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Previous studies have shown that the dorsal premotor cortex (PMd) neurons are relevant to reaching as well as grasping. In order
to investigate their specific contribution to reaching and grasping, respectively, we design two experimental paradigms to separate
these two factors. Two monkeys are instructed to reach in four directions but grasp the same object and grasp four different objects
but reach in the same direction. Activities of the neuron ensemble in PMd of the two monkeys are collected while performing the
tasks. Mutual information (MI) is carried out to quantitatively evaluate the neurons’ tuning property in both tasks. We find that
there exist neurons in PMd that are tuned only to reaching, tuned only to grasping, and tuned to both tasks. When applied with
a support vector machine (SVM), the movement decoding accuracy by the tuned neuron subset in either task is quite close to
the performance by full ensemble. Furthermore, the decoding performance improves significantly by adding the neurons tuned to
both tasks into the neurons tuned to one property only. These results quantitatively distinguish the diversity of the neurons tuned

to reaching and grasping in the PMd area and verify their corresponding contributions to BMI decoding.

1. Introduction

Motor brain-machine interfaces (mBMIs) interpret the
motor intents from neural signals to control the external
devices, such as the computer curser and the robot arm [1-
5]. In the previous studies, the subjects, usually nonhuman
primates, are required to manipulate a joy stick in a 2D
plane or 3D space to track the target, which mostly focus
on the arm movement [6, 7]. Thanks to the occurrence
of the artificial prostheses with multi-degrees of freedom
and the stable recoding systems, we could step into more
complicated paradigms. A few researchers have started to
work on elaborate grasping tasks [8-10], which involve the
movement of fingers with different gestures.

Previous studies have shown that there are several cortical
areas relevant to the reaching and the grasping movements,
such as the primary motor cortex (M1), the ventral premotor
cortex (PMv), and the dorsal premotor cortex (PMd) [10-13].

Specially, neurophysiological studies have manifested that the
PMd area mostly relates to the proximal arm movements
(14, 15]. Some neurons fire more frequently when moving
towards the preferred direction. Burnod et al. have found that
when the initial arm position varied across the working space,
the directional preferences of the PMd neurons changed
significantly [14]. Messier and Kalaska have proposed a boot-
strapping method to estimate the probability that neurons
were tuned based on the intertrial variability when the
monkey was performing a whole-arm reaching movement in
a plane. Significant directional tuning of the neurons in PMd
was relatively constant throughout the trials [15]. But recently,
some studies have reported that there are also some neurons
related to grasping in PMd [16, 17]. Raos et al. firstly found
that when the monkey was grasping different shaped objects,
the recorded neuron firings in PMd were sensitive for a
preferred type of shape [16, 17]. Some researchers suggest that
in the PMd area the neural representations of reaching are
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not completely separated from grasping [17, 18], that is, there
are grasp-related neurons in this area. This phenomenon
indicates the existence of the neurons tuned to both reaching
and grasping tasks. To study their combined representation,
Stark et al. performed a mixed paradigm which required
the monkey to grasp one of three different objects in six
directions [12]. He found that there are neurons related to
reaching as well as grasping in PMd. However, the paradigm
in [12] combined reaching and grasping in the same trial,
which may influence each other because the reaching is
always preshaped by the grasping gesture.

In this paper, we are interested in studying the tuning
property of the PMd neurons related to reaching and grasp-
ing, respectively. Two experimental paradigms are designed
to separate these two factors. Two monkeys are instructed
to reach in four directions but grasp the same object in
the first experiment, named as “Reaching task” In the
second experiment, the monkeys are instructed to grasp four
different objects with different gestures but reach in the same
direction, named as “Grasping task” Activities of neuron
ensemble in PMd are collected while performing the tasks.
We propose to use mutual information (MI) to quantitatively
discriminate the neurons tuned to reaching and grasping,
respectively. In order to verify the contribution of the
tuned neurons in PMd, a support vector machine (SVM) is
implemented to decode the activities of the tuned neurons to
the corresponding movement and compared with the perfor-
mance by full ensemble in both reaching and grasping tasks.
The decoding is further used to validate if there exist neurons
tuned to both tasks, and how much they contribute to the
motor decoding. The experimental setup and data acquisition
are shown in Section 2.1, followed by the introduction of the
mutual information method measuring the neurons’ tuning
characteristic and the implementation of the decoding algo-
rithm SVM. Results are shown and explained in Section 3.
Conclusion and discussion are in Section 4.

2. Materials and Methods

2.1. Experimental Setup. The paradigm of motor brain-
machine interface was designed and implemented in Qiushi
Academy for Advanced Studies at Zhejiang University. Two
rhesus macaques (male), named B03 and B04, were trained
separately to perform two different tasks: the Reaching task
and the Grasping task with one of their dominant hands
(right hand for B03 and left hand for B04), as illustrated in
Figures 1(a) and 1(b). In the Reaching task, four identical
objects are fixed on the four corners of a transparent resin
glass board, and the monkeys are required to stretch out to
grasp the target object in different directions. While in the
Grasping task, one object with a certain shape is fixed on the
same position of the board (indicating the same direction),
and the monkeys are required to grasp it with a specific
gesture in each trial. There are four objects in our experiment,
namely, a small cylinder, a rectangle plate, a ring, and a cone.
One object is grasped for a certain number of trials and
changed to another.
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During the task, the monkey sits in a primate chair with
his head fixed. An LCD monitor is mounted behind the board
to illuminate the target object area, as a cue to instruct the
monkeys to start the trial. The trial sequence is shown in
Figure 1(c).

The monkey sits in darkness during the intertrial interval
(1~2.5s) with his hand resting on the clapboard. When the
cue is on (Light ON), the monkey is required to stretch out
and grasp the target object within 600 ms, and hold it for
1~2 s until the cue is off (Light OFF). After Light OFF, the
monkey releases the object and withdraws his hand to the rest
position. When a trial is completed successfully, the monkey
would receive water rewards. The training durations are 2~3
months before the monkeys successfully perform the tasks.

2.2. Neural Data Acquisition. The neural data are collected
from the Utah microelectrode array (Blackrock, 96 channels)
chronically implanted in the hand area of PMd, contra-
lateral to the trained hand (left hemisphere for B03 and right
hemisphere for B04). The surgical procedures are the same as
described in [19]. All experimental procedures in this study
conformed to the Guide for the Care and Use of Laboratory
Animals (China Ministry of Health) and were approved by
the Animal Care Committee at Zhejiang University, China.

Neural activities are recorded by the Cerberus data
acquisition system (Blackrock, USA). Signals were amplified
and analog-filtered by the Butterworth band-pass filter at
0.3-7500 Hz and further digitized (14 bit resolution, 30 kHz
sample rate) and digitally filtered (Butterworth high pass
filter) at 250 Hz. The spike activities were detected from the
filtered signal by a threshold value method (the threshold was
—5.5 times of the root mean square of the baseline signal).
And the spike timings were recorded. Spike activities were
sorted by Offline Sorter (Plexon, USA). Different spike wave-
forms were discriminated by a time-amplitude discriminator
and a principle component analysis (PCA) algorithm [20].
Each neuron was identified by observing the spike waveforms
and the channel locations based on the above spike sorting
method. In addition, the event timings of Light ON, Light
OFF, and rewarding were also recorded synchronously via the
digital input port of the Cerberus system.

2.3. Data Analysis. To analyze neural activities in the two
tasks, we mainly focus on the period from the resting state
to stretch out, grasp, and hold. For each trial, we extract 0.5s
before Light ON to 1.7 s after Light ON for Monkey B03 and
1.3 s after Light ON for B04 (B04 moved faster than B03).
For the desired period, neurons’ firing rates are binned in
a100 ms window. Firstly, a one-way ANOVA test is applied to
observe whether the neurons fire significantly different from
the rest state when performing the tasks. Then a quantitative
method, mutual information, is introduced to measure the
information amount between the neural firings and the target
task. In order to directly exploit the timing of the neurons’
firing, we examine the spike indicator (whether there is a
spike or not) every 10 ms. The mutual information between
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FIGURE 1: Experimental setup and the trial sequence. (a) The Reaching task. The monkeys were trained to grasp the identical objects in four
directions. (b) The Grasping task. The monkeys were trained to grasp four different objects, namely, a small cylinder, a rectangle plate, a ring,

and a cone, in the same direction. (c) The time sequence of a single trial.

the neural activities and the task (reaching or grasping) is
defined as

I(spsy)=

Y=Y1)2)3:Y4

p(y) D p(spkly)

spk=0,1

)

where y;, ¥,, y3, and y, represent four different actions
in either task, and p(y) represents the probability of the
corresponding action (in our experiments, it is 1/4 due to the
same trial numbers); p(spk | y) represents the conditional
probability of the corresponding firing rate (0 or 1) for a
certain action; and p(spk) represents the probability of the
corresponding firing rate of the target task. Please refer to
[21, 22] for details. We calculate the cumulative sum of the
neurons’ MI according to a descending order for each task.
When the cumulative sum of the MI reaches 90 percent of
the total amount, the last MI that has been added is regarded
as the threshold for the task. The threshold is applied to divide
the neurons into the tuned ones and nontuned ones and
calculated session by session, respectively.

An SVM is implemented as a decoder to quantify the
contribution of the tuned neurons to the BMI decoding.
Firstly, a subset of the tuned neurons according to the
thresholds described above is used in classification, compared
with the decoding by full ensemble, respectively, for the two
tasks. Noticing that there might be overlaps between the
neurons tuned to reaching and the neurons tuned to grasping,
that is, the neurons tuned to reaching as well as grasping,

we separate them from the neurons tuned to one property
only and compare the decoding performance including or
excluding them.

An SVM model maps the neural data into a high-dimen-
sion space by a kernel function, and different categories are
divided by a hyper plane. For a specific SVM model, the hyper
plane is optimized by (2), according to the statistical learning
theory [23]:

1 N
min = [ul® + CZet
u,b.g; 2 -1

2)
subject to:  y, (uTXt + b) >1-¢g,

t=1,...,N; &=0, t=1,..,N,

where y, represents the category of different movements, and
X, represents the neural firing rate, which is an n by m vector
(n is the number of neurons in a session, and #1 is the number
of bins). In our experiment, m is 18 for B03 and 14 for B04.
The parameters 1 and b indicate the normal vector of a hyper
plane and its offset. The goal of (2) is to find an optimal
separation plane which is farthest away from the nearest
neural data in both classes. The parameter ¢, is a dummy
variable. The regularization term makes sure that the neural
data in the training set is misclassified with a cost, because
there is noise and other measurement errors. The parameter
C is used for controlling the balance between the overtraining
and the generalization in testing. In our experiment, we
take radial basis function as the kernel function. And the
parameters of the radial function y and C are determined



by a 2-fold cross validation. The algorithm is implemented in
MATLAB using open source library LIBSVM [24]. We would
like to remark at this point that SVM is not the only option
to evaluate the decoding performance. Any effective classifier
may work here.

3. Results

The goal of this work is to find out how a certain neuron
in the PMd area is tuned to reaching and grasping, and this
section shows some example neurons with different tuning
characteristics, followed by the quantitative analysis of the
neurons’ tuning properties for different tasks; and the last step
is to verify the contribution of the tuned neurons to the BMI
decoding.

5 sessions of neural signals for each monkey were
obtained during a period of half a month. In each session,
monkeys were required to do both Reaching task (100 trials
divided in 25 trials for each reaching direction) and Grasping
task (200 trials divided in 50 trials for each grasping gesture).
For Monkey B03, neural data were recorded from 96 chan-
nels, and for Monkey B04, neural data were recorded from
64 channels. After offline sorting, 22-47 neurons (from B03)
and 30-66 neurons (from B04) were isolated in each session.

3.1. Observing Neurons’ Tuning Activities in Time. To give
an intuitively view of the neurons’ tuning characteristic in
the Reaching and the Grasping tasks, we average the firing
rates across trials in one session for each task. Here, we
plot four example neurons (Figure 2) which show different
firing patterns during the tasks. The average firing rates in
each task are aligned by the time of Light ON and plotted
in the same figure. Neurons A and B are selected from one
session of B03, and Neurons C and D are selected from one
session of B04. We can see that Neuron A fires significantly
higher than the baseline in the two tasks. And the four
curves both in the Reaching task (corresponding to the four
reaching directions) and the Grasping task (corresponding
to the four grasping gestures) are scattered. Therefore, we
consider Neuron A as tuned to both tasks. For Neuron B,
the firing curves in the Reaching task can be discriminated
but grouped together in the Grasping task. We consider it as
tuned to reaching only. The firing pattern of Neuron C is just
contrary to Neuron B, and we regarded it as tuned to grasping
only. And for Neuron D, which fires at the baseline level in
both tasks, is regarded as no-tuning.

To inspect whether the neurons’ tuning properties com-
monly exist or not, a one-way ANOVA test (P < 0.05)
has been carried out [25]. Task-related responses of each
neuron are statistically assessed by comparing the firing rates
between the movement state and the rest state. In the reaching
task, 80.96% of the neurons from B03 show significant differ-
ence in the firing rate relative to the baseline. The percentage
is 72.41% for B04. These neurons are classified as reaching-
related ones. In the Grasping task, the percentages are 88.02%
and 86.59%, respectively, for B03 and B04. These neurons are
classified as grasping-related ones (one-way ANOVA, P <
0.05). Among the reaching-related neurons, a large fraction
(84.04% for B03 and 68.26% for B04) further shows reaching
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tuning property (the firing rates for at least one reaching
direction in at least two bins were significantly different to
the others). This situation is the same as the grasping-related
neurons, 92.03% and 73.88% for B03 and B04 show grasping
tuning property, respectively, (one-way ANOVA, P < 0.05).
These results show that a majority of the neurons show tuning
property to the Reaching and the Grasping tasks.

3.2. Mutual Information Analysis. To evaluate the neurons’
tuning characteristic quantitatively, the mutual information
(MI) between each neuron and the corresponding task is cal-
culated. For each neuron there are two MI values respectively
for the reaching and the grasping task.

Figure 3 displays the MI values for the two tasks in one
session. The MI values in the two tasks reflect some char-
acteristics. Some neurons exhibit large MI in reaching (blue
bar) while very small MI in grasping (red bar), suggesting
that they are more sensitive to the reaching task. By contrast,
some display large MI in grasping while small MI in reaching,
suggesting they are involved in grasping. Besides, there are
also some neurons presenting large MI in both tasks, which
indicates that they are related to both conditions.

Note that the four example neurons shown in Figure 2
are marked by the asterisks in the above figure, and the
corresponding neuron signs are instructed by the arrows
under the x-axis. Neuron A, ranking first in the upper panel,
which is regarded as tuned to both conditions in Figure 2,
shows large MI values in both tasks. Neuron B, which tuned to
reaching only, exhibits large MI in reaching while small MI in
grasping. Neuron C, ranking 23 in the bottom panel, displays
large MI only in grasping. And Neuron D shows small MI in
both conditions. This demonstrates that a neuron’s tuning to
a task reveals large MI in the corresponding task, and the MI
can indicate a neuron’s tuning property.

A threshold method on MI is employed to quantitatively
evaluate a neurons tuning property. If the MI values in
reaching and grasping exceed the thresholds of both tasks,
the neuron is tuned to both conditions. If the MI of one task
is greater than the task’s threshold but the MI of another
task is below the task’s threshold, the neuron is defined as
tuned to one condition only. Table 1 shows the contribution
of the tuned neurons in the corresponding task, that is, the
percentage of the information provided by the tuned neurons,
which are averaged across five sessions. The number of the
corresponding tuned neurons is also given in the brackets.
Take Monkey B03 as an example, in the Reaching task, the
information provided by the neurons tuned only to reaching
and those tuned to both conditions, respectively, accounts for
30.74% and 54.81%. And in the Grasping task, the proportion
is 27.77% and 60.94%, respectively, for the neurons tuned only
to grasping and the neurons tuned to both conditions. The
information distribution for Monkey B04 is similar to B03.

It is interesting to notice that the contribution of the
neurons tuned to both conditions is much larger than that of
the neurons tuned to only one property in both tasks. One
possible reason may be the number of the neurons tuned
to both conditions is averagely greater than the number of
the neurons tuned to one property only. The reveal of the
large number of the neurons that tuned to both conditions
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FIGURE 2: The tuning activities of four example neurons from both monkeys during the Reaching and the Grasping tasks. The x-axis represents
the times (in seconds) from the rest state (about 0.4-0.5 s) to the movement state (about 1.4-1.7 s). The y-axis represents the firing rate (in Hz).
The vertical line in each panel represents the time of Light ON, which is defined as 0 s. Each row shows the variation of the same neuron’s firing
rates in the two tasks (left: the Reaching task; right: the Grasping task). Neurons A and B are from the first session of B03, and Neurons C and
D are from the third session of B04. The four different colors in one plot represent four different actions of a task. Specifically, in the Reaching
task, the red color indicates reaching to the direction of upper-left corner (D1), the green color indicates reaching to the direction of upper-
right corner (D2), the blue color indicates reaching to the direction of lower-left corner (D3), and the light blue color indicates reaching to
the direction of lower-right corner (D4). In the Grasping task, the red color indicates grasping the cylinder, the green color indicates grasping
the plate, the blue color indicates grasping the ring, and the light blue color indicates grasping the cone.

is consistent with the study [12] that shows there exist PMd  to check the decoding performance by full ensemble versus

neurons that tuned to grasping as well as reaching. the tuned neuron subset versus the top 10 well-tuned neurons.
The decoding results are depicted in Figure 4.
3.3. Decoding Verification. To verify the correlation between Compared with the decoding by full ensemble, the tuned

the neurons’ tuning property and the tasks, weadoptthe SVM  neuron subset achieves quite close accuracy in both tasks
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FIGURE 3: The mutual information in one session for the two tasks. The x-axis represents the neurons, and the y-axis represents the MI values
in the Reaching and the Grasping tasks. The blue bars represent the Reaching task, and the red bars represent the grasping task. The upper
panel is for Monkey B03, and the bottom one is for B04. The asterisks represent the four neurons shown in Figure 2, which are instructed by
four arrows under the x-axis.

TABLE 1: The percentage of the information provided by the tuned neurons in the Reaching and the Grasping task. The number shown in the
brackets represents the corresponding tuned neurons.

The contribution of the tuned neurons in the two tasks

Monke Reaching task Grasping task
Y Tuned only to reaching Tuned to both conditions Tuned only to grasping Tuned to both conditions
(averaged number of (averaged number of (averaged number of (averaged number of
neurons) neurons) neurons) neurons)
B03 30.74% (7) 54.81% (9) 27.77% (5) 60.94% (9)
B04 23.16% (9) 65.51% (14) 30.4% (9) 57.89% (14)

for the two monkeys, and even using the top 10 well-tuned
neurons can get a comparable performance. These results
suggest that the tuned neurons contain the majority of the
information related to the corresponding task, and even a
small subset of well-tuned neurons is able to achieve an
excellent decoding performance.

In Figure 4, the tuned neuron subset in each task contains
two types of tuned neurons, that is, the neurons tuned to one
property only and the neurons tuned to both conditions. To
investigate the role of the neurons tuned to both conditions,
we further compare the decoding by adding them into the
neurons tuned only to one property.

Figure 5 includes three neurons subsets, namely, the sub-
set a, the subset b, and the subset ¢, representing, respectively,
the neurons tuned only to reaching, the neurons tuned only

to grasping, and the neurons tuned to both conditions. The
light blue bars represent the decoding by the subset tuned
only to one property (i.e., the subset a in the Reaching task
and the subset b in the Grasping task), and the yellow bars
represent the decoding by two types of tuned neurons (the
neurons tuned to one property only plus the neurons tuned
to both conditions, that is, the subset a plus the subset ¢ in
the Reaching task and the subset b plus the subset ¢ in the
Grasping task). Adding the subset ¢ to the subset a or the
subset b, the decoding accuracy significantly increases both
in the Reaching and the Grasping tasks, and the improve-
ment is about 50.9%-70.6%. For the significant decoding
performance improvement, one possible reason is the greater
number of the neurons for the combination of the two
types of tuned neurons. Another possibility is that the tuned
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FIGURE 4: The decoding results by full ensemble versus the tuned neuron subset versus the top 10 well-tuned neurons. The x-axis represents
the sessions, and the y-axis represents the decoding accuracy. The red line represents the decoding by full ensemble, the blue line represents
the decoding by the tuned neuron subset, and the green line represents the decoding by the top 10 well-tuned neurons. The top two panels
show the decoding in the Reaching (left) and the Grasping tasks (right) for Monkey B03. The bottom panels are for B04.

neurons in the combined group make a better integration
of the neuron circuits that can form a complete and more
complicated reaching and grasping action. Hoshi and Tanji
in their reviews have demonstrated that the neurons in PMd
receive multiple aspects of motor information (including
arm use, target location, and instructed movement direction)
that encodes in a circuit to form an appropriate action
[26-29]. These studies indicate that the PMd has played a
major role in integrating multi-information to formulate a
complicated movement. Therefore, the combined groups of
the tuned neurons may make a better integration of different
information that eventually achieves a precise prediction of
the output movement.

4. Conclusion and Discussion

In the current work, we have studied the tuning characteristic
of the neurons in the PMd area in reaching and grasping,

respectively. We design two BMI behavior paradigms which
keep one factor constant but change another. The first
condition is a “Reaching task” which requires the monkeys to
reach in four different directions but grasp the same object.
The other condition is a “Grasping task” which requires the
monkeys to grasp four different objects but reach in the same
direction. We propose to utilize mutual information (MI) to
quantitatively evaluate the neurons’ tuning property in both
tasks. We find that there exist neurons in PMd that are tuned
only to reaching, tuned only to grasping, and tuned to both
tasks. When applied with a support vector machine (SVM),
the movement decoding accuracy by the tuned neuron subset
in either task is quite close to the performance by full
ensemble. Our results demonstrate the diversity of neural
tuning to reaching and grasping in the PMd area. The tuning
characteristic of the PMd neurons in the Reaching and the
Grasping tasks can be significant. The tuned neurons contain
more information related to the movement.
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FIGURE 5: The decoding performance by different neuron subsets. The y-axis represents the decoding accuracy. The blue bars represent the
decoding by the subset tuned to one property only, and the yellow bars represent the decoding by two types of tuned neurons (the subset tuned
to one property only plus the subset tuned to both conditions). The left panel is for the Reaching task and the right panel for the Grasping
task. In each panel, the left group is for B03 and the right group for B04. The subset a represents the neurons tuned only to reaching, the
subset b represents the neurons tuned only to grasping, and the subset c represents the neurons tuned to both conditions.

An interesting phenomenon is that the MI of the neurons
tuned to both conditions is larger than that of the neurons
tuned to one property only in both tasks. One possible
reason may be that the number of the neurons tuned to
both conditions is greater than the number of the neurons
tuned to one property only. The reveal of the large number
of the neurons that tuned to both conditions is consistent
with the study [12] that shows there exist PMd neurons that
tuned to grasping as well as reaching. The larger number
may also cause improvement of the decoding performance
when combining such neurons tuned to both conditions
with the subset tuned to one property only. Furthermore,
the tuned neurons in the combined group may make a
better integration of the neuron circuits that can form a
more complicated reaching and grasping action, which can
contribute to the better decoding of multimotor information
from PMd neurons. The mechanism of neural activities for
the reaching or grasping task requires further study.
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