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Abstract

Objective—The diagnostic boundaries of sleep disorders are under considerable debate. The 

main sleep disorders are partly heritable; therefore, defining heritable pathophysiologic 

mechanisms could delineate diagnoses and suggest treatment. We collected clinical data and DNA 

from consenting patients scheduled to undergo clinical polysomnograms, to expand our 

understanding of the polymorphisms associated with the phenotypes of particular sleep disorders.

Methods—Patients at least 21 years of age were recruited to contribute research questionnaires, 

and to provide access to their medical records, saliva for deoxyribonucleic acid (DNA), and 

polysomnographic data. From these complex data, 38 partly overlapping phenotypes were derived 

indicating complaints, subjective and objective sleep timing, and polysomnographic disturbances. 

A custom chip was used to genotype 768 single-nucleotide polymorphisms (SNPs). Additional 

assays derived ancestry-informative markers (eg, 751 participants of European ancestry). Linear 

regressions controlling for age, gender, and ancestry were used to assess the associations of each 

phenotype with each of the SNPs, highlighting those with Bonferroni-corrected significance.

Results—In peroxisome proliferator-activated receptor gamma, coactivator 1 beta (PPARGC1B), 

rs6888451 was associated with several markers of obstructive sleep apnea. In aryl hydrocarbon 

receptor nuclear translocator-like (ARNTL), rs10766071 was associated with decreased 
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polysomnographic sleep duration. The association of rs3923809 in BTBD9 with periodic limb 

movements in sleep was confirmed. SNPs in casein kinase 1 delta (CSNK1D rs11552085), 

cryptochrome 1 (CRY1 rs4964515), and retinoic acid receptor-related orphan receptor A (RORA 

rs11071547) were less persuasively associated with sleep latency and time of falling asleep.

Conclusions—SNPs associated with several sleep phenotypes were suggested, but due to risks 

of false discovery, independent replications are needed before the importance of these associations 

can be assessed, followed by investigation of molecular mechanisms.
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1. Introduction

Sleep disorders are an expanding arena of medical research. For decades, insomnia has been 

the primary focus and it may remain the most frequently treated sleep disorder with the 

greatest total medical cost. Insomnia is strongly associated with depression and other 

emotional disorders, which seemingly contribute to each other. However, expanding data 

indicate that sleep-disordered breathing may be more common than insomnia [1,2]. Further, 

sleep-disordered breathing might be associated with higher morbidity and mortality. With or 

without comorbid insomnia complaints, reported sleep durations either several hours longer 

or shorter than the population median are associated with elevated mortality risks and 

numerous morbidities [3–5]. Contrary to popular belief, reported sleep durations longer than 

the epidemiologic optimum appear more common than short sleep [4]. Reported long sleep 

may be the best-documented mortality risk factor among the sleep disorders, and long sleep 

is associated with more serious morbidities [3,6]. Willis–Ekbom disease (restless legs 

syndrome or RLS) might have a prevalence of 3–15% [7,8], but its associations with 

morbidity and mortality have not yet been fully clarified. Among the circadian rhythm sleep 

disorders, delayed sleep-phase disorders (DSPDs) are an increasing concern among 

adolescents and young adults [9,10]. Delayed sleep phase is associated with broad health 

impairments and possibly, when the disturbance is persistent, a DSPD leads to excess 

mortality [11]. Narcolepsy was one of the first sleep disorders characterized. Although 

narcolepsy can be quite disabling, the prevalence appears to be less than one per thousand 

[12].

The diagnostic definitions of these sleep disorders have been somewhat controversial and 

have often varied among successive presentations of standard criteria, suggesting 

uncertainties in the diagnostic formulations. The population prevalence of these sleep 

disorders is poorly defined due to frequent changes in the diagnostic formulations. 

Validations of the most recent criteria by predicted prognoses and responses to treatment are 

scanty. Various sleep disorders are frequently comorbid and may have common symptoms 

such as trouble falling asleep, excess arousals during sleep, daytime sleepiness, and fatigue. 

It may be difficult for the clinician to isolate the various factors causing the symptoms in 

order to focus on the most useful targets for intervention.
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All of the sleep disorders mentioned above are somewhat or strongly heritable, with genetic 

components of causation [12–16]. Clarification of the genetic predispositions might lead to 

better understanding of pathophysiologic mechanisms, more useful diagnostic formulations, 

and ultimately better approaches to treatment. Up to now, with the exception of 

polymorphisms associated with narcolepsy [12,17,18], the identified polymorphisms 

associated with sleep disorders explain only small parts of their heritability and prevalence.

To expand understanding of genetic variants associated with sleep disorders, we 

systematically collected research questionnaires and DNA from patients scheduled to 

undergo clinical polysomnograms at the Scripps Clinic Viterbi Family Sleep Center.

2. Methods

2.1. Recruitment and procedure

From June 2006 to May 2010, whenever practical, patients scheduled for polysomnography 

(PSG) were invited to participate in genetic research. Patients 21 years and older were 

included, provided they competently signed informed written consent, under supervision of 

the Scripps Human Research Participant Protection Program and Institutional Review Board 

and in compliance with the Helsinki Declaration. Patients were not paid for research 

participation. Saliva was collected in Oragene saliva kits (DNA Genotek Inc., Kanata, 

Ontario, Canada). Then DNA was purified according to the Oragene protocol and the 

samples were frozen.

An extensive symptom questionnaire was completed by patients for clinical purposes with 

the help of family or staff as needed, and the same questionnaire was used for the research. 

The questionnaire included queries about sleep habits and schedules; sleep onsets and 

awakening times on weekdays and weekends; napping; and numerous items concerning 

symptoms of disturbed sleep, daytime sleepiness, narcoleptic symptoms, restless legs, and 

sleep-disordered breathing. Limited demographic items were included. The questionnaire 

included four key questions about restless legs used to recognize Willis–Ekbom disease 

[19], the Epworth Sleepiness Scale (ESS) [20], the Basic Language Morningness scale 

(BALM, a circadian morningness–eveningness trait measure) [21], and the Quick Inventory 

of Depressive Symptomatology-Self Report (QIDS-SR) scale evaluating current depressive 

symptoms [22]. Both International Classification of Sleep Disorders (ICSD) [23] research 

diagnoses recorded by the sleep specialist administering the intake questionnaire and the 

International Classification of Diseases (ICD)-9 diagnoses recorded over recent months in 

our electronic medical information system were retrieved and coded.

2.2. Polysomnography

After the polysomnogram was recorded and reviewed, the research database was coded with 

statistics such as the polysomnographic total sleep time, sleep latency, rapid eye movement 

(REM) latency, sleep efficiency, REM and slow-wave sleep percentages, total number and 

number per hour of obstructive and central apneas, apnea–hypopnea index (AHI), pulse-

oximetry measurement of the 3% oxygen desaturation index (ODI3), percent of sleep time 

when oxygen saturation was <80%, and the periodic leg movement index. Logarithmic 
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transforms were also tested for highly skewed parameters. Polysomnography scoring used 

contemporary American Academy of Sleep Medicine (AASM) criteria, which underwent 

several modifications during the study. When a patient was observed to display substantial 

sleep-disordered breathing in the first part of the polysomnogram, often a split-night 

procedure was implemented to save the clinical expense of extra recording nights. On 416 

split nights, the first portion of the night was devoted to uninterrupted recording to assess the 

degree of sleep-disordered breathing. Then the remainder of the night was devoted to 

sometimes-disturbing technician interventions to initiate continuous positive airway pressure 

(CPAP) treatment; adjust masks; titrate pressures to find optimal responses; change CPAP to 

bilevel, auto-adjusting, and paced ventilatory support protocols; provide supplemental 

oxygen, etc. For analyses of polysomnographic total sleep time (tstpsg), only recordings 

with uninterrupted time in bed (tib) > 300 min were used (N = 517), which included 99.6% 

of the full-night recordings but excluded 99% of the split-night recordings wherein sleep 

was artificially curtailed. If the patient wore CPAP or used supplemental oxygen during an 

entire undisturbed recording (without technician interventions and titrations), those data 

were also used. Patients received their usual medications on recording nights.

Strengths and limitations of the polysomnographic data collection strategy should be noted. 

The patient sample was recruited from a busy academic sleep practice, first established in 

1983. The polysomnographic recordings followed approved AASM procedures in this 

accredited sleep center, overseen by clinicians most of whom were diplomats of the 

American Board of Sleep Medicine. As such, the clinical sample was generally 

representative of patients referred for sleep disorders specialist consultation, except that 

there was a bias against participants for whom polysomnography might not be indicated (eg, 

a bias against patients referred primarily for insomnia, restless legs complaints, or circadian 

rhythm phase disorders). Indeed, almost all patients for whom polysomnography was 

ordered carried a before-polysomnography diagnosis of some form of sleep apnea (whether 

the clinician thought the pretest probability high or low), perhaps influenced by clinician 

knowledge that other diagnoses were less likely to earn insurance preapproval for laboratory 

polysomnographic testing. As our sleep center is located at a department of chest medicine 

and staffed mainly by pulmonologists (not atypical), when the clinical focus was on sleep 

apnea, comorbid conditions such as periodic limb movement disorders, insomnia, or 

circadian rhythm disorders might not be explored with equal interest, and when comorbid 

with sleep apnea, these diagnoses might not be coded. The severe limitation of these 

procedures for research was the variability of polysomnographic recording conditions, 

especially recording duration, for measurement of polysomnographic parameters such as 

total sleep time or REM sleep percentage. The advantage of the strategy was that 

assessments of sleep-disordered breathing are often thought to have adequate clinical 

reliability on split nights [24,25], whereas the cost of performing a research recording for 

each participant would have added $1,000,000–$2,000,000 to research expenses and would 

have limited the sample as well. It is doubtful that as high a percentage of our patients would 

have agreed to recordings primarily for research purposes, and some already using CPAP 

would not have agreed to recordings without CPAP.
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Even when performed for a research purpose, recordings using standard methods to monitor 

sleep-disordered breathing and periodic limb movements are known to produce discomforts 

and substantial sleep disturbances not usually experienced by patients in their home 

environments, although the home may produce disturbances as well. Single-night recordings 

do not provide highly repeatable measurements of total sleep time, sleep apnea, and periodic 

limb movements, whether performed on a clinical or research basis [26–28].

2.3. Phenotype assembly

From an enormous quantity and complexity of questionnaire, diagnostic, and 

polysomnographic data, the clinical data were prospectively distilled to 38 phenotype 

measures, focusing on complaints of insomnia and excessive daytime sleep, symptoms of 

depression, duration and time of day spent in bed, total subjective and polysomnographic 

sleep time, symptoms of restless legs [29], polysomnographic periodic leg movements, and 

several interrelated parameters of sleep apnea. Definitions of the phenotype variables are 

presented in the “Phenotype Definitions” worksheet of Supplement S1, which explains how 

each phenotype was coded and lists the numerical distributions of each phenotype. The text 

of the research questionnaire is attached as Supplement S2.

2.4. Genotyping

DNA was assayed primarily with a custom Illumina Golden Gate assay for 768 single 

nucleotide polymorphisms, designed as part of a multi-center collaboration [30]. Most 

targeted polymorphisms were selected for relevance to circadian rhythm regulation, but a 

smaller number were selected based on previous reports of association with sleep disorders 

[31]. Previous aspects of our research including detailed assay methods for this genotyping 

have been presented in prior reports, especially in two reports of associations of these same 

genotypes with circadian rhythm sleep disorders (delayed sleep phase and non-24-h sleep–

wake cycles) and with mood symptoms [32–37]. A few single-nucleotide polymorphisms 

(SNPs) of special interest were assayed using additional Sequenom, SNPlex, and Taqman 

assays, as well as some of 27 ancestry-informative markers (AIMS) used to develop 

multidimensional scale (MDS) dimensions within participants of European ancestry [38]. 

The MDS components were used as regression covariates to control for ancestry 

stratification within the European ancestry portion of the sample (751 of European ancestry) 

and were usually useful in reducing genomic inflation of the regression results. Additional 

MDS components for all ancestries were derived to examine participants of all ancestries 

together or to examine those 86 of non-European ancestry separately. The latter included 

those of Asian, African, Native American, and mixed ancestries.

2.5. Statistical analyses

The PLINK whole genome analysis tool set [39] was used to compute linear or logistic 

regression analyses of the association between each phenotype and the available SNPs. The 

regression models were selected with a goal of maximizing validity. A primary goal was 

curtailing genomic inflation as much as possible, by using age, sex, and multidimensional 

scale factors as covariates to control stratification and by excluding violations of Hardy–

Weinberg equilibrium or low minor allele frequencies. In some cases, eliminating one or 

more covariates reduced the genomic inflation. It appeared advisable at times to allow minor 
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alleles with <1% frequency, two of which relatively rare variants appeared of considerable 

interest as reported below. In most cases, we only tested additive models a priori to avoid 

further inflation of the multiple-testing burden, but prior data on heritability suggested 

dominant models for the BALM and DSPS phenotypes [40,41]. Regressions for up to 626 

SNPs were computed, requiring Bonferroni correction for multiple comparisons to obtain 

the family-wise error rates, in order to minimize false positives. We emphasize those 

associations with a phenotype which met a Bonferroni-corrected criterion of P < 0.05, but 

we also flag nominally significant P < 0.05 values, which should not be considered 

significant by the Bonferroni criteria. To obtain an overall perspective on the statistical 

outcomes considering the linkage of many of the SNPs and the correlations among many of 

the dependent phenotypes, we computed the q-values (false discovery rates) of all of the P 

values harvested from the 38 regressions combined, using the method and R statistical 

program with the default parameters of Storey and Tibshirani [42].

Because most of the participants had European ancestries, we focused on those participants 

to minimize stratification, as we generally did not find the MDS factors sufficient to control 

genomic inflation in samples of mixed ancestry, nor did adding non-Europeans to the 

European sample yield more powerful outcomes. The 86 samples of the non-European 

ancestry group were too few in themselves to expect adequate statistical power after 

Bonferroni correction.

3. Results

There were 13 Bonferroni-significant associations of SNPS with 11 phenotypes, which are 

presented in Table 1. This included three SNPs of the fragile X mental retardation 1 (FMR1) 

gene associated with a reduced QIDS-SR depression self-rating, which have been discussed 

in more detail elsewhere [36], but a somewhat different statistical model is presented here to 

provide perspective and comparison. Additional Bonferroni-significant results were as 

follows. Rs6888451 in peroxisome proliferator-activated receptor gamma, coactivator 1 beta 

(PPARGC1B) was associated with the number of obstructive apneas, with the obstructive 

apnea index, with the percentage of the sleep time that oxygen saturation was below 80%, 

and with the ODI3, which are all related phenotypes representing slightly different 

perspectives on obstructive sleep-disordered breathing. Rs3923809 of BTBD9 was inversely 

associated with the log transform of the leg movement index, loglmindexp1. Rs10766071 of 

aryl hydrocarbon receptor nuclear translocator-like (ARNTL) was associated with reduced 

polysomnographic total sleep time, tstpsg, in the recordings with tib >300 min. Rs11552085 

in casein kinase 1 delta (CSNK1D) was associated with polysomnographic sleep latency, 

sleeplatpsg. The distribution of central apneas was highly skewed, with most patients scored 

as having none, so the linear regression of central apneas with retinoic acid receptor-related 

orphan receptor A (RORA) rs8025324 shown as Bonferroni significant was not evidence of 

reliable association (a Kruskal–Wallis nonparametric comparison of the three genotypes 

showed no significant association with central apneas). Rs11071547 in RORA was 

associated with questionnaire-reported sleep latency. Finally, rs4964515 in cryptochrome 1 

(CRY1) was associated with the questionnaire-reported weekday time of falling asleep, 

fallasleep. The main results are presented in more detail in Supplement S1 along with 

additional results not achieving Bonferroni criteria of significance.
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The reliability of 13 Bonferroni-significant associations among regressions with a total of 38 

phenotypes is difficult to appraise, considering that various SNPs were genetically linked 

and various phenotypes were intercorrelated. An overall perspective was offered by q false-

discovery statistics, which estimate the chances of a false-positive discovery among multiple 

comparisons [43]. The overall q statistics were computed by compiling the P values for all 

of the SNP regressions for all phenotypes in combination, a total of 23,294 P estimates. The 

false-discovery estimates were as follows: for rs4964515 in CRY1, P = 1.99E-07 and q = 

0.0045. For P values of 8.28E-06 to 1.09E-05, the risk of false discovery was estimated as q 

= 0.062. For P values of 2.62E-05 to 7.82E-05, q was estimated as 0.107–0.125. In other 

words, the Bonferroni-significant P values ranging from 8.28E-06 to 7.82E-05 had chances 

of roughly 6–13% of representing false discoveries. For P values of 0.000107–0.000895, q 

was estimated as 0.161–0.495. These estimates indicate that P values exceeding 0.000934 

were >50% likely to be false discoveries, for example, a nominal P > 0.0208 was about 90% 

likely to be a false discovery. A graphic perspective is presented by Fig. 1, a quantile–

quantile plot of the same 23,294 P values, which shows the observed P values below the 

Bonferroni criteria to be rather close to the random expectation. The Bonferroni-significant 

values were somewhat above expectation, but only the observed P value near 10−7 was 

impressively above the random expectation illustrated in the Q–Q plot.

We examined the genotypes from the 86 subjects of non-European ancestry to investigate if 

any of the Bonferroni criteria associations shown in Table 1 were replicated among the non-

Europeans, but none of the 13 specific associations met even a nominal P < 0.05 criterion 

for replication significance.

4. Discussion

A genetic survey of a heterogeneous group of sleep disorders patients yielded a substantial 

collection of findings, largely novel and surprising. Recruiting unselected patients 

undergoing polysomnograms for genetic studies appears to be a fruitful strategy. From the 

false-discovery statistical estimates, we would anticipate that the Bonferroni-significant 

SNPs in Table 1 include some false positives, but most of the Bonferroni-significant results 

might be true discoveries. Of course, most SNPs merely nominally significant in reality 

were likely to be “false discoveries.” Even Bonferroni-significant associations should be 

considered tentative until replicated by independent research groups, particularly since none 

of the associations could be replicated in our small sample of non-European ancestry.

Perhaps the most important result was the association of PPARGC1B rs6888451 with 

several measures reflecting obstructive sleep apnea. Of the 601 patients (83%) who had <10 

obstructive apneas per hour, only 19% had one or two copies of the minor allele of 

rs6888451, but of the 17 (2%) who had >50 obstructive apneas per hour, 65% had one minor 

allele. As shown in Fig. 2, those with at least one minor G allele averaged almost twice as 

many total obstructive apneas as the homozygotes for the common allele. Likewise, those 

with one minor allele had almost twice the obstructive apneas per hour, 61% more oxygen 

desaturations per hour, and six times as many central apneas (NS). The less significant 

associations of rs6888451 with the number of central apneas and the AHI (the apnea–

hypopnea index includes central apneas) might suggest that an obstructing apnea mechanism 
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was mainly involved, such as airway anatomic compromise or collapsibility or inadequate 

airway dilator responses [44,45], or it might simply reflect that most patients had no central 

apneas scored. It was confirmatory that, besides the direct indices of obstructive apnea, the 

ODI3 (≥3% oxygen desaturations per hour) and the under 80% desaturation index 

(phenotype indices reflecting sleep-disordered oxygen desaturations) were also strongly 

associated with rs6888451. That the apnea score was associated with only weak nominal 

significance might suggest either a closer association of rs6888451 with objective measures 

of apnea than with clinician diagnostic formulations, or it might suggest that the logarithmic 

transform of ODI3 and AHI weaken the correlation by de-emphasizing the most severe 

cases of respiratory disturbances with which the rs6888451 minor allele was predominantly 

associated.

We had no a priori reason to expect that PPARGC1B would influence sleep apnea. The gene 

had been included in the SNP panel because of previous indications relating PPARGC1B to 

depression [36,46] and because PPARGC1B is a transcription factor binding at RRE sites of 

circadian genes, for example, weakly associated with delayed sleep phase and eveningness 

in a different sample [37]. An article reporting PPARGC1B rs7732671 associated (P = 

0.004) with reduced obesity [47] was cited by NCBI OMIM, but we could not find 

replication of any obesity association with PPARGC1B in more recent very large genome-

wide association studies (GWASs) [48]. We did not observe an association of rs6888451 

either with rs7732671 or with weight and body mass index (BMI), and using BMI as a 

covariate in the regressions had no substantial effect on the association of rs6888451 with 

apnea variables. However, rs32574, an SNP 6643 nucleotides 3′ of rs7732671, would have 

met the Bonferroni criteria for association with body weight, had the P value not been 

corrected for genomic inflation. According to the Scripps Genome Adviser [49], rs6888451 

is part of a SMAD3 transcription factor binding site. The University of Washington “Seattle 

SNPs” Genome Variation Server 138 and the SNAP Annotation and Proxy Search website 

[50] suggested nine additional common intronic SNPs with R2 = 1.0 linkage to rs6888451 

and at least 13 other intronic SNPs with R2 >0.5, at least one of which is part of muscle 

initiator sequence 19 [49]. If the association of rs6888451 with sleep-disordered breathing 

can be replicated, it might thus require considerable molecular biology to identify which 

among the linked variants might be causal. Among the participants of non-European 

ancestry, although there were no significant associations with PPARGC1B, the four 

homozygotes for the rs6888451 minor allele tended to have the most respiratory disturbance, 

with the heterozygote intermediate.

Another important group of findings was SNPs associated with short and disturbed sleep. 

The minor allele of ARNTL rs10766071 was significantly associated with shorter 

polysomnographic total sleep (Bonferroni P < 0.05) and nominally associated with increased 

sleep latency (both questionnaire and PSG), with delayed sleep-phase classification, with 

poor sleep efficiency, and with reduced REM sleep. See Fig. 3. The Scripps Genome 

Adviser [49] identified no specific functional role for this SNP, but it is perfectly linked (R2 

= 1.0) with a nearby intronic linkage block, and with one promoter SNP, rs7126225. In a 

large GWAS [14], rs10766071 was significantly associated with questionnaire-reported 

home total sleep time (P = 0.043), but a number of other ARNTL SNPs including rs7126225 
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(P = 0.012) were more significantly associated, and the strongest association with home total 

sleep was with a potassium channel on chromosome 12, which happens to be rather near a 

homologue, ARNTL2. Our study might be thought a partial replication of the GWAS ARNTL 

results [14], except that our own similar questionnaire-reported home sleep time data were 

not significantly associated with ARNTL SNPs. When our polysomnographic data were 

limited to tib >300 min., tib was also nominally associated with rs10766071 (P = 0.0003), so 

it is uncertain whether there might be a mutual interaction of tib and tstpsg in this data set 

limited to tib >300. Possibly delayed sleep onset, as indicated by long sleep latencies and 

DSPS symptoms, caused both curtailed tib and tstpsg in interaction with laboratory 

scheduling of polysomnography. Interestingly, some RORA SNPs were nominally associated 

with questionnaire sleep duration in the GWAS [14] as were rs8025324, rs9806633, and 

rs12907550 in our study, but the SNPs highlighted in the GWAS supplement were not 

among those we assayed, and the RORA gene is so large that nominally significant false 

discoveries are to be expected. The association of RORA rs11071547 we observed with the 

subjective sleep latency met the Bonferroni criteria in our study, with nominally significant 

associations with leg movement indices and a restless legs complaint, hinting that 

rs11071547 may mediate prolonged sleep latency partly through restless legs and periodic 

limb movements. Nominally significant associations of different RORA SNPs with sleep 

duration were also reported by Utge et al. [51] along with Bonferroni-significant 

associations of subjective sleep duration (among females only) with an SNP in GRIA3. 

Suggestive association of SNPs with questionnaire sleep duration was also reported by 

Ollila et al. [52]. Since short and long sleep are associated with excess mortality, it is 

possible that some of these SNPs might be found to be mortality predictors. If so, more 

complex analyses based on Mendelian randomization of the SNP variables considered as 

instrumental variables influencing sleep duration might allow exploration of whether sleep 

duration variation in itself mediates the mortality with which it is associated.

As previously reported [53], BTBD9 rs3923809 was associated with the leg movement 

indices with Bonferroni significance. The less common allele is associated with fewer leg 

movements (Fig. 4). BTBD9 rs3923809 was also nominally associated with 

polysomnographic total sleep time, sleep efficiency, and REM latency, all of which 

associations might be mediated by periodic limb movements causing sleep disturbance. Our 

findings partially replicate the previous reports of Stefansson et al. [53] and Winkelmann, et 

al. [54]. However, we did not replicate any association of rs3923809 with restless legs, nor 

could we replicate an association of any of five MAP2K5 SNPs with restless legs [54], an 

outcome rather similar to that in the Wisconsin cohort [55]. One limitation of our method 

was that we did not isolate an RLS subsample focused on those with familial RLS [56]. But 

our strategy was directed towards SNPs that would impact RLS susceptibility in a sleep 

clinic sample in which familiality was not a criterion. An association of MEIS1 rs6710341 

with restless legs [57] was confirmed by the replication criterion of P < 0.05, but the 

association of rs2300478 [13] was not replicated in the questionnaire data. In a 

supplementary logistic regression based on physician recorded research diagnoses of restless 

legs syndrome (not shown), of the nine SNPs of BTBD9, MEIS1, and MAP2K examined for 

replication, only MEIS1 rs2300478 reached nominal significance (P < 0.05).
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Two other SNPs related to phenotypes of disturbed sleep were CSNK1D rs11552085 and 

CRY1 rs4964515. Both were nominally associated with reduced subjectively reported total 

sleep time, with subjective insomnia, and with later reported clock times to fall asleep both 

on weekdays and on weekends. In CSNK1D, heterozygotes (N = 8) with the minor allele of 

rs11552085 were associated with 3.37 times the polysomnographic sleep latency 

(Bonferroni P < 0.02), but the five participants of non-European ancestry with one or two 

minor alleles did not have longer sleep latencies. For CRY1 rs4964515, the Bonferroni P = 

1.99E-07 for reported time falling asleep was the smallest P value obtained in all the 

analyses, and as mentioned above, this was the only association with a false-discovery 

probability of q = 0.0045, suggesting statistical reliability. As shown in Fig. 5, this highly 

significant contrast was derived largely from one outlying participant’s very late reported 

time of falling asleep on weekdays (among only 11 with the minor allele), as the reported 

time of falling asleep on weekends was several orders of magnitude less significant, and the 

polysomnographic sleep latency was not associated with CRY1 SNPs at all. The Mann–

Whitney rank-order contrast of the two groups was significant only at the P = 0.0001 level. 

Moreover, our sample of non-European ancestry had included 23 participants with an 

rs4964515 minor allele, and the minor allele had no significant association with any 

phenotype. No indication of a similar association of rs4964515 with delayed falling asleep 

was found in our companion sample of DSPS cases and controls [37]. For these reasons, 

despite the very small estimated q value, we must be quite skeptical that this rs4964515 

association was a true positive until replicated, and the same is true of the rs11552085 

findings. It is notable that neither rs11552085 nor rs4964515 showed evidence of DSPS on 

the BALM scale, so the meaning of a delayed sleep onset would be uncertain.

The significant protective association of FMR1 SNPs with the QIDS-SR depression scale 

has been more extensively discussed in a previous paper [36], but here we note the 

interesting nominally significant protective associations of the same SNPs with excessive 

sleepiness as indicated by decreased ESS. From a genetic viewpoint, it might appear that 

depression might be the main mechanism of reported daytime sleepiness in this Sleep Center 

sample. Genotypes aside, we have similarly found the ESS to be more closely correlated 

with the QIDS-SR than with any apnea, RLS, or leg movement index (data not presented), a 

finding resembling previous reports of Bardwell et al. [58]. Similarly, the insomnia scale 

(which was derived from the first three items of the QIDS-SR) was also associated with the 

three FMR1 SNPs.

To highlight the variability of clinical samples and the risks of false discovery, it is worth 

reviewing some pertinent negative results of this study. For example, Gottlieb et al. 

confirmed the heritability of sleep disorder phenotypes in Framingham data; however, using 

FBAT statistics, which are not subject to genomic inflation on Framingham GWAS data, 

they located no SNP associated with a sleep phenotype with Bonferroni significance after 

correcting for multiple-testing inflation [31]. The one SNP association meeting Bonferroni 

significance with population-based statistics, rs1823068, did not replicate at all in our data 

(see Supplement S1.). Some tentative associations (inconsistent in two races and of 

questionable statistical reliability) have been reported for obstructive sleep apnea [59,60], 

but a recent review found apnea-association reports that could be meta-analyzed only for 
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angiotensin I converting enzyme (ACE), apolipoprotein E (APOE4) [33,61], and tumor 

necrosis factor alpha (TNFalpha) [62–65], and only TNFalpha was supported by meta-

analysis (possibly mediated by associations with heart failure). We could not confirm 

associations of APOE or TNFalpha in our data. The dominant polymorphism in period 

circadian clock 2 (PER2) associated with advanced sleep phase disorder (ASPD) seems 

quite rare [66,67], and we did not find it. A much-studied polymorphism reported to be 

associated with DSPD, the C3111T SNP in CLOCK (rs1801260) [68], was not a significant 

correlate of DSPD or morningness–eveningness in the sleep center data [37]. We did 

confirm some previous associations of periodic leg movements and RLS with rs3923809 

and rs6710341 while failing to confirm other reported associations. In one report, a larger 

number of SNPs from three genes appeared to explain more than half of the total RLS risk 

[57]. In an expansion of that study examining the association of RLS with six genetic risk 

loci, the explained genetic variance was estimated at 6.8% [13,69].

5. Conclusions

In summary, this report introduces valuable clues to sleep disorders, which might be pursued 

by greatly expanding genetic research in patients studied in the sleep center clinical setting. 

Previous experience emphasizes the importance of independent replications of our results 

before their value can be confirmed in clinical application.
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Fig. 1. 
Quantile–quantile plot of P values. The ranked P values of SNP associations with sleep 

phenotypes are plotted with x symbols for 23,294 P values. The values above the 

Bonferroni-corrected criteria for P < 0.05 (thick dashed line) were approximately one log 

unit above the random expectations (i.e., P values ~0.10 times random expectations). Only 

the single association for rs4964515 in CRY1 with the questionnaire-reported weekday time 

of falling asleep was substantially above the random trend (P = 1.99E10–7).
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Fig. 2. 
Association of rs6888451 with the number of obstructive apneas. The numbers of 

obstructive apneas per night (columns labeled with the numeric mean within each column) 

are plotted versus the genotypes of rs6888451. The numbers of participants having each 

genotype are in parentheses. The error bars show the 95% confidence intervals for the 

means: the confidence limits for the GG genotype were too large for contrasts versus either 

CG or CC genotypes to be reliable.
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Fig. 3. 
Association of rs10766071 with polysomnographic total sleep time. Columns with the 

numeric mean within each column show the sleep time (TST) associated with each 

rs10766071 genotype. The ordinate is the minutes of polysomnographic sleep time, using 

only recordings with time in bed (tib) > 300 min. Error bars are the 95% confidence limits of 

the means. The horizontal axis specifies genotypes of rs10766071, with the number of DNA 

samples having each genotype in parenthesis.
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Fig. 4. 
Association of rs3923809 with the log10 periodic leg movement index. The association of 

rs3923809 genotypes with the leg movement index (log scale) is shown. The ordinate is the 

loglmindexp1, that is, LOG10[lmindex + 1], where lmindex is the leg movements per hour 

of sleep (plus 1). The error bars show the 95% confidence limits of the mean loglmindexp1. 

The horizontal axis specifies genotypes of rs3923809, with the number of DNA samples 

having each genotype in parenthesis.
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Fig. 5. 
CRY1 rs4964515 versus subjective time when falling asleep. Questionnaire-reported time to 

fall asleep (ordinate) is plotted against the rs4964515 AG genotype (group at left) and the 

GG genotype (group at right), both groups spread out for better visualization. Although the 

median time of reported falling asleep was certainly later for the AG genotype with one rare 

allele, the linear regression P = 2.0E-07 value was strongly influenced by one outlying point. 

The Mann–Whitney rank-order contrast of the two groups was significant only at the P = 

0.0001 level, which would not meet Bonferroni criteria.
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Table 1

Linear regression P values for key phenotypes.

Note: For definitions of the phenotypes, details of the regression models, regression results for additional phenotypes, and more detailed regression 
results, see Supplement 1. Beta (B) is the unstandardized regression coefficient (the same for all three Bonferroni-significant linked FMR1 SNPs). 
Blanks represent SNP associations not estimated by the models due to the low minor allele frequencies of rs4964515 and rs11552085 among 
Europeans and the impact of gender covariates on PLINK chromosome X analyses. Positive beta (B) values, flagged for nominal P < 0.05 
associations by ↑ symbols, indicate that the minor allele was associated with increased phenotype quantity. Negative B values, flagged by ↓ 

symbols, indicate a minor allele associated with decreased phenotype quantity. The Bonferroni P is the probability of the association, 
conservatively adjusted for the number of SNPs tested within each regression.
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