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Abstract: Cross-linked derivatives of acylated branched polyethyleneimine containing
2-isopropyl-2-oxazoline units were investigated in chloroform and aqueous solutions using methods
of molecular hydrodynamics, static and dynamic light scattering, and turbidity. The studied
samples differed by the cross-linker content. The solubility of the polyethyleneimines studied
worsened with the increasing mole fraction of the cross-linker. Cross-linked polyethyleneimines were
characterized by small dimensions in comparison with linear analogs; the increase in the cross-linker
content leads to a growth of intramolecular density. At low temperatures, the aqueous solutions
of investigated samples were molecularly dispersed, and the large aggregates were formed due
to the dehydration of oxazoline units and the formation of intermolecular hydrogen bonds. For
the cross-linked polyethyleneimines, the phase separation temperatures were lower than that for
linear and star-shaped poly-2-isopropyl-2-oxazolines. The low critical solution temperature of the
solutions of studied polymers decreased with the increasing cross-linker mole fraction. The time of
establishment of the constant characteristics of the studied solutions after the jump-like change in
temperature reaches 3000 s, which is at least two times longer than for linear polymers.

Keywords: polyethyleneimine; cross-linking polymers; molecular hydrodynamics; light scattering;
thermoresponsive polymers

1. Introduction

Thermosensitive polymers have become ever more interesting objects for study because of
the wide range of their application in various fields, especially in medicine and biotechnology.
For example, they are used as components of drug delivery systems and membranes, diagnostics
agents, tissue engineering, etc. [1–4]. During the recent years, the potential of using thermosensitive
polymers of complex architecture in medicine has been demonstrated [5,6]. Of particular interest are
stimulus-sensitive systems based on branched polyethyleneimines (PEI).

Polyethyleneimines are widely used in biology and medicine due to the high density of amino
groups. Moreover, branched representatives of this chemical class, more compact in comparison
with linear analogs, are favored as an effective and affordable nonviral gene delivery vector [7–11],
as well as an additive to increase the efficiency of the polymerase chain reaction [12] and DNA
degradation protection [13]. Besides, branched PEIs are also used as a matrix, stabilizer, and molecular
glue in obtaining metal nanoparticles and metal oxides, semiconductor nanoparticles, and carbon
nanotubes [14–20].
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On the other hand, the high content of primary amino groups increases the cytotoxicity of PEI and
can cause destabilization of the cell membrane; therefore, chemical modification is used to neutralize
the amino groups. In particular, the cytotoxicity of PEI can be reduced by acylation or attaching polymer
chains to the amino groups of PEI. This has opened up new ways for branched PEI system applications.
In particular, the acetylation, hydroxylation, and carboxylation of PEI reduce polymer cytotoxicity [21].
The substitution of various proportions of the primary amines with alkyl carboxylate moieties having
different alkyl chain lengths allowed obtaining nonviral DNA vector [22], and β-cyclodextrin grafting
to the macromolecule made it possible to improve nucleic acid delivery [23]. PEI methylation and
acylation followed by PEGylation yielded products for gene delivery with improved biocompatibility
and lower toxicity, but it reduced transfection efficiency [24], while another acylation route increased
transfection as compared to patent PEI [25]. The addition of oligosaccharide chains, including glucose,
lactose, and maltose, turned PEI into an effective drug carrier [26].

The properties of the resulting system largely depend on PEI acylation degree. Thus, cross-linked
PEIs with low cytotoxicity and high transfection, but varying DNA binding potential depending on the
degree of thiolation, were obtained from PEIs with different contents of 2-mercaptopropyl groups [27].
Increased substitution degree reduces the PEI concentration necessary for the high efficiency of the
polymerase chain reaction [28,29].

Two methods are used to ensure PEI stimulus sensitivity. The first one involves attaching
thermosensitive polymer chains to the PEI molecules. For example, the length of the attached chains
of poly(N-isopropyl acrylamide) (P-N-IPAAM), determining conformational rearrangements upon
heating the solution, affects the balance between the charged PEI core and the hydrophobic fragments
of P-N-IPAAM, which determines the polymer’s ability to bind nucleic acids and cell transfection [30].
Notably, the inclusion of hydrophilic PEI in the macromolecule barely affects the thermosensitivity of
the second block; however, due to amino group protonation in the acidic medium, the phase transition
is shifted toward higher temperatures as compared to P-N-IPAAM [31]. The block copolymer of PEI
and poly-2-ethyl-2-oxazoline formed DNA polyplexes soluble at low pH, which, together with high
transfection and low cytotoxicity, makes it promising for nonviral gene therapy [32]. The second
approach involves the functionalization of PEI by groups that would provide for the thermosensitivity
of the resulting polymer. For example, after sulfopropylation, branched PEI was characterized by an
upper critical solution temperature, which depended on the molar mass (MM) of the polymer, the
ionic strength of the solution, the acylation degree, and pH [33]. Functionalization with isobutyramide
groups, on the contrary, led to the lower critical solution temperature (LCST), which also depended on
the acylation degree [34].

In the present work, we studied partially cross-linked derivatives of branched polyethyleneimine,
which, along with the monomeric units of ethyleneimine, contain 2-isopropyl-2-oxazoline units
ensuring the polymer thermosensitivity of LCST type [35]. The main task was to establish the effect of
cross-linking degree on their conformational properties, as well as the processes of self-organization and
aggregation of macromolecules in aqueous solutions at varying temperatures, polymer concentrations,
and acidity.

2. Materials and Methods

2.1. Synthesis of Partially Cross-linked Poly(ethyleneimine)

Branched polyethyleneimine (CAS 9002-98-66, weight-average molar mass Mw = 25,000 g mol−1),
hexamethylene diisocyanate, and isobutyroyl chloride (all Sigma Aldrich, St. Louis, MO, USA) were
used without further purification. According to NMR spectroscopy data, primary, secondary, and
tertiary amines in the branched PEI were present in the ratio of 0.21:0.58:0.21. Using this ratio, the
branching degree DB ≈ 0.4 was calculated.

1H NMR spectra were obtained on a Bruker AVANCE instrument (400 MHz) (Bruker, Billerica,
MA, USA) for solutions in deuterated chloroform; chemical shifts were counted relative to the signals of
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the solvent using Specman ACD/Labs (Advanced Chemistry Development, Inc., Toronto, ON, Canada).
For dialysis, CellaSep dialysis bags with MWCO 3500 D (Orange Scientific, Braine-l’Alleud, Belgium)
were used.

The acetylated derivative of branched polyethyleneimine (PEI-0), namely,
poly-N-isobutyroylethyleneimine, was obtained by acylating polyethyleneimine with isobutyroyl
chloride under the conditions of the Einhorn reaction (with methylene chloride solvent and
triethylamine acceptor). Cross-linking was performed by adding the calculated amount of
hexamethylene diisocyanate as previously described [35]. The synthesis scheme for partially
cross-linked polyethyleneimines PEI-n is shown in Figure 1. The obtained samples differed in
the cross-linking degree, namely, the molar fraction of the added cross-linker w. The w values for
prepared samples are listed in Table 1. In Figure 2, 1H NMR spectrum and signal assignment for
poly-N-isobutyroylethyleneimine partially cross-linked by 1,6-hexamethylene diisocyanate (sample
PEI-3 in Table 1) are shown as an example.
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Figure 1. Scheme of synthesis of polyethyleneimines (PEI)-n.

Table 1. Molar masses, structure, and hydrodynamic characteristics of PEI-n.

Sample w,
mol %

Mw,
G mol−1

[η],
cm3 g−1

dn/dc,
cm3 g−1 Rh-D, nm Rh-η, nm A0 × 10−10,

Erg K−1mol−1/3

PEI-0 0 28,000 5.3 0.0964 4.8 2.9 1.7

PEI-1 18.5 28,000 5.2 0.0679 4.3 2.9 1.9

PEI-2 21.7 28,000 5.1 0.0677 3.6 2.8 2.3

PEI-3 26.8 27,000 4.8 0.0666 5.3 2.7 1.5

PEI-4 29.9 30,000 4.5 0.0616 4.1 2.8 2.0

PEI-5 37.9 insoluble
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2.2. Determination of Hydrodynamic Characteristics

MMs of the synthesized samples were determined previously [35] by the method of static light
scattering in dichloromethane (density ρ0 = 1.33 g cm−3, dynamic viscosity η0 = 4.4 × 10−3 Poise, and
refractive index n0 = 1.424) for the targeted PEI-0 and chloroform (ρ0 = 1.48 g cm−3, η0 = 5.7 × 10−3

Poise, and n0 = 1.442) for partially cross-linked PEI-n. Before measurements, the solutions and solvents
were filtered through the Millipore syringe filter (Merck KGaA, Darmstadt, Germany) with the pore
diameter of 0.20 µ. The intrinsic viscosity [η] was measured with the Ostwald-type Cannon–Manning
capillary viscometer (Cannon Instrument Company Inc., State College, PA, USA) at 21 ◦C. To control
the solution temperature, a thermostat with the T-100 temperature control unit (Grant, Cambridge
UK) was used. The solvent efflux time was 43.4 s for dichloromethane and 48.7 s for chloroform.
Dependencies of reduced viscosity ηsp/c on polymer concentration c (Figure 3) were analyzed using
the Huggins equation

ηsp/c = [η] + k′[η]2c (1)

where k′ is the Huggins constant.
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Figure 3. Dependencies of reduced viscosity ηsp/c on concentration c for solutions of PEI-0 in
dichloromethane and PEI-n in chloroform.

Hydrodynamic radii Rh-D were determined by dynamic light scattering using the Photocor
Complex E instrument (Photocor Instruments Inc., Moscow, Russia) equipped with the Photocor-DL
diode laser (wavelength λ = 635.5 nm), Photocor-FC correlator with 288 channels, Photocor-BS device
for light backscattering study, and the Photocor-PD detector for measuring the transmitted light
intensity. The autocorrelation function was measured with Photocor Software (Photocor Instruments
Inc., Moscow, Russia) and processed with DynaLS soft (ver. 8.2.3, SoftScientific, Tirat Carmel, Israel).
Solutions of PEI-0 and PEI-n were unimodal over the entire concentration range studied (Figure 4). For
all samples, the hydrodynamic radii Rh-D(c) of scattering objects that were determined at concentration
c decreased with dilution (Figure 5). The hydrodynamic radii Rh-D of macromolecules (Table 1) were
obtained by linear extrapolation to zero concentration.

The values for the refractive index increment dn/dc were determined based on the concentration
dependence slope of dn = ns – n0 of the refractive indices ns for the solution of concentration c with n0

for solvent (Figure 6). The refractive indices ns and n0 were measured with an RA-620 refractometer
(KEM, Tokyo, Japan). As seen from Table 1, the values of dn/dc are somewhat decreased with the
growth of w. Thus, increased cross-linker content results in decreasing the refractive index increment,
although this change is not significant.
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Imax is the maximum of light scattering intensity for studied solution.
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The self-organization of PEI-n molecules in aqueous and water–salt solutions on heating was
studied by light scattering, light backscattering, and turbidimetry using the Photocor setup described
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above. The temperature T was varied discretely with a step from 0.5 to 2 ◦C and maintained with an
accuracy of 0.1 ◦C. The solution concentrations c varied in the range of over 10-fold, from 0.0035 to
0.0380 g cm−3, and their acidity varied in the range of pH = 2 – 8 at c = 0.0280 g cm−3. The pH of the
initial solution was changed by adding 1 N HCl or 1 N NaOH. The solutions were filtered through
hydrophilic PTFE Millipore (Merck KGaA, Darmstadt, Germany) membrane filters with the pore
diameter of 0.20 µ.

The measurement procedure was as follows. After the target temperature was established, the
changes in the intensity of the scattered light I and the optical transmission I* in time were analyzed.
In this case, I was measured at the scattering angle of 90◦. As a criterion for determining whether the
solution has reached the ‘equilibrium’ state, the constancy of I and I* in time was chosen. The times teq

for establishing the constant characteristics of the solutions were determined accordingly (Figure 7). In
‘equilibrium’ conditions, in addition to I and I*, the hydrodynamic radii of the Rh particles present in
the solutions were determined. The light scattering measurements were carried out in the range of
scattering angles θ from 45◦ to 135◦ to confirm the diffusion nature of the modes and determine the
extrapolated values of Rh. The relaxation time τ of a correlation function was measured at scattering
angles 45◦, 90◦, and 135◦. The values of scattering wave vector q were calculated via equation

q =
4πn0

λ
sin
θ
2

. (2)
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Figure 7. Dependencies of the relative values of light scattering intensity I/It=0 (1, 3) and optical
transmission I*/I*t=0 (2, 4) on time t for solutions with concentration c = 0.0280 g cm−3 of PEI-1 at
T = 16 ◦C (1, 2) and PEI-2 at T = 21 ◦C (3, 4). It=0 and I*t=0 are light scattering intensity and optical
transmission at t = 0, respectively.

The magnitudes of translational diffusion coefficient D0 were obtained from dependencies of
inverse relaxation time 1/τ on the squared scattering wave vector (Figure 8).

1/τ = q2D0 (3)

The Stokes–Einstein equation was used for the calculation of hydrodynamic radius values

Rh =
kT

6πη0D0
, (4)

where k is the Boltzmann constant and T is the absolute temperature.
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3. Results

3.1. Structure and Hydrodynamic Behavior of PEI-n in Dilute Chloroform Solution

To determine the conditions for the preparation of poly-isobutyroylethylenimine with a certain
degree of acylation, branched PEI was acylated by isobutyroyl chloride within different synthetic
methods as well as with the different ratios of reagents. The best results were obtained using the Einhorn
reaction [36], which at a given ratio of reagents allowed obtaining a product with a predictable degree
of substitution. Diisocyanate was chosen as a cross-linker, keeping in mind the fact that isocyanates
react quantitatively with both primary and secondary amino groups at ambient temperature and are
relatively resistant to water at room or lower temperature [37]. Additionally, it should be noted that
the complete removal of water from PEI and its acylation products is quite problematic.

The interaction of acylated PEI-0 with hexamethylene diisocyanate leads to the formation of both
intramolecular and intermolecular cross-links. At low diisocyanate content in the reaction mixture,
intramolecular cross-linking is predominantly observed, which manifests itself in the compaction of a
macromolecule without significant MM increase. This is exactly what happens with PEI-n samples
(Table 1). In this case, intramolecular cycles are formed in macromolecules, whose number increases
with an increase in the cross-linker content. The prevalence of intramolecular cross-linking can be
explained by a smaller change in entropy as compared to intermolecular cross-linking. Given the
equality of changes in enthalpy for intra- and intermolecular reactions, all of the above leads to a
still smaller change in the Gibbs free energy, which determines the direction of the process. With an
increase in the content of a bifunctional cross-linker in the initial reaction mixture, the probability of
intermolecular interactions increases, leading to the formation of large particles with a subsequent loss
of polymer solubility.

An adequate interpretation of the results obtained in the study of stimulus sensitivity is impossible
without comprehensive information on the characteristics of individual macromolecules. Accordingly,
an important research objective was to establish the hydrodynamic characteristics of PEI-n and to
analyze the conformation of their molecules.

As seen from Table 1, the refractive index increments dn/dc decrease slightly with increasing w,
although this change is not very significant. A decrease in dn/dc is yet another confirmation that the
cross-linker fraction becomes larger, and cross-linking occurs at the macromolecule level primarily.
Indeed, the refractive indices of hexamethylene diisocyanate and branched PEI are equal to 1.453 and
1.529, respectively. Therefore, if the cross-linking is intramolecular, an increase in the cross-linker
fraction should lead to a decrease in the refractive index increment, which we observe experimentally.
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As known, the Huggins constant characterizes the polymer–solvent hydrodynamic interaction
and the hydrodynamic behavior of solutions [38–40]. For the PEI-0 and PEI-n under question, k′

values lie in the range from 0.7 to 1.5 without changing systematically with the variation of w. These
values are higher than the usual Higgins constant for linear polymers in good solvents. Elevated k′

values are often obtained for polymers with complex architecture, for example, for hyperbranched and
star-shaped polymers, as well as for molecular brushes in the region of low MM [41–45]. In particular,
for a branched PEI, k′ = 0.7 – 0.8 [46]. It can be assumed that the described behavior of k′ is explained
by the compact size and symmetric shape of macromolecules of polymers with complex architecture.

In organic solvents for the studied samples of PEI-0 and PEI-n, low values of intrinsic viscosity
[η] were obtained (Table 1). It is typical for polymers with elevated intramolecular density, such as
dendrimers, hyperbranched polymers, polymer stars, and low molar mass polymer brushes with
high density of grafting of side chains [41,43–45,47–52]. Note that at the corresponding MM, the
characteristic viscosities of PEI-0 and PEI-n solutions are close to [η] for branched PEI [46,53]. As
the cross-linker mole fraction w increases, the intrinsic viscosity of PEI-n decreases, reflecting an
increase in intramolecular density. This change is similar to the decrease in [η] at increasing the
branching degree and branching functionality in hyperbranched polymers or the arm number in
star-shaped polymers [48,54–56]. In the case of the studied polymers, the change in intrinsic viscosity
is probably caused by an increase in the number of intramolecular cycles, as well as in hyperbranched
polymethylsilsesquioxanes [57]. At passage from PEI-0 to PEI-n, the [η] value decreases by about 20%.
Therefore, given that, at first approximation, [η] is inversely proportional to the macromolecule density,
we can conclude that the latter characteristic also changes by 20%.

To describe the hydrodynamic behavior of hyperbranched macromolecules, the rotation ellipsoid
model with slight shape asymmetry is often used [41,47]. The greater the degree of branching of
hyperbranched polymers, the better this model describes their hydrodynamic properties. Similarly,
the presence of cycles in a branched molecule and an increase in their number brings the shape of the
molecule closer to spherical. The volume of a revolution ellipsoid with a closely similar axis length
is well proportional to the cube of the average axis length. Therefore, in terms of the model under
discussion, it can be expected that the linear dimensions of PEI-n molecules will change by only 6%
with an increase in the cross-linker fraction from 0 to 30 mol %. Therefore, it does not seem surprising
that the values of the hydrodynamic radius Rh-D determined by the dynamic light scattering method
are independent of w (Figure 9). A possible change in Rh-D lies within the experimental measurement
error of this characteristic.Polymers 2020, 12, x FOR PEER REVIEW 9 of 18 
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It was found for the so-called viscosity hydrodynamic radius Rh-η, whose values were calculated
from the values of the intrinsic viscosity [η] using the Einstein equation, behaves in much the same
way (Figure 9):

[η] = 2.5v (5)

which can easily yield
Rh-η = (3M[η]/10πNA)1/3, (6)

where v is the specific partial volume and NA is the Avagadro number. Note that for the studied
polymers, the diffusion radius Rh-D is 1.3–1.9 times larger than the viscous size Rh-η without a systematic
change with increasing w. A similar difference is observed quite often both for linear systems [38]
and for polymers of complex architecture [41,56,58]. This is because the principle of dimensional
equivalence is not fully satisfied during the translational and rotational motion of the macromolecule.
Roughly speaking, the molecule ‘flows’ differently in terms of translational diffusion and viscosity.
For linear polymers, it results in different values of the Kuhn segment length A obtained using the
data of viscometry (Aη) and translational friction (Af). For example, for poly-2-ethyl-2-oxazoline, the
difference between Aη and Af is 30% [59].

The small values of the radii Rh-D and Rh-η confirm the conclusions about the compact size of
PEI-n molecules as compared to linear polymers of the same MM. Such values of hydrodynamic radii at
the corresponding MM are characteristic of hyperbranched polymers and even dendrimers [41,58–63].
The small size and symmetrical shape of PEI-n molecules is also evidenced by the values of the
hydrodynamic invariant A0 (Table 1), calculated by Equation (7) [54,64,65]:

A0 = η0D0

(
M[η]

100

)1/3

/T (7)

For linear macromolecules, A0 is constant over a wide MM range. The average experimental values
are A0 = 3.2 × 10−10 erg K−1 mol−1/3 for flexible chain polymers and 3.8 × 10−10 erg K−1 mol−1/3 for rigid
chain polymers [38,64] and are in good agreement with the theoretical values of A0 [38]. On the other
hand, for the low molar mass samples of the flexible chain thermosensitive poly-2-ethyl-2-oxazoline,
low values of A0 ~ 2.9 × 10−10 erg·K−1

·mol−1/3 were obtained [59].
In Figure 10, the values of A0 for the PEI-0 and PEI-n are presented as functions of w. The

experimental points are rather widely spread, but there is no systematic change in A0 depending
on w. The average value A0 = (1.9 ± 0.2) × 10−10 erg K−1 mol−1/3 is noticeably smaller than the
theoretical value for the hard sphere (2.88 × 10−10 erg K−1 mol−1/3). Reduced A0 was previously found
for polymers whose molecules have an increased density and shape approaching spherical, namely,
for hyperbranched polymers and dendrimers [41,58,66].Polymers 2020, 12, x FOR PEER REVIEW 10 of 18 
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3.2. Behavior of PEI-n in Aqueous Solution

The solubility of partially cross-linked branched PEI-n in water depended on the cross-linker
content, deteriorating sharply with increasing w. It took about three days to dissolve a sample with
w = 18.5 mol % with stirring at the temperature of T = 10 ◦C, and a sample with w = 21.7 mol %
completely dissolved under the same conditions in five days. At w ≥ 26.8 mol %, PEI-n did not dissolve
within a month at T = 6 – 10 ◦C. Note that a decrease in the solubility of PEI-n was also observed in
chloroform, which was manifested in the decrease of the second virial coefficient A2 from 0.3 × 10−3

cm3 mol g−2 for PEI-1 to −0.2 × 10−3 cm3 mol g−2 for PEI-4. The decreased solubility is due to the
increase in the number of intramolecular cycles with increasing w, which leads, as mentioned above,
to the loss of solubility at w > 35 mol %. A similar phenomenon was observed for hyperbranched
polymers [57,67,68].

At low temperatures (T = 10 ◦C) in aqueous solutions of PEI-1 and PEI-2, only one particle type was
detected by dynamic light scattering, which had the hydrodynamic radius Rf close to the hydrodynamic
size Rh-D of macromolecules determined in the organic solvent (Figures 9 and 11). Therefore, aqueous
solutions of PEI-n were molecularly dispersed, which is typical of stimulus-sensitive polymers that do
not contain large hydrophobic fragments [69–74]. Moreover, for both samples in aqueous solutions, the
radius Rf with dilution changed only within the experimental error (Figure 11) in contrast to solutions
in chloroform. On the other hand, a decrease in Rf was observed with increasing cross-linker content.
The difference in Rf values for PEI-1 and PEI-2 samples was about 20%.
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On heating, the phase separation of PEI-n solutions is observed, which manifests itself in a sharp
increase in the intensity of scattered light I and drop of optical transmittance I* at temperature T1

(Figure 12). At temperature T2, the optical transmission falls to zero, i.e., T2 can be considered as the
temperature of phase separation completion determined by turbidimetric data. The solutions of PEI-1
and PEI-2 remained molecularly dispersed up to the temperature of the onset of phase separation T1

when large aggregates with hydrodynamic radius Rs were formed in the solution (Figure 13). The phase
separation mechanism in PEI-n aqueous solutions involved the dehydration of 2-isopropyl-2-oxazoline
units and the formation of intermolecular hydrogen bonds. This led to the formation of aggregates
resulting from the association of macromolecules, which, near T1, cannot be observed by dynamic light
scattering. With further heating, the aggregate size first increases, and then, it begins to decrease near
T2, which is probably due to the compaction of PEI-n molecules. Note that a decrease in the molecule
size in the vicinity of the phase transition can be observed experimentally for very high-molar-mass
samples of thermosensitive polymers [75].
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Figure 12. Dependencies of the relative values of light scattering intensity I/I10 (1, 3) and optical
transmission I*/I*10 (2, 4) on temperature T for solutions with concentration c = 0.0280 g cm−3 of
PEI-1 (1, 2) and PEI-2 (3, 4). I10 and I*10 are light scattering intensity and optical transmission at
10 ◦C, respectively.
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Figure 13. Dependencies of radii Rf (1, 3) and Rs (2, 4) on temperature T for PEI-1 (1, 2) and PEI-2 (3, 4)
solutions with concentration c = 0.0280 g cm−3.

As can be seen from Figure 14, close phase separation temperatures T1 were obtained for the
samples studied; however, the nature of their change with concentration is different for PEI-1 and
PEI-2. For the sample with lower cross-linker content w, the T1 value is minimal at c = 0.03 g cm−3,
indicating that LCST was found close to 15 ◦C. For PEI-2, the temperature T1 monotonously decreases
with increasing concentration, and in this case, LCST is probably lower than that for PEI-1. Therefore,
a rise in the cross-linker content leads to a decrease in LCST. Note that for both samples studied, the
phase separation temperatures were noticeably lower than LCST for poly-2-isopropyl-2-oxazoline,
which is close to 37 ◦C for linear and maximum 25 ◦C for star-shaped polymers [76–80]. A decrease
in phase separation temperatures for polymers of complex architecture in comparison with linear
analogs is observed quite often [3], but there is no reliable explanation for this behavior yet. The effect
of the cross-linker content is also observed when analyzing the width of the phase separation interval,
namely, the values ∆T = T2 − T1. The ∆T difference varies slightly with dilution for PEI-1, while a
strong dependence of ∆T on c was found for PEI-2 (Figure 15). In the region of low concentrations, the
width of the phase separation interval for PEI-2 is accordingly 10 ◦C higher than ∆T for PEI-1.
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As is known, polyethylene imines are polybases. However, no effect of medium acidity on
the studied samples was found. In the pH range from 2.0 to 8.1 at low temperatures (T < 10 ◦C),
PEI-1 solutions are molecularly dispersed, and the hydrodynamic radius Rf is independent of pH
within the experimental error. In the same way, no systematic change in the phase separation
temperatures was observed with varying pH, although the spread in the T1 values was quite significant,
reaching 2.5 ◦C. Apparently, the number of the remaining unmodified amino groups is too small to
lead to conformational rearrangements with varying medium acidity and significantly affects the
self-organization of PEI-n molecules.

An important feature of the stimulus-sensitive material is the changing rate of its characteristics
after exposure. In the case of thermosensitive polymer solutions, this feature is reflected in the time
teq that is necessary for the characteristics of the solution to reach constant values after a jump-like
change in temperature (Figure 7). For the studied polymers, teq have the maximum value tmax near
the temperature of the phase separation onset T1, followed by teq decrease on heating (Figure 16).
Therefore, it can be assumed that the time teq for PEI-n solutions is determined by the duration of the
aggregate formation, which dominates near temperature T1. Note that a similar pattern in the behavior
of teq at T > T1 was previously observed by us for star-shaped poly-2-alkyl-2-oxazolines [81].
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In Figure 17, the tmax values are plotted versus concentration. It can be seen that the maximum
value of the time required to establish the ‘equilibrium’ state of the system for both samples does not
change upon dilution. The average values tmax = (2800 ± 300) s for PEI-1 and tmax = (3300 ± 300) s for
PEI-2 coincide within the error range, i.e., the duration of the processes does not depend on the fraction
of the cross-linker w. As for the absolute values of tmax, they are significantly, sometimes by an order
of magnitude, lower than the corresponding characteristic for star-shaped poly-2-alkyl-2-oxazolines
and grafted copolymers with side chains of poly-2-alkyl-oxazolines [81,82]. For linear thermosensitive
polymers, in most cases, the time teq does not exceed 2000 s [70,83–86]. The increase in teq during the
passage from linear polymers to polymers with complex architecture can be explained by a growth
of intramolecular density [81]. For example, the increased density of the hydrophilic outer layer
of star-shaped macromolecules prevents the hydrophobic cores from interacting with each other,
slowing down the aggregation process. In branched polymers, hydrophobic fragments are more evenly
distributed over the macromolecule volume, which may be the reason for the decrease in teq for the
studied PEI-n as compared to star polymers.
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4. Conclusions

The solution properties of partially cross-linked branched PEI-n in chloroform and water were
investigated. In both solvents, the solubility worsening of the studied samples was detected with an
increase in the cross-linker content, which is caused by an increase in the number of intramolecular
cycles. The hydrodynamic characteristics of PEI-n clearly mirror their elevated intramolecular density
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in organic solvent. It was shown that the cross-linked PEI-n are more compact and symmetric in
shape than linear PEI at similar molar masses. The obtained small values of hydrodynamic radius of
macromolecules, intrinsic viscosity, and hydrodynamic invariant are characteristic of hyperbranched
polymers. The increase in the cross-linker mole fraction leads to a decrease in magnitudes of the
intrinsic viscosity of the PEI-n solutions in chloroform that reflects the growth of intramolecular density.

On heating, the aqueous solutions of PEI-n were molecularly dispersed up to the temperature of the
phase separation, and the hydrodynamic radii of macromolecules in water and chloroform coincided
essentially. At the phase separation temperature, the large aggregates are formed due to dehydration
of 2-isopropyl-2-oxazoline units in the PEI-n molecules and the formation of intermolecular hydrogen
bonds. The LCST of the PEI-n solutions decreases with increasing cross-linker mole fraction. Moreover,
for the samples studied, the phase separation temperatures are noticeably lower than LCST for the
linear and star-shaped poly-2-isopropyl-2-oxazolines. Due to the small number of amino groups in the
PEI-n molecules, the influence of medium acidity on the characteristics of aqueous solutions was not
found. Unexpectedly, with the same MM, the time to establish the equilibrium characteristics of the
solution after a temperature change for cross-linked branched PEI-n is less than that for star-shaped
poly-2-alkyl-2-oxazolines, despite that the intramolecular density of polymer stars is lower than for
cross-linked and hyperbranched polymers.
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