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Abstract: Flexible construction of permanently stored supramolecular chirality with stimulus-
responsiveness remains a big challenge. Herein, we describe an efficient method to realize the transfer
and storage of chirality in intrinsically achiral films of a side-chain polymeric liquid crystal system
by combining chiral doping and cross-linking strategy. Even the helical structure was destroyed by
UV light irradiation, the memorized chiral information in the covalent network enabled complete
self-recovery of the original chiral superstructure. These results allowed the building of a novel
chiroptical switch without any additional chiral source in multiple types of liquid crystal polymers,
which may be one of the competitive candidates for use in stimulus-responsive chiro-optical devices.

Keywords: chiral induction; chiral self-recovery; supramolecular chirality; chiral nematic phase

1. Introduction

Chirality, a fundamental property of nature, usually plays an essential role in biological
processes and living systems. Nature is expert in using simple building blocks to efficiently
fabricate highly complex systems, as well as the elegant assembly that can exhibit a variety
of excellent performance [1,2]. Inspired by this, research on the transfer, amplification and
memory of chirality between multi-levels, including secondary, tertiary and quaternary
structures, is of key importance for understanding the origin of homochirality, as well as
for the possible development of novel chiral materials [3–5].

Manipulating and memorizing hierarchically assembled chiral structures in achiral
matters is an everlasting curiosity for scientists due to the avoidance of expensive chiral raw
materials or tedious synthesis [6–10]. Meanwhile, chirality transfer from the chiral additive
to achiral polymer chains via non-covalent interactions is a vital respect for propelling
their applications in chiral sensors, chiroptical switches, chiral recognition and asymmetric
catalysis [11]. Up-to-date, chiral solvation [12–14], circularly polarized light (CPL) [15–17],
chiral liquid crystal field [18,19] and chiral template/scaffold [20–22] are candidates to
generate macromolecular or supramolecular chirality in achiral polymer systems. However,
the chiral supramolecular structures formed by non-covalent interactions between achiral
building blocks are often easily destroyed by external stimulus [23–25], which undoubtedly
limits the application of chiral materials. Typically, the chirality cannot be restored in
the absence of pre-chiral resources. It can be speculated that constructing permanently
memorized chirality with superior controllability or self-recovery capability in an achiral
polymer system remains an extreme challenge. To achieve this, the adoption of covalent
fixation after self-assembly via cross-linking of polymer chains will be a good choice [26].

The fascinating helical superstructure in the liquid crystal (LC) state is a striking exam-
ple that reveals the structure–property relationship [27,28]. Similarly, introducing mirror
symmetry breaking into LCs will commonly result in multitudinous chiral LC phases, such
as the chiral nematic (N*) [29,30], chiral smectic (S*) [31], twist grain boundary (TGB) [32]
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and cubic blue phases [33], which have been well investigated in small molecular LCs.
As reported by Li et al. [34–36], the sign and the magnitude of the N*-LCs pitches are
strongly governed by chiral dopants due to their good fluidity. From another point of
view, good fluidity is often accompanied by poor stability and a strong dependence on
chiral resources. Among the self-organized supramolecular systems, chiral liquid crys-
talline polymers (LCPs) represent a promising class of materials that might exhibit stable
supramolecular helical organizations [37,38]. Usually, the induced chirality can only be
temporarily stored in the achiral systems through the interactions between polymer chains
but will be completely destroyed when undergoing a phase transition [39]. Combining
the cross-linking strategy and self-organization of achiral mesogens in side-chain liquid
crystalline polymers, we set out to develop a novel, controllable helical structure where the
induced chiral information can be stored permanently and be able to spontaneously trigger
the self-recovery of original chiral superstructures even after being completely destroyed.

We have previously reported the induction and storage of supramolecular chirality via
chiral limonene vapor fumigation and cross-linking in achiral polymer chains containing
π-π conjugated azobenzene groups [40]. However, whether the supramolecular chirality
can be induced and stored in the muti-types of liquid crystalline polymers such as the
polymer containing non-coplanar mesogens cyanobiphenyl (CNB) or the phenyl benzoate
(PB) group remains to be explored. Moreover, dynamically controlling the chiral signal
intensity and the “on-off” chiroptical switch in the above polymer systems has rarely
been achieved.

2. Results and Discussion

In the current work, a series of liquid crystalline polymers were synthesized with
controlled molecular weights (Mns) and molecular weight distributions via reversible
addition-fragmentation chain transfer (RAFT) polymerization. The non-coplanar meso-
gens, cyanobiphenyl (CNB) or phenyl benzoate (PB) groups were introduced into the
polymer as side chains for chiral self-organization. Besides, the hydroxyl-azobenzene, the
photosensitive cross-linkable LC group [41,42], was also adopted to allow the regulation
and permanent memory of the induced helical superstructure. The structures of the achiral
polymers (PCNBMA1–5, PPBMA1–5 and PPBMA-r-AzOH) and chiral dopants are listed in
Figure 1. The synthetic routes to the monomers (CNBMA, PBMA and AzOH) and polymers
have been described in Scheme S1. As shown in Table 1 and Figures S1–S3, the polymers
with different Mns were successfully prepared by changing the relative molar ratios of
monomers and chain transfer agent (CTA). The small chiral molecules (PB-R/S1, PB-R/S5,
CNB-R/S1 and CNB-R/S5) were successfully synthesized and determined by 1H NMR
spectra and chiral high-performance liquid chromatography (HPLC) (Figures S4–S6).

Table 1. Molecular weight characteristics of liquid crystalline polymers.

Entry Ratio 1 Conv. 2 (%) Mn(GPC)
3

(g/mol) Mw/Mn
3

PPBMA1 40:3:1 59.7 3500 1.17
PPBMA2 100:3:1 50.2 7300 1.12
PPBMA3 200:3:1 41.6 8200 1.23
PPBMA4 300:3:1 32.9 11,100 1.21
PPBMA5 500:3:1 22.7 15,200 1.17

PPB-r-AzOH 60:40:3:1 46.6 8800 1.14
PCNBMA1 40:3:1 61.6 3300 1.12
PCNBMA2 100:3:1 56.3 7600 1.18
PCNBMA3 200:3:1 40.9 10,700 1.14
PCNBMA4 300:3:1 29.3 12,300 1.20
PCNBMA5 500:3:1 21.3 15,600 1.21

1 Polymerization conditions for PPBMA1–5 and PCNBMA1–5: [monomer]0/[CPDN]0/[AIBN]0. Polymerization
conditions for PPB-r-AzOH: [PBMA]0/[AzOH]0/[CPDN]0/[AIBN]0). 2 Determined gravimetrically. 3 Deter-
mined by GPC according to PS standards in THF.
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Figure 1. (a) Schematic representation of the chiral nematic phase formed from the achiral polymers 
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Figure 1. (a) Schematic representation of the chiral nematic phase formed from the achiral polymers
and chiral dopants. (b) Process of the locking and self-recovery of the induced chirality.

First of all, the formation of the chiral nematic phase was investigated and determined
using differential scanning calorimetry (DSC), small-angle X-ray scattering instrument
(SAXS) and polarized optical microscope (POM) (Figures S7–S9). After being doped with a
certain amount of chiral dopant, no scattering peak was observed both in the mixture of
PPBMA/PCNBMA and PB-R1/CNB-R1 (Figure S8), indicating the absence of any layer
structure corresponding to the smectic phase. Besides, the typical fingerprint textures of
the chiral nematic phase were clearly observed when undergoing an appropriate annealing
process (Figure S9). It can be speculated that the orientation of the mesogens in polymer
side chains (PBs or CNBs) are slightly twisted with respect to their neighbors under the
command of chiral dopants, leading to a long-range helical periodic superstructure [43].

Chirality transfer from the chiral dopant to achiral polymers in solid-state film (pre-
pared from THF solution containing achiral polymers and chiral dopants, as described
in experimental methods) was then explored in detail by UV-vis and circular dichroism
(CD) spectroscopy (Figure 2). The strong absorption bands from 230 nm to 300 nm and
from 250 nm to 350 nm are attributed to the π-π* transition of the cyanobiphenyl and
phenyl benzoate group, respectively. Originally, both the PPBMA and PCNBMA films
exhibited a weak Cotton effect in the CD spectra when doped with chiral molecules. As
expected, intense CD signals consisting of two overlapped exciton couplets that correspond
to the π-π* transitions of PBs or CNBs units were clearly detected when increasing the
temperature (Figure 2). A positive sign at the first Cotton band and a negative sign at the
second Cotton band were observed when the PB/CNB-R1 was employed. Conversely,
PB/CNB-S1 exhibited a mirror-image Cotton effect. It should be noted that the optically ac-
tive polymer films show completely opposite Cotton effect when doped with PB/CNB-R5
or PB/CNB-S5 as compared with PB/CNB-R1 or PB/CNB-S1. We can speculate that the
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helical direction can be controlled not only by the configuration but also by the alkyl chain
length of the chiral dopants.
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Figure 2. Chiral expression of the polymer films containing different components. (a) CD and UV-vis spectra of PPBMA3

doped with PB-R/S1. (b) CD and UV-vis spectra of PPBMA3 doped with PB-R/S5. (c) CD and UV-vis spectra of PCNBMA3

doped with CNB-R/S1. (d) CD and UV-vis spectra of PCNBMA3 doped with CNB-R/S5.

Besides, the enhancement of CD signals indicates that the non-polar mesogens in
the polymer side chains self-organized into a preferential chiral structure via cooperative
interactions with the chiral dopants. The observed CDs are not the contribution of dopants
in polymer film but mainly derived from the helical structure of polymers because no
obvious CD decline can be found when chiral polymer films were immersed in methanol
to remove the chiral dopants, as described in Section 3.3 and Figure S10. Temperature
plays an important role during the chiral induction process due to the instability of the
chiral nematic phase. The evolution of the CD spectra of polymer films during the heating
process was tracked in detail. As shown in Figure 3a–d, CD intensity increased with
increasing temperature until reaching their maximum values at around 72 ◦C (PPBMA
films) and 80 ◦C (PCNBMA films). More prolonged heating of the polymer films resulted
in a deep decrease in CD intensity ascribed to the fluidity of the nematic phase. Increasing
the relative molar ratio of the dopant caused an enhancement in the intensity of ellipticity
values (Figure 3e,f), which may be ascribed to the decrease in helical pitch (β = (pc)−1, β:
helical twisting power of the dopant, p: helical pitch, c: the content of the dopant). The
decrease in helical pitch means the increase of dihedral angles of two exciton couplets
(much smaller than the extreme case, according to Nina’s exciton theory) [44].

The polymer films containing PPBMA1–5 and PCNBMA1–5 with different Mns were
prepared to investigate the effect of the polymer molecular weights on chiral induction.
After chiral doping and heating–cooling treatment, the maximum gCD values for each
polymer film were recorded. As presented in Figure 4, the absolute maximum gCD values
of PPBMAs or PCNBMAs first increased and then decreased with the molecular weight
after reaching their maximum values (PPBMA3, 8200 g/moL and PPBMA4, 12,300 g/moL),
respectively.
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Figure 3. (a–d) CD spectra of the chiral induction of different polymer films during the heating process. (a) PPBMA3 film
doped with PB-R1. (b) PPBMA3 film doped with PB-S1. (c) PCNBMA3 doped with CNB-R1. (d) PCNBMA3 doped with
CNB-S1. (e) CD and UV-vis spectra of PPBMA3 doped with different content of PB-R1 and PB-S1. (f) gCD values of PPBMA3

doped with different content of PB-R1 and PB-S1, calculated from (e).
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Figure 4. Changes in CD, UV-vis spectra and gCD values of polymer films prepared from the polymers with different
molecular weights. (a,b) recorded from PPBMAs. (c,d) recorded from PCNBMAs.

In order to flexibly control and permanently store the induced supramolecular chirality
in the achiral polymer systems, photoisomerizable azobenzene units containing hydroxyl
at a terminal for covalent cross-linking were introduced into the polymer side chain. Firstly,
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the chiral order of PPB-r-AzOH induced by chiral dopant was studied by CD spectra.
After heating the polymer film (doped with PB-R1) to 90 ◦C, a positive sign of the first
Cotton band at 400 nm appeared, which is due to the π-π* transitions of chirally arranged
E-azobenzene units. However, no exciton couplet center was seen in the CD spectrum,
and the second positive and weaker Cotton band at around 280 nm was found (Figure 5a).
This is caused by the overlapping between the second weaker Cotton band belonging to
azobenzene (negative) and the first stronger Cotton band belonging to phenyl benzoate
(positive). Mirror-image Cotton effects were observed in the case of doping with PB-
S1. Then the polymer film was immersed in methanol to remove the chiral dopant (see
Section 3.3). The removal of chiral dopant from polymer film was confirmed by 1H NMR
and HPLC spectra. As shown in Figure S11, the complete disappearance of the dopant
signal indicates that the small chiral molecules have been removed successfully. The
immersing process had no obvious effect on the CD spectra (Figure S14a). After chiral
induction and the removal of the chiral source, the copolymer films were placed into an
HCHO and HCl vapor atmosphere for covalent cross-linking via acetal reaction (Figure 5b).
Differences in solubility of polymer films before and after cross-linking in THF revealed
the success of cross-linking reactions (Figure 5d). Importantly, the chiral structure was
perfectly preserved throughout the cross-linking procedure, as confirmed by the almost
identical ellipticity values in CD spectra (Figure 5c).

Figure 5. (a) CD and UV-vis spectra of the copolymer (PPB-r-AzOH) films doped with PB-R/S1. (b) Schematic diagram
of the reaction method during the cross-linking process. (c) CD and UV-vis spectra of the chiral films after removing
chiral dopants and after cross-linking reaction. (d) Pictures of the chiral polymer films placed in THF solution (left, before
cross-linking; right: after cross-linking).



Int. J. Mol. Sci. 2021, 22, 11980 7 of 11

Distinct from uncross-linked counterparts, the cross-linked PPBMA films exhibited
superior thermal stability even in the absence of chiral dopant. When heating the film to a
high temperature (105 ◦C), a slight decrease of CD intensity occurred ascribed to partial
fluidity of mesogenic units. The shape of the CD spectra remained almost unchanged with
extended heating time and recovered to the original state after cooling down the films to
room temperature (Figure S12). We further investigated the chiral self-recovery behavior of
the supramolecular structure upon exposure to UV light irradiation. As reported previously,
the trans forms of some Azo derivatives exhibited a nematic phase, whereas their cis forms
showed no LC property [45]. For chiral PPB-r-AzOH films, UV-vis spectra showed a
clear decline at 365 nm (π-π* electronic transition of the trans isomers) and an increase at
450 nm (n-π* electronic transition of the cis isomers) upon irradiation with 365 nm light,
demonstrating the trans−cis photoisomerization of the Azo groups (Figure 6a). After 1500 s
of irradiation, the regular helical structures of both the phenyl benzoate and azobenzene
portion were completely disrupted, as confirmed by the disappearance of the CD signals
(Figure 6b). Traditionally, the presence of a chiral source is necessary both in solution
or solid films for the “on-off” chiroptical switch [46,47]. Interestingly, as displayed in
Figure 6c, the shapes and intensities of CD spectra can return to their original states by a
simple heating–cooling treatment (heated to 95 ◦C, maintained for 3 min before cooling
down to room temperature). The uncross-linked chiral polymer films will lose the chiral
information when they are irradiated by UV light after removing the dopants s (Figure S14).
It can be speculated that the cross-linked organized Azo units can provide cryptochirality
to trigger the complete self-recovery of the entire chiral superstructure. This means that
the chiral information from an external source can be permanently memorized in achiral
polymer systems.
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Figure 6. (a) Changes in UV-vis spectra of the cross-linked chiral polymer films under irradiation with 365 nm light.
(b) Changes in CD spectra of the cross-linked chiral polymer films (induced by PB-R/S1) during 365 nm light irradiation.
(c) Self-recovery of CD signals of the irradiated chiral films during the heating–cooling process. (d) Construction of
chiroptical switch without chiral resource: destruction and chiral self-recovery behavior: switches of the cross-linked films
during the above process (as shown by gCD values, calculated from Figure S15).
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The reversible chiral–achiral switching can enhance the functionality of optically
active materials. Indeed, the traditional approach always involves sophisticated design and
noticeable dependence on the chiral source. Combining the chiral doping and cross-linking
strategy, a chiroptical switch based on the absolute achiral polymer can be successfully
constructed. The above “on-off” switching could be repeated at least five times without
any noticeable loss in CD intensity (Figures 6d and S15).

3. Materials and Methods
3.1. Materials

Chiral alcohols including (R)-(-)-butanol (>99.0%, TCI), (S)-(+)-butanol (>98.0%, TCI),
(R)-(-)-octanol (>99%, TCI) and (S)-(+)-octanol (>99%, TCI) were used without further
purification. Moreover, 6-Chlorohexyl methacrylate, 4-(2-hydroxy ethoxy)-4′-(2-hexyloxy
methacrylate) azobenzene (AzOH) were synthesized as reported previously [40]. The
compounds 4-methoxyphenyl 4-hydroxybenzoate, 4-cyano-4 -hydroxybiphenyl and 4-
hydroxy-4-methoxybiphenyl were purchased from Sigma-Aldrich (St. Louis, MO, USA).
The preparation steps for achiral monomers PBMA, CNBMA, chiral dopants and liquid
crystalline polymers were listed in supplementary materials.

3.2. Preparation of the Chiral Polymer Films

The achiral polymer films for CD measurements with thickness ranging from 100 to
200 nm were prepared by spin coating the polymer solution (12 mg/mL in THF, doped
with a certain number of chiral molecules) onto a clean quartz plate at a speed of 0.5 rpm
for 6 s and following a speed of 1.9 rpm for 20 s. After drying under vacuum to remove
THF, the film was heated to the nematic temperature to ensure the occurrence of chiral
transmission.

3.3. Removal of Chiral Dopants

The chiral polymer film containing chiral dopants was immersed in methanol for 50 h
to remove the chiral dopants, during which the immersing liquid was changed at least six
times. After that, the residual amount of chiral dopant in polymer films was measured by
1H NMR and HPLC spectroscopy (Figure S11).

3.4. The Storage of the Supramolecular Chirality

After chiral induction and removal of the dopants, the chiral copolymer PPB-r-AzOH
films were placed on the top of a larger beaker in which two small beakers containing
30% formaldehyde aqueous and 6 N hydrochloric acid solution were placed separately
(Figure 5b). Then the cross-linking of the polymer chains was carried out during the
exposure to HCl and HCHO vapor at 25 ◦C for 20 h. Finally, the cross-linked polymer films
were washed with pure water to remove the residual HCl and HCHO molecules and then
dried under vacuum at 35 ◦C for 12 h.

3.5. Photoisomerization Process of Polymer Films

Photoisomerization of cross-linked chiral copolymer film was conducted with a 500 W
high-pressure mercury lamp (Tokyo, Japan), Optiplex SX-UID and 502HUV) equipped
with a narrow bandpass filter for the wavelength of 365 nm. The intensity of UV light
irradiation is 2.5 mW cm−2.

3.6. Characterization
1H NMR spectra were recorded on a Bruker nuclear magnetic resonance instrument

(300 MHz, Brucker, Karlsruhe, Germany) using CDCl3 and DMSO-d6 as solvent and
tetramethylsilane (TMS) as the internal standard at room temperature.

Gel-permeation chromatography (GPC) measurements were conducted on the TOSOH
HLC-8320 gel permeation chromatography (GPC) (TOSOH, Japan), equipped with refrac-
tive index and UV detectors using two TSKgel SuperMultiporeHZ-N (4.6× 150 mm, 3.0 µm
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beads size) columns arranged in series. Polymers can be separated in the molecular weight
range of 500–190k Da. THF was used as the eluent with a flow rate of 0.35 mL/min at
40 ◦C. The number average molecular weights (Mn) and molecular weight distributions
(MW/Mn) of samples were calculated according to polystyrene (PS) standards.

The phase transition of the polymers was measured with a TA-Q100 DSC instrument
(TA, New Castle, DE, USA). The temperature range is 20 ◦C to 200 ◦C with the first
heating–cooling speed of 20 ◦C/min and second heating speed of 10 ◦C/min.

LC textures and birefringence of the samples were examined under a POM (Olympus
Corporation, BX51-P, Japan) equipped with a hot stage (Linkam THMS600).

SAXS experiments were performed with a high-flux X-ray instrument (SAXSess mc2,
Anton Paar, Austria) equipped with a line collimation system and a 2200 W sealed-tube
X-ray generator (CuKα, λ = 0.154 nm). The polymer samples were wrapped in aluminum
foils and sandwiched in a steel sample holder.

The CD spectra were recorded on a JASCO J-1500 spectropolarimeter equipped with
a Peltier-controlled housing unit using an SQ-grade cuvette, a single accumulation, a
bandwidth of 2 nm, a scanning rate of 200 nm/min, a path length of 10 mm and a response
time of 1 s. The magnitude of the circular polarization at the ground state is defined as
gCD = 2 × (εL − εR)/(εL + εR), where εL andεR denote the extinction coefficients for left
and right circularly polarized light, respectively. Experimentally, gCD value is defined as
∆ε/ε = [ellipticity/32,980]/absorbance at the CD extremum. The UV-vis spectra were
recorded on a UV-2600 spectrophotometer (Shimadzu (Nakagyo-ku, Kyoto, Japan)).

Chiral HPLC was performed on an Agilent 1200 Series chromatography (Agilent,
California USA) using a Daicel Chiralpak AD-H column (0.46 cm × 25 cm).

4. Conclusions

In summary, we have demonstrated a novel approach to construct an optically active
polymer film with adjustable and permanently memorized supramolecular chirality via
chiral doping and cross-linking. Side-chain liquid crystalline polymers containing non-
coplanar mesogens CNB or PB were adopted as achiral hosts. We have investigated the
influence of temperature, molecular weight, dopant structure and contents on the chiral
expression in detail. Furthermore, introducing cross-linkable azobenzene units allows the
photo regulation and storage of the induced chirality, which enables the construction of
a chiroptical switch in the absence of chiral sources. Our research will pave a novel and
efficient way for the design and construction of functional chiral polymer materials with
reversible chiroptical properties from absolute achiral building blocks.
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