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Base editors are dedicated engineered deaminases that enable directed conversion of specific bases in the genome or transcrip-
tome in a precise and efficient manner, and hold promise for correcting pathogenic mutations. A major concern limiting
application of this powerful approach is the issue of off-target edits. Several recent studies have shown substantial off-target
RNA activity induced by base editors and demonstrated that off-target mutations may be suppressed by improved deami-
nases versions or optimized guide RNAs. Here, we describe a new class of off-target events that are invisible to the established
methods for detection of genomic variations and were thus far overlooked. We show that nonspecific, seemingly stochastic,
off-target events affect a large number of sites throughout the genome or the transcriptome, and account for the majority of
off-target activity. We develop and employ a different, complementary approach that is sensitive to the stochastic off-target
activity and use it to quantify the abundant off-target RNAmutations due to current, optimized deaminase editors. We pro-
vide a computational tool to quantify global off-target activity, which can be used to optimize future base editors. Engineered
base editors enable directed manipulation of the genome or transcriptome at single-base resolution. We believe that imple-
mentation of this computational approach would facilitate design of more specific base editors.

[Supplemental material is available for this article.]

Base editors are dedicated engineered deaminases that enable direct-
ed conversion of specific bases in the genome or transcriptome in a
precise and efficient manner and hold promise for correcting path-
ogenic mutations (Komor et al. 2016; Rees and Liu 2018). A major
concern limiting application of this powerful approach is the issue
of off-target edits (Gehrke et al. 2018; Zuo et al. 2019). Several recent
studies (Rees et al. 2019; Zhou et al. 2019; Grünewald et al. 2019a)
have shown substantial off-target RNA activity induced by base
editors and demonstrated that off-target mutations may be sup-
pressed by improved deaminases versions or optimized guide
RNAs. These studies have employed one of the establishedmethods
to find genomic variations reoccurring in multiple copies of the
edited transcript (McKenna et al. 2010; Garrison and Marth
2012), which are well-suited for detection of genomic polymor-
phisms and reoccurring mutations but are insensitive to weakly ed-
ited sites. Accordingly, these studieshavemainly focused on specific
off-target sites, where the guided deaminase binds efficiently and
edits a substantial fraction of DNA/RNA molecules.

Endogenous deaminases (on which the engineered versions
are based) are known to induce abundant low-level RNAmodifica-
tions (Rosenberg et al. 2011; Bazak et al. 2014a). In fact, most
ADAR (also known as ADAR1) A-to-I mRNA editing activity occurs
at sites edited up to a few percent level or even lower (Bazak et al.
2014a) and is therefore undetectable in a single sample. It is only
natural to ask whether engineered deaminases, too, exhibit non-
specific, seemingly stochastic, off-target activity in addition to
the previously studied specific off-target sites. As is the case with

endogenous base editors, the nonspecific activity may affect a
large number of sites throughout the genome or the transcrip-
tome, so that, although these sites are edited at a low probability
per site per molecule, nonspecific deamination events may out-
number the specific ones (Fig. 1A).

Global quantification methods have been devised to study
endogenous deaminases activity, including nonspecific ones
(Bazak et al. 2014b; Roth et al. 2019). Inspired by this approach,
we develop here a method to quantify the global variation rate in-
duced by engineered base editors, including low-level variations
that cannot be individually resolved. We apply it to various
state-of-the-art base editors, either DNA or RNA editors, engi-
neered ADAR and APOBEC, or other deaminases, including ones
that are fused to CAS proteins or to other guiding systems
(Supplemental Table S1; Vallecillo-Viejo et al. 2018; Vogel et al.
2018; Abudayyeh et al. 2019; Katrekar et al. 2019; Rees et al.
2019; Zhou et al. 2019; Zuo et al. 2019; Grünewald et al. 2019a,
b; Doman et al. 2020; Lee et al. 2020; Yu et al. 2020).

Results

Most RNA mutations due to off-target base editing are
nonspecific

Genomic variations of interest typically occur in a sizable
fraction of chromosome copies. For example, heterozygous poly-
morphisms are present in half of themolecules, and cancer-related
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somaticmutations of interest are those that have been selected and
appear in multiple clonal copies. Methods for calling variations
and mutations based on DNA sequencing data (McKenna et al.
2010; Garrison andMarth 2012) use this fact to filter out sequenc-
ing and alignment technical noise and analyzemultiple alignment
of many DNA reads to the reference genome, looking for reoccur-
ringmismatches. At typical read coverage, these approaches are in-
sensitive to low-level variations that affect only a small fraction of
the transcript copies and are thus almost indistinguishable from
the technical noise level (Martincorena et al. 2018).

Most of the endogenous editing activity occurs in such low-
level editing sites that are “invisible” to standard variant calling
methods. Looking at several examples of engineered base editors,
we observe a similar phenomenon. In addition to specific off-tar-
get sites where the guided deaminase binds efficiently and edits
a sizable fraction of DNA/RNA molecules, most off-target activity
is nonspecific and seemingly stochastic, affecting a large number
of sites at a low editing level. Whereas these sites are edited at a
low probability per site per molecule, nonspecific deamination

events outnumber the specific ones. Recent optimization
efforts have considerably lowered the volume of nonspecific off-
target activity, but many state-of-the-art base editors exhibit siz-
able amounts of RNA off-targets in weakly edited sites (Fig. 1B;
Supplemental Fig. S1).

Technical errors in the sequencing process are still a major
source for deviations between the original biological information
and the output sequencing reads (Zaranek et al. 2010; Alioto
et al. 2015). Therefore, a single read supporting an isolated mis-
match cannot be reliably attributed to deaminase activity and
may result from sequencing errors. However, endogenous deami-
nases often edit multiple sites in the same molecule (hyperedit-
ing), resulting in clusters of mismatches of the same type that
may be identifiable even at the single-read level (Carmi et al.
2011). Scanning RNA-seq data representing dozens of recently de-
veloped base editors (Supplemental Table S1; Vallecillo-Viejo et al.
2018; Vogel et al. 2018; Abudayyeh et al. 2019; Katrekar et al. 2019;
Rees et al. 2019; Zhou et al. 2019; Grünewald et al. 2019a,b; Yu
et al. 2020), we found in some of the samples up to a million off-
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Figure 1. Most RNA mutations due to off-target base editing are nonspecific. (A) Engineered guided deaminases may target efficiently some off-target
locations (marked with arrows). These strongly edited sites result in a DNA-RNA mismatch seen in a large fraction of RNA molecules, resembling the mis-
match profile observed at genomic polymorphism and clonally selected somatic mutation sites. In parallel, nonspecific off-target base editing activity af-
fects multiple additional sites but a small fraction of RNA molecules per site. However, due to their large number, the total number of nonspecific events
could surpass that of specific editing sites, as illustrated in the figure. Hyperedited reads, where multiple mismatches are seen in the same read (right panel,
top read), occasionally appear. They provide a strong indication of off-target activity but account for a small minority of mismatches. (B) Relative contri-
bution of editing sites to the editing index, by their observed editing rates, for two engineered base editors. Most off-target activity occurs at weakly edited
sites in agreementwith the scenario depicted in panel A. Pie area is proportional to the number of detected off-target events. Four base editors from Study H
are shown (two cytidine deaminases: BE3, BE3 [hA3AY130F]−site 3; two adenine base editors: ABE7.10 and ABE7.10 [F148A]−site 1). See Supplemental
Figure S1 for similar data for all enzymes.
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target hyperediting sites (Supplemental Fig. S2A) in excess of the
endogenous A-to-I editing signal observed in control samples
(Porath et al. 2014). Only a small fraction of these were previously
identified for the same samples (Supplemental Fig. S2B), indicat-
ing that the classical SNV detection schemes may overlook a large
fraction of sites (see also Supplemental Table S6). Note that, for
some editors, no excess of hyperediting sites is observed.
However, the hyperediting analysis is not sensitive enough and
the clusters of sites it findsmay be just the tip of the iceberg, attest-
ing for a much wider nonclustered editing activity that is over-
looked by standard variant-calling methods. Therefore, a
different approach is required to explore nonspecific off-target
activity.

In the following, we apply global quantification methods for
the editing activity, which are complementary to the above-men-
tioned variant-calling approaches, to reveal the full scope of off-
target editing activity.

Editing activity is globally enhanced following introduction
of base editors

To quantify the total off-target activity, we follow an approach de-
veloped previously for studying global endogenous RNA editing
that takes into account the loads of editing activity occurring at
low levels (Roth et al. 2019). Briefly, we apply a strict alignment ap-
proach and look at all mismatches to the reference genome, not
trying to determine whether each one of them can reliably be at-
tributed to deaminase activity. We then compare the editing in-
dex, the average mismatch level weighted by expression level,
between samples (Methods). Clearly, this approach includes con-
tributions from sequencing and other errors. However, the excess
signal seen in samples expressing the deaminases over the baseline
(control) signal attests to global editing activity.

Applying this approach, we find a statistically significant ex-
cess for 35 out of the 37 active enzymes analyzed, indicating wide-
spread off-target RNA editing for current best optimized A-to-I (Fig.
2A) andC-to-U (Fig. 2B) DNA and RNA base editors. Even for aden-
osine base editors, where endogenous A-to-I activity is known to
bewidespread (Roth et al. 2019), the effect of the engineered deam-
inase is clearly noticeable. This excess is seen genome-wide (Sup-
plemental Fig. S3) as well as in coding sequence regions. The
sites harboring the mismatches exhibit a clear sequence motif,
supporting their being targeted by the base editors (Supplemental
Fig. S4). Of the enzymes screened in this work, adenosine base ed-
itors seem to be noisier, showing up to 0.1% off-target editing in
some of the optimized deaminases (i.e., one in a thousand adeno-
sines is deaminated into an inosine). As expected, there is only a
little overlap between the sites contributing to the global A-to-I sig-
nal and those detected by previousmethods which are designed to
locate specific editing sites. The excess signal comes mostly from
weakly edited sites which are usually invisible to standard SNV
detection tools (Supplemental Fig. S1). Studies B and D provide
matched data for RNA base editors with and without a nuclear lo-
calization signal (NLS). Enzymes containing NLS exhibit reduced
nonspecific off-target levels compared with matched enzymes
containing a nuclear export signal (NES) (Supplemental Fig. S5),
as they have lower chances to meet other mRNAs.

Adenosine base editors target preferentially the endogenous
targets of the ADAR enzymes. The vast majority of endogenous
A-to-I editing occurs within the million Alu copies in the genome
(Athanasiadis et al. 2004; Blow et al. 2004; Kim et al. 2004;
Levanon et al. 2004). Consistently, the index calculated over Alu

sequences is considerably elevated for all adenosine base editors
(Supplemental Fig. S3; cf. Supplemental Tables S7, S8) and, in
some cases, is as high as 10%, namely 1/10 of all Alu adenosines
are deaminated. In contrast, editing of well-covered endogenous
recoding sites, mostly edited by ADARB1 (also known as ADAR2)
(Tan et al. 2017), is not generally elevated (Supplemental Fig. S6;
cf. Supplemental Table S9).

The deamination rates observed in the coding regions of the
human genome (excess of index over the control baseline level)
vary considerably across the different active base editors and range
between 0.004% (Study G, BE3 [hA3AY130F]–site 3) and 3%
(Study G, BE3) (Fig. 2). Note that these rates are based on RNA col-
lected 72 h posttreatment. The deamination rate is actually two- to
threefold higher 36 h posttreatment (Fig. 2C). Study E provides the
expression level of the enzymes. The index values observed are not
correlated to the expression level. In addition,we did not find a sig-
nificant correlation between on-target and off-target editing levels
for any of the studies for which on-target data are available (A, C,
D, E, F, G).

In terms of the total transcriptome mutation load, the ob-
served range of rates (0.004%–3%) is equivalent to a range of 675
up to 658,000 heterozygous genomic mutations in the coding se-
quence alone (Fig. 2). The nonsynonymous to synonymous ratio,
the prevalence of nonconservative amino acid substitutions, the
distribution over genes with different expression levels, the level
in essential genes and oncogenes, and the occurrence of known
harmful mutations (Supplemental Fig. S7; cf. Supplemental
Table S10) are all consistent with these nonspecific off-target edit-
ing events being spread randomly and uniformly over the coding
sequence of all genes.

Endogenous genetic information flow is not perfect and in-
troduces errors at all levels. The sources of information are more
tightly controlled than the end-point products. Thus, the genomic
information itself is most tightly regulated, with replication error
rates as low as ∼10−10 mutations per base pair per cell division
(Drake et al. 1998), whereas protein production, the end point of
this process, can tolerate error rates as high as 10−4 (Mordret
et al. 2019). Due to the transient nature of RNA, transcriptional fi-
delity is much lower than replication but still much higher than
translation, with error rates estimated to be 4×10−6 (Gout et al.
2013, 2017) in eukaryotic cells. The evolutionary pressure to opti-
mize eukaryotic transcription fidelity, in comparison to the bacte-
rial one which is an order of magnitude higher (Traverse and
Ochman 2016), suggests that higher rates of RNA substitutions
are detrimental. Accordingly, the off-target activity identified
here, which even for the best active base-editor analyzed here is
an order of magnitude higher than the endogenous eukaryotic er-
ror rate, could be potentially harmful.

Low-level nonspecific base editing affects only a small frac-
tion of the copies of each protein. For the low end of the deam-
ination rates (0.004%), a typical 1000-bp-long coding mRNA
sequence harboring ∼250 cytosines will show an off-target deam-
ination in only 1% of its copies. For highly expressed genes,
where multiple copies of the transcript exist in each cell, the ef-
fect would probably be minimal. However, thousands of genes
are expressed at a level of 1–2 transcripts per cell or less (Melé
et al. 2015). Thus, each cell would have dozens of genes for
which the only transcript in the cell is mutated. Furthermore, a
low level of RNA mutations may have a harmful impact even if
most copies of the transcript are not affected. Furthermore,
3.7% of A-to-G and 4.7% of C-to-T edits in coding regions are ex-
pected to create neoantigens (Methods) that can provoke the
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immune system to attack self-tissue. In addition, accumulation of
misfolded proteins may lead to aggregation, a key contributor to
neurodegenerative diseases.

Further support for the potential damaging effect of low-lev-
el off-target RNA editing comes from the observation that the in-
dex over A-to-G harmful mutation sites is somewhat lower than
the overall index (Supplemental Fig. S7D, blue). This depletion
may indicate that weak off-target editing of these critical adeno-
sines by the endogenous A-to-I editor is deleterious and therefore
selected against. A similar effect was recently reported for mam-
malian housekeeping genes and viruses that adapted to avoid ed-
iting by endogenous APOBEC enzymes (Chen and MacCarthy
2017).

Finally, we have looked for signs of a deleterious effect at the
cellular level and used the GSEA tool and the hallmark gene-set
(Liberzon et al. 2015) to look for overexpression of the apoptosis re-
lated gene-group (Methods). Significant overexpression is observed
in 28 of the 33 enzymes analyzed (Supplemental Table S11). For ex-
ample, CDKN1A (also known as p21) is a key DNA damage-induc-
ible protein whose transcriptional induction can occur dependent
on TP53 and is considered an archetype of the cell response to gen-
otoxic damage. We find significantly elevated expression of
CDKN1A for most enzymes analyzed (Supplemental Fig. S8;
Supplemental Table S11). These results further support the need
to control the level of off-target activity and to understand its cellu-
lar effects.

B

A

C

Figure 2. Editing activity is globally enhanced following introduction of base editors. The editing index is a global measure of editing activity, quantifying
the fraction (percent) of the RNA nucleotides exhibiting a DNA-RNAmismatch (i.e., A-to-G index of 1 means that 1% of the RNA nucleotides mapped to a
genomic adenine are guanosines). (A) For adenine base editors (Studies A, B, C, D, F, G, H), the A-to-G index (blue circles) per sample over the coding
sequence is presented (see Supplemental Fig. S3 for whole-genome calculation). In almost all cases tested, the index is significantly elevated for base editors
compared to the control samples. Two-sided t-test for log(index); (∗) P<0.05, (∗∗) P<0.01, (∗∗∗) P<0.001. Significance was not assessed for Study A (did
not include untreated controls) and Studies B and G (only one replicate per condition). The two cases in Study F that do not show a significant difference
exhibit weak on-target activity as well. In order to appreciate the significance of the high index values obtained, the index values are translated into an
equivalent number of heterozygous mutations (Methods), right axis. Note that the index cannot be directly compared between samples of different reads’
lengths (Methods). (B) Same as A; C-to-U index (red) for cytidine deaminase samples (Studies A, D, E, H, I). (C) Samples sequenced 36 h posttreatment
show a two- to threefold higher level of induced mutations compared to ones sequenced 72 h posttreatment (as are all samples in panels A,B). The
data per sample are available in Supplemental Table S2. Exact P-values are presented in Supplemental Table S3.
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Off-target DNA editing activity following introduction of base
editors

The same approachmay be used to quantify off-target activity not
only in the transcriptome but also in the genome. We have ana-
lyzed four recent studies for which DNA-seq data were available
(Zuo et al. 2019; Doman et al. 2020; Lee et al. 2020; Yu et al.
2020) and found detectable off-target DNA editing activity for
nine of the 22 enzymes studied (Studies D, K, I, J) (Fig. 3A).
Removing putative polymorphisms in the untreated samples (see
Methods) improves the sensitivity and reveals a significant signal
for DNA off-target activity in 10 of the 15 enzymes (Fig. 3B).

The absolute level of the excess index, representing off-target
DNA mutations, is 2.2–4.6 ×10−5 (Fig. 3), lower than the one ob-
served in RNA. However, it is still orders of magnitude higher
than the natural DNA polymerase error rate of ∼10−10, and the im-
pact of these heritable mutations is much more severe. To put it
into a physiological context, one may compare the base editors’
off-target activity to ionizing radiation, a different heavily studied
source of mutations. The mutation load due to (low rate) radiation

is estimated to be 7.3 ±0.8 ×10−6 mutations/bp/cell/Sievert
(Russell and Kelly 1982a,b). Note that our detection limit for mu-
tation rate is roughly 10−5, equivalent to ∼1 Sievert, and is still
much higher than the accepted ionizing radiation safety limit.
Thus, the mutation load detected in some of the editors calls for
a more accurate sequencing and quantification methods to assess
the risk due to off-target DNA editing, even if it is tooweak a signal
to be detected using current standard sequencing protocols and
our approach.

Discussion
We present here a new method to quantify nonspecific off-target
activity. Off-target RNA mutations are found to be abundant
even for current optimized deaminase editors, and some of these
editors result in abundant DNA mutations as well. We provide a
computational tool (https://github.com/a2iEditing/BEIndexer) to
quantify global off-target activity, which can be used to optimize
future base editors.

A

B
mRNA

mRNA

Figure 3. Off-target DNA editing activity following introduction of base editors. (A) The editing index is a global measure of editing activity, quantifying
the fraction (percent) of the DNA nucleotides exhibiting amismatch with respect to the reference genome. Common polymorphic sites are excluded. Four
studies are analyzed (E, L, J, K), examining adenine base editors and cytidine deaminases. For each enzyme, the relevant indices (A-to-G, blue; and C-to-T,
red) are calculated over the coding region. The relevant index (A-to-G and C-to-T for adenine and cytidine deaminases, respectively) is compared with
control samples (Study E: NC/None; Study L: nCas9; Study J: Cre; Study K: Control). A significant increase is observed for nine enzymes. (B) In order to
suppress baseline contributions to the index due to genomic polymorphisms unrelated to the base editor, we repeated the calculation excludingmismatch
sites appearing in at least half of the untreated samples not used for the statistical tests (Study E: Cas9; Study L: parent; Study J: Cas9; Study K: parents). Ten
of the 15 examined editors exhibit a significant increase in the index, indicating off-target DNA editing. In Study E (mRNA delivery), there were no samples
suitable for excluding shared SNVs, and therefore filtering was not applied. Two-sided t-test for log(index); (∗) P<0.05, (∗∗) P<0.01, (∗∗∗) P<0.001. The
data per sample are available in Supplemental Table S4, and exact P-values are presented in Supplemental Table S5.
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Note that this approachdoes not replace currently usedmeth-
ods, which are designed to identify specific off-target sites, but is
presented as a complementary approach, focusing on a different
manifestation of off-target activity. This method reveals varying
levels of appreciable off-target activity induced by state-of-the-art
base editors. It is not straightforward to compare the base editors
using these data, gathered under varying experimental conditions.
However, these results emphasize the need for further optimiza-
tion of base editors with respect to their nonspecific off-target ac-
tivity, genomic and transcriptomic. The approach presented here
may be utilized for these optimization efforts. In addition, cutoff
values for tolerable RNA and DNA mutation rate in the context
of genetic therapy should be established.

Methods

Sequencing data and alignment

To analyze off-target editing of RNA by recently developed base ed-
itors, we downloaded RNA-seq data from seven different studies
(Supplemental Table S1; Vallecillo-Viejo et al. 2018; Vogel et al.
2018; Abudayyeh et al. 2019; Katrekar et al. 2019; Zhou et al.
2019; Grünewald et al. 2019a,b; Yu et al. 2020). In total, we ana-
lyzed 306 RNA-seq samples, representing 48 adenosine base edi-
tors, 29 cytidine base editors, and controls. Details are provided
in Supplemental Table S1. RNA-seq reads were aligned to the hu-
man (hg38) genome using STAR v2.6.0 (default parameters)
(Dobin et al. 2013), keeping only uniquely aligned reads.

To analyze genomic off-target editing by recently developed
base editors, we downloadedDNA-seq data from four recently pub-
lished studies (Supplemental Table S1; Zuo et al. 2019; Doman
et al. 2020; Lee et al. 2020; Yu et al. 2020). In total, we analyzed
493 DNA-seq samples, representing three base editors (BE3, BE4,
and ABE7.10), and controls. DNA-seq reads were uniquely aligned
to the mouse (mm10) or human (hg38) genomes using STAR
v2.6.0 (default parameters, except of alignIntronMin=2,
scoreDelOpen=−10,000, scoreInsOpen=−10,000 in order to
avoid spliced alignments) (Dobin et al. 2013).

It is worth noting that Studies E and L have applied single-cell
sequencing to the DNA samples and show low alignment levels
(<40%).

Genomes (hg38 and mm10) and gene annotations (RefSeq
data) were downloaded from the UCSC Genome Browser (Table
ncbiRefSeq) (Haeussler et al. 2019).

Hyperediting

We used the hyperediting algorithm as previously described
(Porath et al. 2014) to identify heavily edited RNA-seq reads which
the aligner fails to align to the genome. Many of the off-targets
identified by this tool occur within coding regions. Our computa-
tion tool for detecting hyperedited reads is available at GitHub
(https://github.com/hagitpt/Hyper-editing).

Off-target index calculation

Tomeasure the total off-target activity, we followed the previously
developed approach for calculating the Alu editing index (Roth
et al. 2019). Thismeasure is robust and takes into account low-level
variations that cannot be individually determined. The details of
the present calculation are identical to those specified for the Alu
editing index, except that (1) we did not look atAlu elements alone
but also at the coding regions or thewhole genome, and (2) we cal-
culated the A-to-G index or the C-to-U index, depending on the
base editor analyzed. Most of our results deal with the coding re-

gion, for which we assumed all reads were expressed from the an-
notated coding strand (see Roth et al. 2019 for analysis of the
accuracy of this approach). Briefly, we calculated the weighted av-
erage overmillions of genomic cytosines (9,700,565 C locations in
coding regions for C-to-T) and adenosines (8,754,152 A locations
in coding regions for A-to-G), and theweights are the total number
of reads in these sites. To estimate the noise level, wemeasured the
abundance of A-to-T substitution, which is the substitution type
(other than A-to-G and C-to-T) with the highest noise level in
most studies. Genomic sites overlapping common single nucleo-
tide polymorphisms (SNPs) (human:dbSNP150; mouse:
dbSNP142) were excluded.

We have made the computation tool for calculating the base
editing index available at GitHub (https://github.com/a2iEditing/
BEIndexer). Importantly, the editing index is sensitive to reads’
length (Roth et al. 2019). Longer reads may be mapped even if
they includemultiple editing events and thus lead to higher values
of the index. The different studies examined here have used reads
of varying lengths, and therefore the index values should not be
compared across studies. We decided not to trim the reads of all
studies to a uniform length, because some of them are very short
(35 bp).

In addition, we calculated the index for sites or regions of spe-
cial interest: (1) housekeeping exons (Eisenberg and Levanon
2013), which are essential for the existence of a cell; (2) oncogenes
(Tate et al. 2019) with known mutations that have been causally
implicated in cancer; and (3) reported pathogenic clinical varia-
tions with known human phenotype (ClinVar [Landrum et al.
2014]).

We annotated the potential substitutions in the coding re-
gions using ANNOVAR (Wang et al. 2010). Amino acid substitu-
tions were classified as nonconservative if the substitution results
in an amino acid of a different group, using the following classifi-
cation: electrically charged side chain (R, H, K, D, and E), polar un-
charged (S, T, N, and Q), hydrophobic (A, I, L, M, F, W, Y, and V),
and three amino acids with special side chain cases—cysteine (C),
glycine (G), and proline (P). Thesemismatches can lead to changes
in the protein structure and function. Amino acid substitutions
within the same group are termed conservative.

For DNA off-target editing, we took an additional step to im-
prove our sensitivity and discarded mismatch sites that were de-
tected in at least half of a set of untreated samples (Cas9 for
Study H and parental samples for Study I) from all other samples.
These sites are likely to be enriched in genomic polymorphisms
that are common to all samples and are not due to the base editors’
activity.

Conserved recoding site editing

Editing levels at the endogenous mammalian conserved RNA edit-
ing sites (Pinto et al. 2014) were calculated using the
REDIToolsKnown.py script that is part of the REDItools package
(Picardi and Pesole 2013). We calculated the editing level only if
site coverage exceeds 10 reads. The weighted average of all these
sites was used to calculate the conserved recoding index for each
case.

Gene expression analysis

Gene expression levels of all genes were calculated by using the
Salmon tool (Patro et al. 2017).

Neoantigen simulation

Neoantigen creation by off-target editingwas simulated as follows.
All 57,204 coding mRNA sequences were downloaded from the
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UCSC Table Browser (table “UCSC RefSeq [refGene]”, filtered
by “name does match NM_∗” and “chrom doesn’t match alt∗ fix∗ ran-
dom∗ chrUn∗”). These sequences represent the transcriptome (in-
cluding splice-variants) and include 58,472,242 adenosines and
50,119,924 cytosines. A Python script was used to perform
100,000 A-to-G or C-to-T substitutions at randomly chosen loca-
tions. The edited mRNA sequences were translated to proteins,
and the resulting peptides were analyzed using netMHCpan
(Lundegaard et al. 2008) to identify potentially immunogenic pep-
tides. Binding was evaluated for 9-mer sequences with the human
HLA-A02:01 MHC-I allele. For amino acid substitutions, peptide
sequences ranging eight amino acids upstreamof and downstream
from the edited amino acid were used for binding prediction. For
stop-loss edits, the sequence up to the next stop codon (or the
end of the UTR if no stop codon occurred) was examined.
“Strong binders” were determined using default netMHCpan pa-
rameters and cutoffs, with the “Binding Affinity” option
selected. We then excluded strong binding 9-mers that exist in
the naturally occurring human proteome (downloaded from the
UniProtKB database [Bateman 2019] using the following query:
“organism:”Homo sapiens [Human] [9606]” AND proteome:
up000005640”). The resulting strong-binders 9-mers were desig-
nated as neoantigens.

Gene-set enrichment analysis

Gene expression levels were computed (using Salmon) for all genes
and analyzed for enrichment of the apoptosis-related gene-set us-
ing GSEA software and version 4.0.2 (10,000 permutations) and
the hallmark gene-set collection (Liberzon et al. 2015).

Data analysis

The statistical analysis was calculated using R v.3.5.1 (R Core Team
2018). All tests conducted were two-sided, and the significant dif-
ference was considered as P-value<0.05.

Software availability

Editing index software is available at GitHub (https://github.com/
a2iEditing/BEIndexer) and as Supplemental Code.
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