expression changes of these genes.

Change in DNA methylation is involved in various diseases
processes, and aberrant DNA methylation of CYP17, CEBPB,
PPARG, and SVEP1 genes has been reported in PCOS (Huang
et al., 2007; Kokosar et al., 2016). Consistent with previous
studies, we found that overall DNA methylation is reduced in
GCs of PCOS (Liu et al., 2020) and further identified several
marker genes that are regulated by the hypo-DNA methylation,
including BMP4, KLF5, IRS1, LPIN1, and ABCC8. Among them,
LPIN1 plays a critical role in adipocyte differentiation and
lipid metabolism (Chang et al., 2010). Pathogenic variants of
ABCC8 are the most common genetic cause of neonatal diabetes

and hyperinsulinism (De Franco et al., 2020). Furthermore,
these genes were enriched in biological processes of insulin
and lipid metabolism, and dysregulation of these genes may
contribute to the development of PCOS. Interestingly, the first
intron was found to be the main genomic region where DNA
hypomethylation happened. As DNA methylation of the first
intron inversely associates with gene expression regardless of
tissue and species (Anastasiadi et al., 2018), reduction of DNA
methylation in the first intron could lead to upregulation in gene
expression and disturb normal biological process. This indicated
that the first intron was an important genomic functional region
whose change in DNA methylation likely contributes to the
pathogenesis of PCOS.

Abnormal activation or inhibition of signal pathway is closely
related to the development of PCOS. TGF-β signaling pathway
and mitogen-activated protein kinase (MAPK) signaling pathway
have been reported to be involved in PCOS (Liu S. et al., 2015).
In our study, we found the DEmiRs were enriched in TGF-
β signaling pathway, MAPK signaling pathway, and circadian
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rhythm. These findings collectively suggested that TGF-β and
MAPK signaling pathway are crucial for the development of
PCOS and supported our proposal that miRNAs regulation is an
important layer of regulatory machinery in PCOS. miR-141-3p
was reported as an important DEmiR in the rat model of PCOS
(Li D. et al., 2016) and found to regulate target genes such as
KLF5, IRS1, and CYP1B1 in GCs of PCOS patients in our study
(Figure 5F). Coincidentally, DNA hypomethylation happens
on these target genes, and their expression was upregulated
(Figure 6A), indicating a coregulatory mechanism of DNA
hypomethylation and miRNA in the pathogenesis of PCOS.

In conclusion, our study indicated that DNA hypomethylation
is one of the main characteristics of PCOS, and the first
intron was found to be the key genomic elements where DNA
hypomethylation was observed, indicating its active involvement
in the pathogenesis of PCOS. Importantly, we predicted a
DNA hypomethylation and miRNA coregulated network in
PCOS and provided several candidate target genes including
BMP4, CYP1B1, IRS1, ETS1, and LPIN1. These genes participate
in important signaling pathways and biological process and
potentially serve as molecular targets for diagnosis and treatment
of PCOS. However, our findings are based on genome-wide data
analysis and need further validation in experimental models. As
developmental competence of oocyte is greatly impaired in PCOS
(Alexandria and Jennifer, 2019), it is interesting to investigate the
underlying molecular mechanism of oocyte dysfunction in PCOS
and clarify its impact on offspring in the future.
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