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Abstract: Hox genes are regulators of animal embryonic development. Changes in the number and
sequence of Hox genes as well as in their expression patterns have been related to the evolution
of the body plan. Lophotrochozoa is a clade of Protostomia characterized by several phyla which
show a wide morphological diversity. Despite that the works summarized in this review emphasize
the fragmentary nature of the data available regarding the presence and expression of Hox genes,
they also offer interesting insight into the evolution of the Hox cluster and the role played by Hox
genes in several phyla. However, the number of genes involved in the cluster of the lophotrochozoan
ancestor is still a question of debate. The data presented here suggest that at least nine genes were
present while two other genes, Lox4 and Post-2, may either have been present in the ancestor or may
have arisen as a result of duplication in the Brachiopoda-Mollusca-Annelida lineage. Spatial and
temporal collinearity is a feature of Hox gene expression which was probably present in the ancestor
of deuterostomes and protostomes. However, in Lophotrochozoa, it has been detected in only a few
species belonging to Annelida and Mollusca.
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1. Introduction

Hox genes, a subfamily of homeobox genes, encode transcription factors containing a highly
conserved 60 amino acid homeodomain characterized by a helix-turn-helix motif [1]. The members of
this gene subfamily are regulators of animal embryonic development and play a role in the patterning
of the anterior-posterior body axis of Bilateria [2].

Hox genes were first discovered in Drosophila melanogaster where they are organized in the split
Antennapedia-Bithorax complex located on chromosome 3 [3,4]. In some cases, these genes are arranged
in clusters, and, hence, they are physically linked on the same chromosome. The number of clusters
varies in agreement with the genome duplications that the organisms experienced during evolution,
ranging from one in protostomes and invertebrate deuterostomes to four in sarcopterygians which
experienced two rounds of whole genome duplication (WGD), with as many as seven in teleosts which
experienced a third lineage specific event of WGD (Teleost Specific Genome Duplication, TSGD) [5].

Generally, one feature of the Hox cluster is spatial collinearity: the gene order on chromosomes
reflects the order of gene expression and function. The genes at the 31 end of the cluster are expressed
in the anterior part of the body while those at the 51 end in the posterior part. Collinearity may also be
temporal, meaning that the genes at the 31 end are expressed before those at the 51 end [6]. This feature
is more evident in bilaterian organisms displaying an unbroken cluster than in others which show
dispersed or broken clusters [7–10].

On the basis of gene position and gene function, the Hox cluster can be subdivided into
four classes [11]: anterior class, Paralog Group 3, central class, and posterior class. The composition of
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these classes vary across taxa due to duplication, inversion, or gene loss events that occurred during
evolution [10,12–14]. Moreover, fragmented clusters may also be related to the presence of transposable
elements that could promote chromosomal rearrangements [15].

Although Hox genes show a high sequence similarity, they play a remarkable role in the wide
morphological diversity of animals [10]. One of the major groups of bilaterian organisms is Protostomia,
which is subdivided into two clades: Ecdysozoa and Lophotrochozoa. The peculiarity of the former
is the ability to undergo ecdysis under the hormonal control of ecdysteroids. The latter clade is
characterized by the trochophore, the free-swimming ciliated larvae, and/or the lophophore, the
feeding structure made up of tentacles surrounding the mouth of adults.

Regarding Hox cluster composition, besides the Hox genes belonging to the Paralog Group-1
(PG-1), PG-2, PG-3, PG-4, and PG-5, Ecdysozoa also exhibit ftz, Antp, Ubx, abd-A, and Abd-B, while
Lophotrochozoa also include Lox5, Lox2, Lox4, Post-1 and Post-2 [16,17].

This paper focuses on Lophotrochozoa which are characterized by a high diversity of body
architecture, and are, therefore, ideal for studying the evolution of development. This review presents
an overview of the presence and expression patterns of Hox genes in 12 lophotrochozoan phyla.
The data obtained allowed different hypotheses to be delineated regarding the evolution of the Hox
gene subfamily within Lophotrochozoa and its implications on development.

2. Hox Presence in Lophotrochozoa

Body plan evolution and diversification in metazoans have not only been related to changes
in Hox cluster composition such as cluster and gene duplications, and gene loss, but also to gene
expression and regulatory interactions [14]. An understanding of Hox gene cluster composition can
provide insight into the evolutionary history that these genes have undergone within Lophotrochozoa.

Although internal relationships within the Lophotrochozoa clade are still controversial [18–22],
we focused on works concerning the presence of Hox genes in 12 phyla, and the evolution of the
genes composing the Hox cluster was discussed in relation to the evolutionary relationships between
lophotrochozoan phyla. The works summarized here clearly indicate that data on Hox genes are rather
scarce for Lophotrochozoa, and a limited number of works on complete genomes have provided insight
into Hox gene cluster composition [20,22–33]. About half of the lophotrochozoan phyla have never been
investigated while only one species has been analyzed in Brachiopoda and Bryozoa, two species in
Rotifera, and three species in Nemertea (Table 1) [16,22,23,34–37]. More information is available for the
three major lophotrochozoan phyla: Mollusca (about 30 species, Figure 1, Table S1) [16,20,24,26,38–58],
Annelida (about 20 species, Figure 2, Table S2) [8,16,20,46,59–73] and Platyhelminthes (about 30 species,
Figure 3, Table S3) [27–33,74–90].
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Table 1. Hox genes identified to date in Brachiopoda, Bryozoa, Rotifera, and Nemertea.

Hox Genes

Phylum Species PG-1 PG-2 PG-3 PG-4 PG-5 Lox5 Antp Lox2 Lox4 Post-1 Post-2 References

Brachiopoda Lingula
anatina

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

[16,22]

Bryozoa Bugula
turrita

‘ ‘ ‘

*
‘ ‘

[34]

Rotifera
Adineta vaga

‘

*
‘ ‘

*
‘

*
‘

*
‘

*
‘

* [23]

Philodina
roseola

‘

*
‘

* [91]

Nemertea

Lineus
sanguineus

‘ ‘ ‘ ‘ ‘ ‘

[35]

Micrura
alaskensis

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

[36]

Pantinonemertes
californiensis

‘ ‘ ‘ ‘ ‘ ‘

[37]

* indicates duplicated genes.
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Figure 1. Hox genes in Mollusca. Hox genes identified in the Mollusca phylum are reported. Tree 
topology following Smith et al. [92,93]. C: Conchifera; A: Aculifera.* indicates duplicated genes 
probably due to erroneous attribution [94]. The graphics of the figure were modified from Biscotti et 
al. [94]. For references see Table S1. 

 

Figure 2. Hox genes in Annelida. Hox genes identified in the Annelida phylum are reported. Tree 
topology following Struck et al. [95]. * indicates duplicated genes. Black dots indicate species not 
included in the analysis carried out by Struck et al. [95]. Species in bold belong to Clitellata. For 
references see Table S2. 

Figure 1. Hox genes in Mollusca. Hox genes identified in the Mollusca phylum are reported.
Tree topology following Smith et al. [92,93]. C: Conchifera; A: Aculifera. * indicates duplicated
genes probably due to erroneous attribution [94]. The graphics of the figure were modified from
Biscotti et al. [94]. For references see Table S1.
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Figure 2. Hox genes in Annelida. Hox genes identified in the Annelida phylum are reported.
Tree topology following Struck et al. [95]. * indicates duplicated genes. Black dots indicate species
not included in the analysis carried out by Struck et al. [95]. Species in bold belong to Clitellata.
For references see Table S2.
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Figure 3. Hox genes in Platyhelminthes. Hox genes identified in the Platyhelminthes phylum are 
reported. The tree is modified from Hahn et al. [32]. N: Neodermata. * indicates duplicated genes. The 
duplication reported for PG-2 gene in Gyrodactylus salaris might be due to an erroneous attribution of 
PG-3 gene. For references see Table S3. 
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Polyplacophora belonging to Aculifera and Bivalvia, Cephalopoda, Gastropoda, Monoplacophora, 
and Scaphopoda belonging to the sister taxa Conchifera [92,93]. Mollusks include organisms living 
in different ecological niches from marine to freshwater and terrestrial environments. Their 
morphology is extremely variable, ranging from Aplacophora with a wormlike appearance and no 
shell to Cephalopoda which have a well-developed cephalic region and have co-opted the mantle for 
locomotion. The muscular foot also presents different morphologies as it is adapted for a variety of 
functions. With the exception of Monoplacophora, for which no data are available, Hox genes have 
been identified in a single species of Scaphopoda [40], two species of Aplacophora [40], three species 
of Polyplacophora [40,57,58], five species of Cephalopoda [26,40,46,55,56], 10 species of Gastropoda 
[16,20,40,46–54], and 13 species of Bivalvia [24,38–45] (Figure 1, Table S1). Our previous review [94] 
provided evidence that all 11 genes of the Hox lophotrochozoan cluster are found within Bivalvia, 
Cephalopoda, and Gastropoda, which are the three most studied molluskan classes. Moreover, 
genome sequencing has revealed, for the first time in lophotrochozoans, that the gastropod Lottia 
gigantea presents an intact cluster [20]. In the genome assembly of the Pacific oyster, Crassostrea gigas, 
the Antp gene is clearly missing and Hox genes are located on four scaffolds [24,38]. In the pearl 
oyster Pinctada fucata, all 11 Hox genes are present and clustered on three scaffolds. Moreover, 
non-Hox genes are present in the Hox clusters of both the above-mentioned oysters, thereby 
suggesting that this is a feature which occurred in their common ancestor [25]. 

In the genome of the cephalopod, Octopus bimaculoides eight of the 11 Hox genes (with the 
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Figure 3. Hox genes in Platyhelminthes. Hox genes identified in the Platyhelminthes phylum are
reported. The tree is modified from Hahn et al. [32]. N: Neodermata. * indicates duplicated genes.
The duplication reported for PG-2 gene in Gyrodactylus salaris might be due to an erroneous attribution
of PG-3 gene. For references see Table S3.

The Mollusca phylum is divided into eight classes: Solenogastres, Caudofoveata, and
Polyplacophora belonging to Aculifera and Bivalvia, Cephalopoda, Gastropoda, Monoplacophora,
and Scaphopoda belonging to the sister taxa Conchifera [92,93]. Mollusks include organisms living in
different ecological niches from marine to freshwater and terrestrial environments. Their morphology
is extremely variable, ranging from Aplacophora with a wormlike appearance and no shell to
Cephalopoda which have a well-developed cephalic region and have co-opted the mantle for
locomotion. The muscular foot also presents different morphologies as it is adapted for a variety
of functions. With the exception of Monoplacophora, for which no data are available, Hox genes
have been identified in a single species of Scaphopoda [40], two species of Aplacophora [40],
three species of Polyplacophora [40,57,58], five species of Cephalopoda [26,40,46,55,56], 10 species of
Gastropoda [16,20,40,46–54], and 13 species of Bivalvia [24,38–45] (Figure 1, Table S1). Our previous
review [94] provided evidence that all 11 genes of the Hox lophotrochozoan cluster are found
within Bivalvia, Cephalopoda, and Gastropoda, which are the three most studied molluskan
classes. Moreover, genome sequencing has revealed, for the first time in lophotrochozoans, that the
gastropod Lottia gigantea presents an intact cluster [20]. In the genome assembly of the Pacific oyster,
Crassostrea gigas, the Antp gene is clearly missing and Hox genes are located on four scaffolds [24,38].
In the pearl oyster Pinctada fucata, all 11 Hox genes are present and clustered on three scaffolds.
Moreover, non-Hox genes are present in the Hox clusters of both the above-mentioned oysters, thereby
suggesting that this is a feature which occurred in their common ancestor [25].

In the genome of the cephalopod, Octopus bimaculoides eight of the 11 Hox genes (with the exception
of Hox2, Hox3 and PG-4) have been identified and located on eight separate scaffolds [26].

Annelida is another large and morphologically diverse taxon of Lophotrochozoa. Traditionally,
this phylum includes segmented worms but currently Myzostomida [95], Echiura, and Sipuncula are
also considered as Annelida. The two latter taxa show segmentation only at the larval stage [96,97].

A recent phylogenomic analysis divides Annelida into two main groups reflecting different
lifestyles, Errantia and Sedentaria, with Sipuncula and Myzostomida which occupy a basal position
(Figure 2) [95].

Within the Sedentaria group, the species belonging to Clitellata exhibit a highly dynamic Hox
gene cluster which is broken into several genomic regions and characterized by gene duplication
and loss events. In fact, extensive studies on the leech Helobdella robusta [20] and two earthworms,
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Eisenia fetida [61] and Perionyx excavatus [67], suggest that individual duplications, large segmental
duplications and/or whole genome duplications could have played a pivotal role in determining the
current Hox gene number and arrangement in these lineages. Moreover, the ortholog Post-1 gene has
not been retrieved in leeches and the PG-2 gene seems be absent in Clitellata with the exception of
P. excavates [67]. These organisms exhibit a different number of segments, internal anatomy, and shapes.
Therefore, it has been suggested that differences in presence, absence, and the arrangement of Hox
genes may be responsible for the evolution of the annelid body plan diversity [20].

The genomic survey performed in Capitella teleta indicates that Hox genes are located on three
scaffolds although duplication events have not been detected [8,20].

In general, the common ancestor of Sedentaria and Errantia had all 11 genes of the Hox cluster.
The species Myzostoma cirriferum and Chaetopterus variopedatus, which are basal in the annelid
phylogeny, do not show a complete cluster although whole genome sequencing has not yet been
performed for these species.

Within Lophotrochozoa, the phylogenetic relationships of Annelida and Mollusca with respect
to Brachiopoda, Phoronida, and Nemertea are still a question of debate. Recently, three hypotheses
have been proposed regarding the phylogenetic relationships between these taxa (Figure 4): according
to the first hypothesis, Brachiozoa (Brachiopoda + Phoronida) is a sister group to Mollusca while
Nemertea occupies a basal position in all the taxa considered [22,98]; the second hypothesis suggests
that Brachiozoa is a sister group to Mollusca + Annelida [99]; the third hypothesis considers Annelida
as a sister group to the clade including Brachiozoa and Nemertea [21].
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Figure 4. Hypotheses on phylogenetic relationships between the major lophotrochozoan phyla. In the
trees displaying the three hypotheses [22], the species in which the largest numbers of Hox genes have
been identified are reported for Nemertea and Brachiopoda, for Mollusca Lottia gigantea, the only
species showing the intact cluster in Lophotrochozoa, for Annelida Capitella teleta, the species to date
showing the least fragmented cluster. Lines underneath boxes indicate syntenic arrangement. Split lines
indicate that the cluster is located on different chromosomes or scaffolds. The length of the depicted
cluster is not proportional to the effective length in genomes. 1: in Lingula anatina, Lox4 and Lox2 genes
have been identified in de Rosa et al. [16]. Dark boxes indicate genes belonging to the Anterior class;
green boxes indicate genes belonging to the Paralog Group 3; grey boxes indicate genes belonging to the
Central class; white boxes indicate genes belonging to the Posterior class. Gene abbreviations: Antp:
Antennapedia; lab: labial; Lox2: Lophotrochozoa Hox2; Lox4: Lophotrochozoa Hox4; Lox5: Lophotrochozoa
Hox5; pb: Proboscipedia; PG-1: paralog group 1; PG-2: paralog group 2; PG-3: paralog group 3; PG-4: paralog
group 4; and PG-5: paralog group 5; Post-1: Posterior-1; Post-2: Posterior-2. The graphics of the figure were
modified from Biscotti et al. [94]. For references see Table 1, Tables S1 and S2.
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Lox2 and Post-1 genes have not yet been recovered in three nemertean species,
Lineus sanguineus [35], Micrura alaskensis [36], Pantinonemertes californiensis [37]. According to the
evolutionary hypotheses 1 [22,98] and 2 [99], the duplication events leading to these two genes
occurred after the separation of Nemertea and other lophotrochozoan phyla, thereby suggesting that
the common ancestor of Nemertea and Annelida-Mollusca-Brachiopoda had nine genes [36,37,94].
Alternatively, considering evolutionary hypothesis 3, the absence of Lox2 and Post-1 might be due to a
secondary loss.

The phylum Platyhelminthes is the fourth largest animal phylum after arthropods, mollusks and
chordates. Members of the phylum Platyhelminthes have a simple bilateral body plan, characterized
by the absence of traits found in most bilaterians (e.g., coelom, anus, circulatory and respiratory
systems) and for this reason they were previously considered as basal bilaterians [100]. However, the
presence in many flatworms of spiral embryonic cleavage, which is a mode of development
present in other invertebrate phyla, such as annelids or mollusks, has made their classification very
controversial. Platyhelminthes are currently considered as part of Lophotrochozoa, with the acoel
and nemertodermatid flatworms separate from the Platyhelminthes and considered as the earliest
branching extant bilaterians. However, some phylogenetic studies regard this taxon as separate
from Lophotrochozoa [21,98]. The Platyhelminthes are divided into three classes, the free-living
class “Turbellaria” and two parasitic classes, Cestoda and Trematoda. Subsequently, the parasitic
species are subdivided into three classes, Trematoda, Cestoda, and Monogenea (together called
Neodermata), while the class “Turbellaria”, a paraphyletic group, is divided into about 11 orders
(depending on the authors) [100].

In Platyhelminthes, the Hox gene set is reduced (Figure 3, Table S3), with PG-5, Antp, Lox2, and
Post-1 being absent in all the considered taxa [27–29,31,32]. The lack of these genes even in free-living
flatworms suggests that their absence may not be related to the parasitic lifestyle of many species of
this phylum. In Cestoda, the PG-2 gene seems to be absent and, among the other species examined,
orthologs have only been reported in four species: Girardia tigrina, Schistosoma mansoni, S. japonicum,
Gyrodactylus salaris (Figure 3). PG-1, PG-3, Lox5, Lox4, and Post-2 genes show duplications in several
species belonging to all groups. A duplication has been detected for PG-2 in G. salaris although one of
the two genes might belong to PG-3; indeed, in Platyhelminthes, PG-2 and PG-3 genes share several
conserved amino acidic residues that might make correct gene attribution difficult [28,75].

Moreover, as regards Hox gene arrangement, genome surveys have shown that the cluster is
disrupted. The developmental strategies of some of these organisms with a parasitic lifestyle [75]
and/or the presence of transposable elements [79,101] have been proposed in order to explain this
dynamic arrangement.

In Rotifera, the genome survey of Adineta vaga demonstrated that PG-3, Lox2 and posterior genes
are absent while the other genes, with the exception of PG-2, present multiple copies. Moreover, not all
the genes identified are arranged in a cluster [23]. The study in Philodina roseola, even if fragmentary, to
date has identified only two central genes which present multiple copies (Table 1).

3. Expression Patterns

Insight into the presence of Hox genes and their expression patterns might be useful for better
understanding the morphological innovations and the wide variety of lophotrochozoan species.

Most of the expression data on mollusks are limited to three species of gastropods [47–49,51,52],
two species of cephalopods [46,56,102], one species of bivalves [24,38], and one species of chitons [57].
Data on the conchiferan species suggest the role of Hox genes in the central nervous system, their
involvement in shell formation, tentacles, and the funnel; their expression has also been identified
in sensory organs such as the apical organ and statocyst and in the light organ in the cephalopod
Euprymna scolopes. Expression analysis in the bivalve C. gigas has shown that Hox genes are not
activated according to temporal collinearity but that the peak in PG-4, PG-1, and Lox4 expression
occurs before gastrulation, while Lox5 and Post-2 are expressed during the trochophore stage, and the
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other genes in late development [24,38]. Recent findings in the aculiferan Acanthochitona crinita reveal
a collinearity of Hox gene expression [57]. This is the first evidence in mollusks of the ancestral role of
Hox genes in patterning the structures along the anterior-posterior body axis in the same way as most
other bilaterian animals. Therefore, after the aculiferan-conchiferan split, Hox genes were co-opted
into the formation of novelties in gastropods and cephalopods and perhaps in all the other conchiferan
classes [57].

A comparison of expression patterns during trochophore larvae development in mollusks
and annelids reveals that chitons share comparable expression patterns with annelids along the
anterior-posterior body axis [57].

Expression surveys in the annelid Sedentaria confirm the ancestral role of Hox genes in
determining the structures along the anterior-posterior body axis [8,62,67,70,73,103]. In particular, the
study performed in Capitella teleta has shown that Hox genes exhibit spatial and temporal collinearity
in line with the ancestral role that these genes had in the deuterostome-protostome ancestor [8].
However, the absence of collinearity observed in H. robusta, that shows a disrupted Hox cluster,
indicates that collinearity is not conserved within Sedentaria [62]. The duplicated genes present in
P. excavatus also seem to be expressed from the anterior to the posterior body region [67].

In the Errantia N. virens and Platynereis dumerilii, the expression patterns are very similar: all the
Hox genes are involved in vectorial regionalization with the exception of Post-1; PG-1, PG-4, PG-5, Lox5,
and Post-2 are expressed in spatial collinearity while temporal collinearity is not respected since the
Nereid body plan lacks unique segmental identities [70]. On the contrary, temporal collinearity has
been detected in Chaetopterus variopedatus which occupies the basal position in Annelida [73].

The expression analysis of the nine Hox genes in the nemertean M. alaskensis clearly indicated
that Hox genes are expressed not in the pilidial larva but in the juvenile stage of pilidiophorans [36].
The gene expression studies also performed on the hoplonemerteans P. californiensis revealed the
homology between the imaginal discs of the pilidium and the paired larval invaginations in
hoplonemerteans and showed that pilidial development evolved before the split between the two
nemertean groups [37]. This sheds light on how Hox genes might be useful for understanding the
evolution of embryonic development.

A high expression of Hox genes belonging to the paralog groups PG-2, PG-4, Lox5, Lox4 and, to a
lesser extent, PG-1, has been identified inside the eggs and at the miracidium stage in Schistosoma and
in monogenean parasites [31,79,104], thus suggesting that these genes could be involved in embryo
development. Lox5 and PG-4 genes have also exhibited a higher expression in the schistosomulum
stage of S. japonicum, thereby highlighting the possible involvement of these two genes in multiple
ontogenetic development stages in schistosomes [31,79]. Moreover, high expression of PG-4, Lox5, and
Lox4 has also been observed in sporocysts, another stage at which the determination of cell fate along
the anterior-posterior axis may be important [79]. Lox4 could be involved in the process of development
in the monogenean parasite, given its high expression in the early developmental stages of the branchial
phenotype [104]. During embryogenesis and embryo patterning in the planarian Schmidtea polychroa,
the Spol-hoxD (Lox5) gene transcripts started to be detected at early stage 6 (8–10 days), in a strip of cells
on the side of the embryo containing the definitive pharynx; the pattern spreads from the definitive
pharynx to the posterior end, as reported by Iglesias et al. [89] in the adult. These data suggest that the
adult anterior-posterior axis is established after yolk ingestion and the proliferation of the blastomeres
in the germ band (stage 5) [90].

Studies on Hox expression have also been performed in adults. The patterns in adult specimens of
Girardia tigrina, Discocelis tigrina, and Dugesia japonica have shown two types of Hox genes, that either
conserve or lose their typical differential spatial expression whereas duplicated genes may show both
patterns of expression [84,105]. In the planarian D. japonica, Nogi and Watanabe [83] reported a similar
expression pattern for the two Post-2 genes: DjAbd-Ba is expressed from the posterior pharyngeal
region to the entire tail region suggesting that this gene is involved in the specification of the tail region,
while DjAbd-Bb is expressed in several types of cells throughout the body. However, counter to the rule
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of spatial collinearity, the anterior boundary of the expression domain of the posterior gene DjAbd-Ba is
anterior to the domains of the central genes PG-4 and Lox5. Different functions have also been reported
for Hox genes, apart from their involvement in embryonic development; for example, it has been
hypothesized that Lox4, being highly expressed in adult males and down-regulated in adult females,
could be involved in tissue differentiation of the male reproductive tract [104]. Another feature
is the permanent Hox expression in adult organisms; the high morphological plasticity of these
organisms, related to the presence in adult organisms of neoblasts (undifferentiated and totipotent cell
types, [106]), could explain their activity, suggesting that pattern formation in planarians may occur
continuously [82,105].

As well as embryonic development, the anterior-posterior positional values of Hox genes are also
involved in regeneration. After wounding, regenerative tissue is quickly formed [106], accompanied
by cell proliferation and Hox expression, even if the two processes are not necessarily related [86].
It has been pointed out that during regeneration, only Lox5 and Post-2 genes have a differential axial
nested expression, while the other genes are ubiquitously expressed. These genes are activated during
the first day of tail regeneration and down-regulated during head regeneration [82,83,105,107,108].
In particular, the presence of a system that maintains anterior-posterior axial polarity and regulates
the expression of DjAbd-Ba rapidly after amputation could be confirmed by the rapid expression of
DjAbd-Ba (Post-2a) in the head piece after amputation, with the anterior boundary of the DjAbd-Ba
expression domain shifting rapidly and dynamically toward the posterior in the tail pieces [83].
Moreover, Hox gene expression has also been detected during lateral regeneration underlining the
importance of these genes in regenerative processes in order to specify positional information on any
axis [86].

The extra copies of Hox genes identified in some Platyhelminthes may have lost their typical
anterior-posterior axial patterning role as a result of independent duplication and may, on the contrary,
have acquired a function in cell differentiation [79,82,86].

In general, flatworm Hox genes have been studied for many years, and, in some cases, distinct
spatial domains of expression have been highlighted, although their specific functions have not
yet been identified. Further research studies, especially on embryo development, are required in
order to draw some conclusions on the role and the possible expression collinearity of Hox genes
in Platyhelminthes.

4. Conclusions

This review provides clear evidence that insight into Hox cluster composition and expression
patterns is limited to a few phyla and that information is completely lacking for about half the taxa
belonging to Lophotrochozoa.

The overview of the literature considered in this work indicates that Lox2 and Post-1 genes have
only been recovered in some taxa of Lophotrochozoa. In addition to the hypothesis of a common
ancestor with 11 genes, a further suggestion is that these two genes originated as a result of secondary
duplications and that the common ancestor had nine genes [36,37,94].

If the latter hypothesis is valid the duplications of the central Lox4 and Lox2 genes and the posterior
Post-1 and Post-2 genes must have occurred in the ancestor of Mollusca-Annelida-Brachiopoda.
As regards Nemerteans, if their position is within this clade, the lack of Lox2 and Post-1 genes (since they
have not been identified to date) may be due to a secondary loss. Moreover, in Platyhelminthes, PG-5
and Antp have also been lost, thereby suggesting that additional gene losses have occurred compared
with the common ancestor.

In Mollusca and Annelida, a complete spatial collinearity involving all the genes that make up the
Hox cluster has only been detected in the polyplacophoran Acanthochitona and in the annelid Capitella,
while in other species of annelids, such as Helobdella triserialis, Nereis virens, and Platynereis dumerilii,
only some Hox genes maintain spatial collinearity [62,70].
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This suggests that, during evolution, the collinearity of Hox gene expression has been maintained
only in some taxa of these phyla. In flatworms, in which the breakage of the cluster and the loss
of some genes occurred, spatial-temporal collinearity seems to have been lost. Since Hox genes are
expressed in spatial collinearity in lophotrochozoans, ecdysozoans, and deuterostames, the most
parsimonious conclusion is that the spatial collinearity of Hox genes was already a feature of the last
common bilaterian ancestor.

Duplicated genes have also been identified in Clitellata and in Platyhelminthes, and the extra
copies of Hox genes show different expression patterns suggesting neofunctionalizations.

The comparison of Hox cluster composition and expression patterns in various animal groups
is a pivotal step toward understanding the mechanisms by which body plan modifications occurred
determining animal radiation. Therefore, future studies should be focused on the identification and
expression of Hox genes in phyla and classes which either have not yet been analyzed or which
have received scarce attention (Micrognathozoa, Acanthocephala, Rotifera, Entoprocta, Cycliophora,
and Phoronida). Furthermore, the information about some taxa is restricted to a single species and,
therefore, more species need to be investigated so as to have a better overview.
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