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Abstract. Photosystem II (PS II) is a photosynthetic re- 
action center found in higher plants which has the 
unique ability to evolve oxygen from water. Several 
groups have formed two-dimensional PS II crystals or 
have isolated PS II complexes and studied them by 
electron microscopy and image analysis. The majority 
of these specimens have not been well characterized 
biochemically and have yielded relatively low resolu- 
tion two-dimensional projection maps with a variety of 
unit cell sizes. 

We report the characterization of the polypeptide 
and lipid content of tubular crystals of PS II. The crys- 
tals contain the reaction center core polypeptides D1, 
D2, cytochrome b559, as well as the chlorophyll-bind- 
ing polypeptides (CP) CP47, CP43, CP29, CP26, CP24, 

and CP22. The lipid composition was similar to the lip- 
ids found in the stacked portions of thylakoids. We also 
report a 2.0-nm resolution projection map determined 
by electron microscopy and image analysis of frozen, 
hydrated PS II crystals. This projection map includes 
information on the portion of the complex buried in the 
lipid bilayer. The unit cell is a dimer with unit vectors of 
17.0 and 11.4 nm separated by an angle of 106.6 °. In ad- 
dition, Fab fragments against D1 and cytochrome b559 
were used to localize those two polypeptides, and thus 
the reaction center, within the PS II complex. The re- 
suits indicate that D1 and cytochrome b559 are found 
within one of the heaviest densities of the monomeric 
unit. 

p rtOXOSYSTEM II (PS II) 1 converts light energy to 
chemical energy, splitting water in the process and 
releasing oxygen as a byproduct. Consequently, PS 

II is the major source of oxygen for the atmosphere. Multi- 
ple pigments and at least 13 major polypeptides make up 
PS II, which is found in the photosynthetic membranes of 
green plants (for review see Hansson and Wydrzynski, 
1990; Staehelin and van der Staay, 1995). All but three of 
the polypeptides are intrinsic to the membrane. The three 
extrinsic polypeptides are found on the lumenal side of the 
membrane and are involved in oxygen evolution (for re- 
view see Ghanotakis and Yocum, 1990). The combined 
molecular mass of the polypeptides and pigments is N350 
kD. This figure does not include the eight very low molec- 
ular mass polypeptides known to be associated with PS II 
(Ikeuchi and Inoue, 1988; Schroder et al., 1988; Staehelin 
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1. Abbreviat ions used in this paper. CP, chlorophyll-binding polypeptide; 
cyt b559, cytochrome b559; LHC II, light-harvesting chlorophyll a/b com- 
plex associated with photosystem II; OEP, oxygen-evolving polypeptides; 
PS II, photosystem II. 

and van der Staay, 1995). In addition, the stoichiometry of 
each polypeptide is not known with certainty, so the mo- 
lecular mass of PS II can only be estimated. 

Two of the core polypeptides of PS II (D1 and D2) have 
sequence homology with the two core polypeptides (L and 
M) of the Rhodopseudomonas viridis reaction center (Hol- 
schuh et al., 1984; Zurawski et al., 1984), so that the struc- 
ture of D1 and D2 can be inferred from the structure of 
the R. viridis reaction center (Deisenhofer and Michel, 
1989). However, PS II is more complex than the bacterial 
reaction center. There have been many efforts to deter- 
mine the structure of PS II directly, including examination 
of isolated complexes (Irrgang et al., 1988; Dekker et al., 
1990; Haag et al., 1990; Boekema et al., 1994, 1995). There 
are several reports of two-dimensional crystals of photo- 
system II being formed in thylakoids after detergent treat- 
ment (Seibert et al., 1987; Bassi et al., 1989; Holzenburg et 
al., 1993; Lyon et al., 1993; Santini et al., 1994), as well as 
one type of PS II crystal which occurs in barley mutants 
lacking some photosystem I polypeptides (Simpson, 1983; 
Miller and Jacob, 1991). Each crystal type appears to be 
unique. The unit cells have ranged from 17.8 × 26.7 nm to 
11.5 × 16.1 nm (Bassi et al., 1989; Lyon et al., 1993, respec- 
tively). In addition, there is a conflict in the literature as to 
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whether PS II exists as a monomer (Holzenburg et al., 
1993) or dimer (Seibert et al., 1987; Bassi et al., 1989; 
Miller and Jacob, 1991; Peter and Thornber, 1991; Lyon et 
al., 1993; Boekema et al., 1994, 1995; Santini et al., 1994). 
The crystals in all these studies are found in preparations 
that include large numbers of vesicles and membrane frag- 
ments, so that the exact composition of each crystal type is 
difficult to determine. This makes it difficult to compare 
structures derived from the various crystals, or even to in- 
terpret the structures and their functional significance with 
any degree of certainty. In this report, we have character- 
ized the polypeptide and lipid content of tubular crystals 
of PS II (Lyon et al., 1993) and produced a projection map 
from frozen hydrated crystals. Fab fragments were used to 
localize D1 and cytochrome b559 (cyt b559), thereby local- 
izing the reaction center core to a specific density within 
the projection map. 

Materials and Methods 

Preparation of Samples 
Market spinach was purchased locally. Greenhouse spinach was grown in 
soil under natural light conditions and was harvested approximately two 
months after planting. Two-dimensional crystals were prepared as in Lyon 
et al. (1993). 

Biochemical Characterization 
The samples were enriched for the tubular crystals by repeated, low speed 
centrifugation (5,000 rpm for 6 min, Eppendorf 5402 centrifuge) and mon- 
itored by electron microscopy for enrichment. Gel electrophoresis and im- 
munoblotting were done as in Lyon et al. (1993) using 15% acrylamide 
mini-gels. Each lane was loaded with 1 ~,g of chlorophyll. Antibody bind- 
ing was detected by an amplified alkaline phosphatase method (Bio-Rad, 
Hercules, CA). The antibodies used were: anti-D1 and -D2 (Dr. B. Diner, 
E.I. DuPont de Hemours & Company, Wilmington, DE; Nixon et al., 1990), 
anti-CP47 and -CP43 (Dr. S. Mayfield, Scripps Research Institute, La 
Jolla, CA), anti-cyt b559 (Dr. W. Cramer, Purdue University, West Lafay- 
ette, IN; Tae et al., 1988), anti-CP22 (Dr. C. Yocum, University of Michi- 
gan, Ann Arbor, MI; Bowlby and Yocum, 1993), anti-CP24 and -CP26 
(Dr. L.A. Staehelin, University of Colorado, Boulder, CO; Falbel and 
Staehelin, 1992) and anti-CP29 (Dr. D. Simpson, Carlsberg Laboratory, 
Copenhagen, Demmark; Heyer-Hansen et al., 1988; Falbel and Staehelin, 
1992). 

Lipids were extracted and separated as in Jacob and Miller (1986). 
Grana membranes were prepared as in Berthold et al. (1981). Plates of sil- 
ica gel with a fluorescent indicator (Sigma Chem. Co., St. Louis, MO) 
were examined by UV illumination, then stained with osmium tetroxide 
vapors before photographing (Kates, 1972). 

Electron Microscopy 
Labeling with Anti-CP24, CP26, and CP29. Freshly prepared, dilate sam- 
ple was applied to glow-discharged, carbon-coated nickel grids. The grids 
were rinsed by floating on successive drops of distilled water and then on a 
drop of 1% fish gelatin (Amersham Corp., Arlington Heights, IL) in 
buffer (15 mM NaC1, 5 mM MgCI2, 20 mM Tris, pH 7.5). After 2 min the 
grids were transferred to a drop containing either the test antibody, 
buffer, or non-immune serum (each diluted with 1% fish gelatin). CP24 
and CP26 anti-sera were used at 1:20 dilutions while CP29 anti-sernm was 
used at a 1:50 dilution. Control grids were made using non-immune rabbit 
serum (CP24 and CP26) or mouse serum (CP29) at the same dilutions. 
Grids were incubated in a humid chamber that had been placed on a mag- 
netic stir plate so that the grids would rotate on top of the drop (Dr. T. 
Giddings, personal communication). After incubation for 0.25-3 h, the 
grids were washed by floating on drops of buffer for a total of 1 h. Each 
grid was incubated for 5 min on a drop of anti-IgG gold conjugate. Finally, 
the grids were washed by floating on buffer for 30 min, rinsed quickly in 
two drops of distilled water, and then stained with 2% uranyl acetate. Im- 

ages were taken on a Philips CM10 electron microscope at magnifications 
of 13,500 and 25,000x. 

Preparation of and Labeling with F~ Fragraent. Polyclonal serum con- 
taining IgG directed against the cyt b559 (last 12 residues of the COOH 
terminus, Tae et al., 1988) and the D1 (last 16 residues of the COOH ter- 
minus) potypepfides each were purified by passage over a protein A col- 
umn (Pierce, Rockford, IL). Fab fragments were generated from the puri- 
fied IgG by digestion with papain according to the manufacturer's 
instructions (Pierce). Fc fragments and undigested IgG were removed by 
passage over a protein A column. 

Purified Fab fragments were assayed for binding activity using standard 
immunoblots (Lyon et al., 1993) and then tested on tubular crystals. Di- 
lute sample containing tubular crystals of PS II was applied to glow-dis- 
charged, carbon-coated copper grids. The grids were rinsed by quickly 
floating on successive drops of buffer (15 mM NaC1, 5 mM MgCI2, 20 mM 
Hepes, pH 7.5) and then on a drop of cytochrome c blocking solution (0.5 
mg/mL in buffer, pH 7.5) for 2 min (Kubalek et al., 1987). The grids were 
transferred to a drop containing non-immune rabbit (Jackson ImmunoRe- 
search Laboratories, Inc., West Grove, PA), anti-D1, or anti-cyt b559 Fab 
fragments (1:10 in 0.5 mg/mL cytochrome c in buffer, pH 7.5). The grids 
were incubated for 15 min and then transferred to three successive drops 
of buffer for a total of 15 min. The grids were then floated for 5 rain on a 
drop containing anti-rabbit IgG coupled to 10 nm gold. Finally, the grids 
were rinsed on two successive drops of distilled water and stained with 2% 
uranyl acetate. 

For image processing, labeling with Fab fragments was repeated as 
above, omitting the incubation with IgG-gold. Images were taken on a 
Philips CM10 in low dose mode at a nominal magnification of 39,000x. 

Cryoelectron Microscopy 
Samples were frozen in buffer as in Brisson and Unwin (1985), using 18.0- 
nm-thick carbon films (Arizona Carbon Foil Company, Tucson, AZ) on 
400 mesh copper grids. Images were obtained on a Philips CM10 operated 
in low dose mode with a Gatan 626-MAN cryostage (Pleasanton, CA), op- 
erated at approximately -168°C. A 300-p.m condenser aperture and 70-1xm 
objective aperture were used. Two images of each tube were taken using 
low dose conditions. The first image was taken at a nominal underfocus of 
300 nm and a second image was taken at 600 nm undeffocus. The actual 
defocus values were determined as in Zhou and Chiu (1993) and were 268 
nm and 980 nm underfocus. 

General Image Processing 
Images were processed with a hybrid of two approaches: correlation aver- 
aging using the SPIDER system (Frank and Goldfarb, 1980; Frank et al., 
1981; Saxton and Baumeister, 1982) with appropriate modifications, and 
image alignment and comparison methods developed in the Boulder Lab- 
oratory for 3-D Fine Structure (Mastronarde et al., 1992). The major steps 
in the processing included obtaining average images from individual tubu- 
lar crystals, aligning and density-scaling these averages to each other, and 
selecting the best of these final averages to combine into a grand average. 
Variations of these steps were required for processing images derived 
from frozen crystals and for comparing Fab labeled to control samples, as 
detailed below. 

Digitizing Images. Negatives were screened in a diffractometer. Tubu- 
lar crystals displaying a reasonable diffraction pattern were digitized with 
a Star I cooled CCD camera (Photometrics Ltd., Tucson, AZ) connected 
to a MicroVax III computer (Digital Equipment Corporation, Maynard, 
MA). The optical density was measured at each pixel; the pixel size varied 
from 0.578 to 0.622 nm. Although the camera has a maximum frame size 
of only 572 × 378 pixels, the digitizing program was able to capture the 
image of an entire crystal in a series of two to four overlapping frames by 
using a motor-driven light box. A blending program assembled these 
frames into a single image (Mastronarde et al., 1993). To do so, it deter- 
mined the match between adjacent frames in the region of their overlap 
and resolved any misalignment between them in a graded fashion over the 
course of 50 pixels. These misalignments were less than 1 pixel. To keep 
density gradients across the image from appearing in the final average, the 
digitized image was high-pass filtered. After digitizing, the remainder of 
the processing was done on a AXP 3000 computer (Digital Equipment 
Corporation). 

Correlation Averaging. To obtain an initial starting reference for cross- 
correlation, a 256 × 256 pixel area was selected from the digitized image 
and Fourier transformed. Reflections in the power spectrum were indexed 
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using SPIDER routines, the transform masked to a 3 X 3 pixel area 
around each reflection, and the inverse transform taken. From this initial 
reference, a 64 x 64 pixel reference image was excised from the center. 
This reference image was cross-correlated with the original crystal image. 
The SPIDER peak search routine located peaks in the correlation. For 
each peak whose height was at least 60% of the maximum correlation, a 
64 x 64 pixel window was excised from the corresponding location in the 
tubular crystal. These windows were averaged. This new reference aver- 
age was low- and high-pass filtered and then used to find the appropriate 
alignment parameters for each previously located individual window. Af- 
ter determining the necessary alignments, a subset of  windows was se- 
lected based on the amounts of rotation, translation, and a new strength of 
correlation between each aligned window and the reference average. A 
program was written to facilitate selection of these windows by allowing 
examination of the distribution of the three parameters. Typically, win- 
dows were retained if their rotations were less than 4 ° , their displacements 
less than 1.5-2 pixels, and their new correlation strength at least 40-50% 
of the new maximum correlation. Each selected window was rotated and 
translated into alignment with respect to the reference average with a sin- 
gle quadratic interpolation; the final average and variance images were 
then computed. 

Alignment, Scaling, and Combination of Final Averages to Obtain a 
Grand Average. The f'mal averages from individual tubular crystals were 
aligned to each other with linear transformations (Mastronarde et al., 
1992). This method eliminated minor differences among the averages in 
unit cell dimensions and angles that can arise from small variations in 
magnification or specimen tilt. Initially, the reference for alignment was 
either one of the final averages or a grand average of several final aver- 
ages from a previous analysis. However, once a grand average of aligned 
images was obtained, the procedure was reiterated with that as reference. 
The alignment program measured the difference between the transformed 
individual average and the reference image and used a simplex algorithm 
(Press et al., 1989) to search for transformation parameters that mini- 
mized the difference. After an alignment transformation was found, the 
aligned image was rotated by 180 °, the shift was found that would align 
the rotated image to the reference, and half of this shift was added to the 
alignment transformation so that the 180 ° rotation of the final aligned im- 
age would be equally well aligned to the reference. 

After alignment, the densities in each image were scaled to match those 
in some reference image, initially the grand average of uuscaled images 
and then, on a second iteration, the average of scaled images. Because lin- 
ear scaling would not have been adequate in some cases, a more general 
mapping was used. To implement this, pixels were divided into 10 sets 
based on their density levels in the reference image, and average density 
values were determined for each set of pixels. A smooth curve of density 
in the reference versus density in the image being scaled was generated by 
locally weighted regression on these average densities (Wand and Jones, 
1995). Using this curve, the density value at any particular pixel could then 
be mapped to a value in the reference image. Variances were scaled by the 
square of the slope of a line fit to all 10 average densities. 

Analysis of Images of Frozen Crystals 
Three modifications were required to obtain quality averages from the 
frozen, hydrated samples. First, alignment of individual windows from a 
300-nm defocus image was difficult because of the low contrast of these 
images. Therefore, the 300- and 600-nm images of each crystal were com- 
bined for initial processing. The two images were digitized in approximate 
registration. A matrix of local displacements between the two images was 
obtained by cross-correlation in a series of local patches (96 × 96 pixels). 
From these displacements, a linear transformation was obtained to align 
the 600-nm image with the 300-nm image. The 300-nm and transformed 
600-nm images were then added together. The contrast on all images was 
reversed. 

Second, the initial cross-correlation map from each tubular crystal con- 
tained peaks displaced by half a unit cell. Therefore, to obtain an initial set 
of averages, correlation peaks were selected by hand from each crystal to 
ensure that all peaks were from the same lattice. 

The third modification was to reiterate the cross-correlation. This was 
done by combining averages from several tubular crystals to form a grand 
average. An individualized reference was generated for each crystal by 
applying the inverse of the transformation needed to align a preliminary 
average from one side of that crystal to the grand average. With a grand 
average as reference, the SPIDER automatic peak search reliably found 
peaks that were not displaced by half a unit cell. As new grand averages 

became available, they were used to obtain improved references. The reit- 
eration increased the number of high quality windows. Each individual- 
ized reference was flipped about its x axis to extract windows from the op- 
posite side of the tubular crystal. 

The peak positions and alignment shifts and rotations obtained from 
the combined 300- and 600-nm images were then applied to the 300-nm 
images to obtain final averages from each crystal. Averages were selected 
for combination into a grand average so as to maximize the resolution. 
Resolution was assessed by the spectral signal-to-noise ratio (Unser et al., 
1987), using the averages from each side of the crystals, not individual 
windows, as the elements of the analysis. 

Analysis of Antibody Labeled Crystals 
Images from both labeled and control crystals were processed as de- 
scribed above. Additional procedures included: (a) final alignment of av- 
erages using the central unit cell of each average, (b) selection of subsets 
for obtaining grand averages, and (c) statistical comparisons between Fab- 
labeled and control averages. 

Final Alignment Using Single Unit Cell. Even after the alignment of 64 
x 64 pixel averages, the structure inside the unit cells within each final av- 
erage showed subtle shape changes from one final average to another. To 
reduce these variations as much as possible for the antibody-labeled mate- 
rial, we aligned just a single unit cell from each average. For each aligned 
average and for the reference, the average was linearly transformed so 
that just the central unit cell occupied a 24 x 32 pixe| rectangle. Linear 
alignment transformations were found for each rectangularized average. 
These transformations were used to modify the transformations from the 
full-image alignment procedure, so that newly aligned unit cell images 
could be obtained with a single interpolation. 

Selection of Averages. To obtain grand averages for both the Fab la- 
beled and control crystals, averages from each crystal were selected by 
two methods. First, the noisiest averages originating from a particular grid 
were eliminated if they degraded the resolution of the grand average for 
that grid. Resolution was assessed by the spectral signal-to-noise ratio 
(Unser et al., 1987). 

Second, a smaller subset of final averages was defined by eliminating 
ones with particularly distorted unit cells, as was done by Guo et al. 
(1995). The degree of distortion was assessed from the a/b ratio and the 
unit cell angle. These parameters were derived from the transformation 
needed to align a particular final average to the reference grand average. 

Statistical Comparisons. Before statistical comparisons were made, av- 
erages were filtered to a resolution of 2.0 nm and twofold symmetry was 
imposed. Comparisons between antibody-labeled and control images 
were done with a two-level nested analysis of variance (Sokal and Rohlf, 
1981; Mastronarde et al., 1992). This analysis can test for differences be- 
tween samples of different kinds while simultaneously taking into account 
both variability among the samples of a given kind and variation in the el- 
ements contributing to each individual sample. In initial tests, the samples 
were the individual windows, and the scaled final averages and variance 
maps were used in the analysis of variance (just as in Mastronarde et al., 
1992). However, when samples of the same kind but from different grids 
were compared, there were statistically significant differences between 
grids. Thus, another level of variability (among grids) needed to be taken 
into account in the statistical analysis. To do so with a two-level analysis, 
the individual final averages were considered as samples. The simple 
mean and standard deviation of filtered final averages from each grid 
were used in the analysis of variance. This analysis accounted for both the 
variation among the final averages from one grid and the variation among 
the grids of one type. 

Results 

Sequential detergent treatments of spinach thylakoids un- 
der specified conditions (Lyon et al., 1993) yield tubular 
two-dimensional crystals of photosystem II (Fig. i a, inset). 
Preparations which were highly enriched for the tubular 
crystals (Fig. 1 a) were used for determining the polypep- 
tide and lipid composition of these crystals. Antibodies 
were used to detect individual polypeptides by comparing 
immunoblots of whole thylakoids and crystal preparations 
(Fig. 1 b). The results showed a high degree of enrichment 
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Figure 1. Biochemical char- 
acterization of the tubular 
crystals. (a) A preparation 
used for immunoblot analy- 
sis, showing the high degree 
of enrichment for the crys- 
tals. (Inset) Higher magnifi- 
cation image of a single, neg- 
atively stained crystal. (b) 
Immunoblot analysis. The 
left hand lanes of each pair 
are whole thylakoids, while 
the right hand lanes are tubu- 
lar crystals. Pair 1, anti-CP47; 
pair 2, anti-CP43; pair 3, anti- 
D2; pair 4, anti-D1; pair 5, 
anti-cyt b559; pair 6, anti- 
CP22; pair 7, anti-CP24; pair 
8, anti-CP26; pair 9, anti- 
CP29. (c) Antibody labeling 
was done to confirm the 
presence of CP24, CP26, and 
CP29, using gold-labeled sec- 
ondary antibodies to detect 
the primary antibodies. The 
first panel is an example of a 
tubular crystal labeled with 
anti-CP24 and the second 
panel is a control. Results are 
tabulated in Table I. Bars: 
(a) 1 ~m; (a, inset) 100 nm; 
(c) 125 nm. 

for D1, D2, CP47, CP43, cyt b559, and CP22. However ,  
CP24, CP26, and CP29, while present  in the preparations,  
did not show the same degree of enrichment  as the core 
polypeptides.  To  determine more  definitely the presence 
or absence of CP24, CP26, and CP29 in the crystals, direct 
labeling was done with antibodies specific for each 
polypeptide (for example  see Fig. 1 c). The  specific anti- 
bodies were detected with secondary antibodies conju- 
gated with gold. A Student 's  two-tailed t-test was used to 
compare  the means of labeled versus control samples. The 
significance levels (Table I) were quite high, indicating 
that CP24, CP26, and CP29 were included in the crystals. 

The lipid composit ion of the crystals was examined by 

thin-layer chromatography (Fig. 2, lane 3) and compared  
to a grana prepara t ion (Fig. 2, lane 2). A grana membrane  
prepara t ion was used for the comparison because PS II  is 
found almost exclusively in the grana region of thylakoids 
and it has previously been shown that the lipid populat ions 
of granal and stromal regions of thylakoids are different 
(for review see Murphy,  1986). The crystal prepara t ion 
had a lipid profile very similar to the grana preparat ion.  
However ,  there was a slight enrichment  for two minor  
bands in the crystal preparat ion (Fig. 2, arrows). One of 
these bands (lower arrow) can be tentatively identified as 
consisting of diphosphatidyl glycerol and sulphoquinovo- 
syl diacylglycerol, based on relative mobilities (Kates, 
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Table L Specific Antibody Label for Direct Determination of 
the Presence of CP29, CP26, and CP24: Comparison of the 
Means 

Mean, gold 
Crystals Total area particles per Standard Significance 
counted surveyed crystal deviation level* 

,O.2 

a -CP26  11 2.3 8.5 5.2 98% 
ct-CP24 8 1.9 21.1 8.7 99% 
rabbit serum 10 1.9 3.1 3.0 
a-CP29 29 5.4 7.9 4.5 99% 
mouse serum 31 6.2 4.2 3.2 

Note: A variance ratio test was performed. The variances within each set were statisti- 
cally equivalent. 
*Walpole and Mayers, 1978. 

1972; Rawyler and Siegenthaler, 1980). The smaller band 
(upper arrow) has been detected in thylakoids (Kates, 
1972) but has not been identified. 

Projection Maps: Cryoelectron Microscopy 

Tubular crystals were imaged after freezing over carbon 
films (Fig. 3 a). At the defocus level shown (980 nm under- 
focus), the dark unit cells and the light grooves are faintly 
visible. Bulbous ends were frequently found on the crys- 
tals, but completely formed tubular crystals were more 
typical. Contrast was reversed before image analysis so 
that the protein would be light and the results would be 
comparable to negatively stained samples. The log of the 
power spectrum from one area of the tube is shown in Fig. 
3 b. Reflections from both sides of the tube are clearly vis- 
ible. Some of the reflections were quite close together (ar- 
rows). The close reflections are related to the orientation 
of the lattice with respect to the tube axis, as in Brisson 
and Unwin (1984). It was possible to find areas where 
these reflections were sufficiently far apart to be separated 
by the use of a small mask. An initial reference was then 
obtained (Fig. 3 b, inset) and was used for cross-correla- 
tion and selection of the best areas of each crystal. From 
the best areas, individual averages were obtained from 

Figure 2. Thin layer chromatogra- 
phy of lipids. Lane 1, Purified diga- 
lactosyl diacylglycerol. Lane 2, 
Grana membranes. Lane 3, Tubular 
crystals. The lipid profiles in lanes 2 
and 3 are very similar. Two bands 
(arrows) appear to be slightly more 
concentrated in the crystal prepara- 
tions. Dark areas at the top of the 
plate are pigments. 

each crystal (example, Fig. 3 c) and combined to form a 
grand average. Cross-correlation with this grand average 
was reiterated, selection and rotational and shift correc- 
tions were repeated to obtain an improved average from 
each crystal. The final projection map included 1053 win- 
dows and is shown in Fig. 4. Windows were 64 x 64 pixels, 
the same size as the reference (Fig. 3 b, inset). Only win- 
dows requiring no more than 4 ° of rotational correction or 
0.87-nm shift correction were included. 

The final projection map (Fig. 4) shows a high degree of 
twofold symmetry about a central cleft. The correlation 
coefficient was 0.98 for this density map and its 180 ° rota- 
tion after filtering to 2.0 nm resolution. The density map in 
Fig. 4 a has not been filtered, nor has symmetry been im- 
posed. The two areas showing the greatest difference in 
symmetry are marked by arrows. While the difference is 
subtle, it appears that one-half of the dimer has a heavier 
density in this region. This subtle difference was apparent 
in the averages from individual crystals and was taken into 
account when individual averages were combined to form 
the grand average shown in Fig. 4 a. Because the differ- 
ences were so subtle, twofold symmetry was imposed for 
all further work. The spectral signal-to-noise ratio was 3 at 
2.05 nm, 2 at 2.01 nm, and 1 at 1.83 nm. Therefore, the use- 
ful data extends to at least 2.0 nm. The contour plot (Fig. 4 
b) has been filtered to 1.7 nm and twofold symmetry im- 
posed. The unit cell is 11.4 x 17.0 nm. 

There are several features of note. First, the unit cell 
clearly consists of a dimer. Each half of the dimer includes 
roughly four areas, indicated as A, B, C, and D on the con- 
tour map (Fig. 4 b). The heaviest densities are A and B. C 
is a low density area extending from A and B. The D area 
is somewhat separate, being connected to the B area by 
low density material. The crystallographic connections be- 
tween the unit cells (arrows) are only between the low 
density areas (D and C) whereas the high density A and B 
areas of the two monomers are in relatively close proxim- 
ity around the center of the unit cell. 

The potential volumes of each area were determined 
(Table II). Densities were integrated over each area after 
subtracting the background density (darkest part of the 
grooves). Integrals are expressed as a percentage of the in- 
tegral of the monomer (Table II). Integrals were con- 
verted to volumes by assuming that the six pixels of the 
densest area (which had an integral of 6.1% of the mono- 
mer) had a thickness of 9.45 nm. This value is midway be- 
tween the thickness determined by low-angle shadowing 
of the crystals (Lyon et al., 1993) and the maximum thick- 
ness of negatively-stained isolated PS II particles (Boekema 
et al., 1995). The volume was converted to potential mass 
using the value of 1.05 kD/nm 3 (Kiihlbrandt, 1987). Of 
particular interest is the potential mass of one half of the 
dimer (the monomer).  The mass of a single copy of each of 
the polypeptides known to be in the crystals (Fig. 1 b) is 
270 kD, not including chlorophyll or other pigments. The 
monomer has sufficient volume for a mass of ~332 kD. 

Localization o f  the DI  and cyt b559 Polypeptides 

Negatively stained tubular crystals, typical of those used 
for Fab fragment labeling, are shown in Fig. 5, a and b. Ex- 
perimental conditions, including type of blocking agent, 
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Figure 3. (a) Electron micro- 
graph of frozen, hydrated 
crystals. Defocus value = 980 
rim. The protein is dark, 
while lipid and ice are light. 
Ordered areas are just barely 
visible, particularly if the mi- 
crograph is viewed at a glanc- 
ing angle. (b) Log of the 
power spectrum from a por- 
tion of the larger tubular 
crystal in a. Diffraction from 
both sides of the crystal are 
visible. A very small mask 
size was required to separate 
closely spaced reflections 
(arrows). (Inset) Example of 
an initial reference obtained 
from masked diffraction pat- 
terns. (c) An example of a 
preliminary projection map 
obtained from one side of a 
single crystal. Bar, 140 nm. 

incubation times, and antibody concentration were deter- 
mined empirically to avoid excessive labeling (Fig. 5 c) and 
consequently an obscured diffraction pattern. 

To ensure adequate sampling of the data, three grids 
were used for each sample (D1, cyt b559, and control). 
There was a total of 22 crystals (4271 64 x 64 windows) 
for the control samples, 27 crystals (5555 windows) for the 
D1 labeled sample, and 20 crystals (3759 windows) for the 
cyt b559 labeled sample. Each set of data yielded a grand 
average image of the PS II complex. The density map 
shown (Fig. 6 a) is the grand average of the samples from 
one control grid. The map is similar to the average from 
negatively stained PS II  tubular crystals shown in Lyon et 
al. (1993). The significant difference between the grand 
average image from complexes labeled either with anti-D1 
Fab fragment or with cyt b559 Fab fragment and the grand 
average image from control samples clearly shows the lo- 
cation of the Fab fragment and therefore of the polypep- 
tide being probed. In Fig. 6, b and c, differences not signif- 
icant at the 0.05 level have been set to zero (gray). The 
most significant pixel in the D1 projection map (P = 

0.0027, Fig. 6 b) indicates that the D1 polypeptide is lo- 
cated in density A. The next most significant pixel in this 
map has a P = 0.007. In the cyt b559 difference projection 
map (Fig. 6 c), the most significant pixel is also in density 
A, near the D1 polypeptide, but closer to the center of the 
complex. Here, the two most significant pixels have P = 
0.007 and P = 0.0038; the next most significant pixel in the 
map has a P = 0.016. Note that the most significant pixel 
in each case is part of a group of pixels with significant dif- 
ferences between labeled and control images. The spatial 
relationship between the two polypeptides is more easily 
seen in Fig. 6 d which shows the locations of both D1 and 
cyt b559 on a contour map of the PS II  complex. These re- 
suits are from a subset of 62 averages obtained by elimi- 
nating noisy averages that reduced resolution. A similar, 
but weaker, pattern of differences was obtained from a 
smaller subset of averages selected by including only those 
averages with an a/b ratio of 0.738-0.712 and angles of 
103.5-106.1 °. In addition, the difference between the D1 
average and the sum of cyt b559 and control averages, and 
between the cyt b559 average and the sum of D1 and con- 
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Table II. Calculations of Potential Mass 

Integrated Potential 
Region Pixels density mass 

% of monomer kD 

monomer  178 100 332 
A 15 13.7 45 
B 13 11.4 38 

A,B and surrounding area 43 34.9 116 
C 5 3.1 10 
D 25 17.9 59 

Based on a height of 9.45 nm at the highest point (Lyon et al., 1993; Boekema et al., 
1995) and a density of 1.05 kD/nm 3 (Kiihlbrandt, 1987). 

Figure 4. (a) Density map of the average obtained from the 268 
nm defocus images. Symmetry has not been imposed, nor has this 
average been filtered. The high degree of twofold symmetry is 
clearly evident. Slight asymmetry was consistently noticed in the 
areas indicated with arrows. (b) Contour map with no symmetry 
imposed, filtered to 1.7 nm, for comparison with the symmetrized 
contour map (c). (c) Contour map of the average after filtering to 
1.7 nm. Twofold symmetry has been imposed. The unit cell was 
11.4 x 17.0 nm. Individual areas of density within the monomeric 
unit are indicated by A-D. Arrows indicate crystallographic con- 
nections between the unit cells. 

trol averages was computed; these differences showed a 
similar pattern for both subsets of averages. 

Discussion 

Composition of  Tubular Crystals 

Previous work using gel electrophoresis and immunoblots 
(Lyon et al., 1993) has shown that tubular crystals of PS II 
contained neither the light-harvesting chlorophyll a/b 
complex associated with photosystem II (LHC II) nor the 
three extrinsic polypeptides associated with oxygen evolu- 
tion. However, the absorption spectrum suggested that 
pigments normally associated with PS II  were included in 
these crystals. In this work, the composition of the tubular 
PS II  crystals has been determined. All major polypeptides 
were present: D1, D2, CP47, CP43, CP22, and cyt b559. In 
addition, the minor antennae polypeptides of CP29, CP26, 
CP24, and CP22 were present. These results do not ex- 
clude the possibility that other polypeptides, particularly 
the 10-kD (Ljungberg et al., 1986) and other small 
polypeptides, are also present. The lipid content appeared 
to be very similar to the lipid content of grana membranes, 
which is particularly significant because lipid has been im- 
plicated in maintaining both the structure (Jacob and 
Miller, 1986) and function of PS II (Gounaris et al., 1983; 
Siegenthaler et al., 1987). 

Previous structural work with PS II has produced a vari- 
ety of two-dimensional crystals with differing unit cell 
sizes: 16.8 x 18.9 nm (Holzenburg et al., 1993), 17.8 x 26.7 
nm (Bassi et al., 1989), 18.0 x 26.0 nm (Santini et al., 
1994), 16.0 × 23.5 nm (Simpson, 1983; Miller and Jacob, 
1991), and 17.5 x 20.4 nm (Seibert et al., 1987). The larger 
sizes from other crystal types may result from varying 
amounts of lipid and/or detergent associated with each 
unit cell. However, it is also quite likely that much of the 
variation comes from differences in polypeptide content. 
Gel electrophoresis of two crystal preparations showed 
LHC II  as the most prominent component (Bassi et al., 
1989; Holzenburg et al., 1993). Isolated particles of puri- 
fied spinach PS II complexes were 9.7 x 17.2 nm, while PS 
I I -LHC II complexes were 12.3 x 26.8 nm (Boekema et 
al., 1995). The PS II complexes in the tubular crystals are 
clearly too small to include LHC II. 

Structure: Interpretation of  the Unit Cell 

Freeze-etch work with grana membrane fragments has es- 
tablished that PS II particles have a tetrameric appearance 
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Figure 5. Electron micrograph of neg- 
atively stained crystals of PS II. Nomi- 
nal defocus value = 300 nm. Protein 
complexes are white. (a) Control. (b) 
Anti-D1 labeled. (c) Crystal exces- 
sively labeled with anti-D1 Fab. Or- 
dered areas are no longer visible. Bar, 
120 nm. 

on the lumenal face of thylakoids (for recent work, see 
Simpson and Andersson, 1986; Seibert et al., 1987). When 
the oxygen-evolving polypeptides (OEPs) are removed, 
these particles appear dimeric (Seibert et al., 1987). Simi- 
lar changes from tetramers to dimers upon removal of the 
OEPs have been reported with two-dimensional crystals 
of PS II (Bassi et al., 1989; Santini et al., 1994). The unit 
cell of the tubular crystals in this report had a dimeric ap- 
pearance, twofold symmetry and lacked the OEPs. Based 
partially on this, we have concluded that the unit cell con- 
sists of two PS II complexes and corresponds to the PS II 
particles observed in grana membranes after the OEPs 
have been removed. The monomer within each unit cell 
would thus correspond to a single PS II complex. 

There has been a report of a two-dimensional crystal 
consisting of monomeric units of PS II (Holzenburg et al., 
1993). The surface layers of the unit cell appeared tet- 
rameric, but at levels of the reconstruction which corre- 
sponded to membrane-internal portions, the unit cell was 
monomeric in appearance (Holzenburg et al., 1993). The 
authors concluded that PS II in the native membrane con- 
sists of monomeric units, not dimers. However, both the 
crystal and the diffraction pattern of Holzenburg et al. 
(1993) appear very similar to the type B crystal of Bassi et 
al. (1989). The type B crystal consisted of a double layer of 
crystals aligned to give an apparent single diffraction pat- 
tern. It is possible that the results of Holzenburg et al. 
(1993) can be explained by a similar alignment of two crys- 
tal layers and the resulting misleading diffraction pattern. 

The calculated potential mass of the monomer in the tu- 
bular crystals was 332 kD (Table II). The potential mass of 
the polypeptides and pigments of a single PS II complex in 
the tubular crystals is 270 kD, assuming 1:1 stoichiometry 
of all polypeptides present (reviews, Bricker, 1990; Jans- 
son, 1994). Thus, the unit cell has sufficient volume to in- 
clude two, but not four, PS II complexes. Similar volume 
considerations have indicated dimeric PS II units in a 

number of studies (Irrgang et al., 1988; Bassi et al., 1989; 
Haag et al., 1990; Boekema et al., 1994; Santini et al., 
1994). The estimates of volume/mass involve certain as- 
sumptions regarding the stoichiometry of polypeptides, 
average densities of proteins and determination of protein 
boundaries. However, bearing this in mind, structural 
work with two-dimensional crystals or isolated particles 
has suggested more than sufficient volume to include two 
PS II units. It should be noted that there is biochemical ev- 
idence that PS II complexes found in the grana portions of 
thylakoids are dimeric (Peter and Thornber, 1991; Santini 
et al., 1994), suggesting that dimeric PS II complexes are in 
fact the functional unit. 

Structure: Interpretation o f  the Densities 

One of the advantages of determining the structure of pro- 
tein crystals in ice is the visualization of that portion of the 
protein embedded in the membrane (Milligan et al., 1984). 
In an earlier projection map of negatively stained PS II 
crystals, there were four main areas of density (Lyon et al., 
1993). The projection map of the frozen hydrated PS II 
dimer shows an expanded shape and more discernible 
densities due to the integral membrane portions of the 
complex (Fig. 4 a). Because the topography has changed, 
new nomenclature was necessary. Further discussion will 
utilize the nomenclature outlined in the Results section 
and shown in Fig. 4 b. 

For the first time, it is possible to associate densities in 
the projection map of PS II with specific polypeptides. La- 
beling with Fab fragments against the D1 and the cyt b559 
(alpha subunit) polypeptides places both proteins in the 
same density, region A. The close association of DI and 
cyt b559 is in clear agreement with the results of Nanba 
and Satoh (1987), who isolated the minimum components 
for PS II photochemical activity. These minimum compo- 
nents were D1, D2, and cyt b559, implying that these three 
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Figure 6. (a) Projection map of single unit cell; the map is an av- 
erage from a control grid and has been filtered to 2.0 nm resolu- 
tion, with twofold symmetry imposed. (b) Differences between 
the D1 labeled and control grand averages that are significant at 
the 0.05 level. The boxed pixel has P = 0.0027. (c) Differences 
between the cyt b559 labeled and the control grand averages that 

were in close proximity to one another. The antibodies 
used were generated using synthetic polypeptides from the 
C O O H  terminus of each sequence. Therefore, the loca- 
tions of the label indicate the locations of the C O O H  ter- 
mini of each protein. In the tubular crystals, the lumenal 
side of the PS II  complex is exposed to the surface. Thus, 
the labeling results confirm earlier work that showed that 
the C O O H  termini for these proteins reside in the lumen 
(Sayre et al., 1986; Cramer et al., 1993). 

Considering the comparison between the L and M sub- 
units from the bacterial reaction center and the reaction 
center core of PS II (Holschuh et al., 1984; Zurawski et al., 
1984; Deisenhofer and Michel, 1989), as well as the fact 
that D1, D2, and cyt b559 can be isolated readily as a func- 
tional unit (Nanba and Satoh, 1987), it is likely that the D2 
polypeptide is also located near region A. CP47 also has 
been isolated with the core as a functional unit (Dekker et 
al., 1990). The two most intense densities, A and B (more 
striking in the negatively stained complex, Fig. 6 a), corre- 
spond to areas which extend the farthest from the mem- 
brane's surface. The CP47 sequence predicts that CP47 
has several loops which extend from the membrane (re- 
view, Bricker, 1990). In addition, CP47 is the largest 
polypeptide in the complex and would therefore contrib- 
ute greatly to the density. Furthermore, there is evidence 
that CP47 and cyt b559 are in close proximity (Picorel et 
al., 1994), suggesting that cyt b559 is located near both 
CP47 and D1-D2. Thus, it is likely that CP47 is located in 
the regions A and B. The rest of the monomer must con- 
tain the remaining antennae proteins. CP43 has been iso- 
lated with CP47 and the core as a functional unit (Ghano- 
takis et al., 1987; Fotinou et al., 1993). Consequently, CP43 
is likely to be closely associated with these polypeptides. 
CP29, CP26, CP24, and CP22 are mostly buried in the 
membrane, based on sequence homology with LHC II, 
(Green and Pickersky, 1994) whose structure is known to 
atomic resolution (Ktihlbrandt et al., 1994). They may be 
located primarily in the regions of low density which are 
more visible in ice. There is some evidence that these an- 
tennae polypeptides do not have 1:1 stoichiometry with 
the core components (Bassi and Dainese, 1992). There 
was a subtle difference between the two halves of the 
dimer in the low density areas, which may reflect a slightly 
different complement of antennae polypeptides for each 
half of the dimer. 

In summary, the reaction center cores are located in a 
position that is near the central cleft of the dimer, yet at 
the same time exposed to the outer edge of the dimer. In 
this location, the D1 polypeptide would be readily accessi- 
ble for replacement after damage caused by photoinhibi- 
tion (for review see Aro et al., 1993). Within the mono- 
mer, the core is surrounded on two sides by regions of low 
density, presumably the PS II  antennae polypeptides. Not- 
ing that one of these low density areas, region D, has close 
proximity to the core on the opposing half of the dimer, 
there may be sharing of antennae functions between the 

are significant at the 0.05 level. The boxed pixels have P = 0.007 
and 0.0038. (d) Contour map derived from the control PS II com- 
plex with the locations of the most significant differences from 
D1 and cyt b559 superimposed. 
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two halves. At  the same time, the two cores are in a posi- 
tion to associate transiently with additional antennae and 
plastiquinones. 
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