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Sammary Vincristine pharmacokinetic, tumour uptake and therapeutic characteristics were investigated here

in order to elucidate the processes
(120 nm) distearoylphosphati

the enhanced efficacy observed for vincristine entrapped in small

ine/cholesterol liposomes. Plasma vincristine levels after intravenous (i.v.)

tidylcholine
injection are elevated more than 100-fold in the liposomal formulation compared with free drug in tumour-
bearing as well as non-tumour-bearing mice over 24 h. Biodistribution studies demonstrate that the extent and
duration of tumour exposure to vincristine is dramatically improved when the drug is administered i.v. in
hposomalformSpeaﬁmlly 72 h trapezoidal arca under the curve values for liposomal vincristine in the
murine L1210 ascitic and B16/BL6 solid tumours are 12.9- to 4.1-fold larger, respectively, than observed for
frecdrug.SimilartoprcviousmﬂtswithtbeLlZlOmodeLinamseddrugdelivcrytotbeBmunnomresults
in significant inhibition of tumour growth, whereas no anti-tumour activity is observed with free vincristine.
Comparisons of drug and liposomal lipid accumulation in tumour and muscle tissue indicate that the
mhnwdcﬁcwyofhposmﬂwmnmmnhwdpredmnmnﬂymdmgdehmedbyhpomawthe
tumour site rather than drug released from liposomes in the circulation. Consequently, improvements in

vincristine formulations must focus on factors that increase uptake of liposomes into tumour sites as
well as enhance liposomal drug retention in the circulation.
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The use of liposomes as delivery vehicles for anti-canu -
drugs has expanded beyond the initial focus on improving
the therapeutic activity of doxorubicin (Gabizon, 1994) to
include a wide range of anthracyclines (Schwendener et al.,
1991; Forssen et al., 1992; Gabizon, 1992; Perez-Soler et al.,
19944a), platinum-based compounds (Gondal er al., 1993;
Perez-Soler er al., 1994b), nucleoside analogues (Schwendener
et al., 1989; Allen et al., 1992) and vinca alkaloids (Mayer ez
al., 1990a, 1993; Vaage et al., 1993). Previous reports from
our laboratories (Mayer et al., 1990a, 1993) and others
(Vaage et al., 1993) have demonstrated that encapsulation of
vincristine msnde appropriately designed hposom can yield
improved therapy over free vincristine in ascitic and solid
tumour models. However, the mechanism(s) whereby these
liposomes improve the therapeutic activity of vincristine are
not well understood.

Free vincristine exerts its antineoplastic effects by pre-
venting tubulin polymerisation as well as inducing de-
polymerisation through its high binding affinity for tubulin,
thus arresting cell mitosis during metaphase (Zhou and Rah-
mani, 1992). As such, this agent is cell cycle specific and its
drug-mediated therapeutic responses are dependent on the
maintenance of therapeutic drug levels in tumours for
extended periods of time (Horton ez al., 1988). This relation-
ship has provided the basic rationale for administering vin-
cristine encapsulated in a liposome-based drug carrier.
Specifically, liposomes have been shown to provide an
extended drug reservoir in the blood compartment for a
variety of anti-cancer agents (Gabizon and Paphadjopoulos,
1988; Mayer et al., 1989; Allen et al., 1992; Gabizon, 1992).
Previous investigations with liposomal vincristine support
this concept and demonstrated that the anti-tumour activity
of these systems is related to the longevity of the drug in the
circulation (Mayer er al., 1993). Small (120 nm) liposomes
composed of distearoylphosphatidylcholine (DSPC) and
cholesterol provided increased blood circulation lifetimes and
improved therapeutic activity relative to other liposomes
tested. Liposomal formulations that were removed rapidly
from the circulation by the reticulo endothelial system (RES)
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or released the entrapped vincristine over very short periods
of time displayed inferior anti-tumour activity. Recently, we
have shown that inclusion of monosialoganglioside (GM,)
and utilising liposomes with an entrapped buffer pH of 2.0
synergistically combine to further improve the circulation
longevity and efficacy of liposomal vincristine (Boman ez al.,
1994).

The apparent correlation observed between vincristine cir-
culation longevity and therapeutic activity is complicated by
the fact that liposomal systems displaying increased drug
circulation lifetimes (small liposomes composed of saturated
phospholipids and cholesterol) would also be expected to be
superior in their ability to deliver drug directly to the tumour
site. A growing body of evidence is indicating that small
liposomes are capable of preferentially extravasating endo-
thelial barriers present in tumour vasculature and accumu-
lating in the extravascular space of tumours (Huang er al.,
19924, 1993; Bally ez al., 1994). In view of this information, it
would appear that investigations into the therapeutic
mechanism(s) of liposomal vincristine formulations must con-
sider pharmacological properties in the central blood com-
partment as well as the tumour itself.

We have investigated here vincristine plasma pharmaco-
kinetic, tissue distribution and therapeutic characteristics of
free and liposome-encapsulated drug in mice bearing ascitic
and solid tumours. These studies were undertaken in an
attempt to differentiate between the relative contributions of
drug released by liposomes in the plasma compartment and
drug delivered directly to the tumour site from liposomes in
determining therapeutic activity. The results not only provide
an increased understanding of the improved efficacy observed
with liposomal vincristine preparations but also are of use in
designing more sophisticated carrier systems with further
therapeutic improvements. This is of particular interest in
light of the studies describing the enhanced therapeutic
activity of liposomal vincristine preparations displaying large
pH gradients and containing GM, (Boman ez al., 1994).

Materials and methods

‘Oncovin’ (vincristine sulphate) was obtained from Eli Lilly
(Scarborough, Ontario, Canada). Tritiated cholesteryl hexa-



decylether was purchased from New England Nuclear and
was more than 95% pure. Tritiated vincristine was purchased
from Amersham (Oakville, Ontario, Canada). Purity assess-
ment and bulk purification (when necessary) of radiolabelled
vincristine were completed by hlgh—performanoe liquid
chromatography (HPLC) within 24 h prior to use. This was
achieved employing a 150 mm X 4.9 mm C,; column (World
Wide Monitoring, Horsham, PA, USA) with a methanol-10
mM ammonium sulphate gradient (50:50 to 90:10). DSPC
was purchased from Avanti Polar Lipids and was more than
99% pure. Cholesterol and all salts were obtained from
Sigma (St Louis, MO, USA). Female BDF1 mice (6—8 weeks
old) were purchased from Charles Rivers Laboratories,
Canada

DSPC-cholesterol (55:45, mol/mol) lipid films were
prepared by vacuum evaporation from a trichloromethane
solution. Lipids were then hydrated in 300 mM citric acid
(pH4.0) by vortex mixing using a lipid—buffer ratio of
100 mg ml~'. The multilamellar vesicles (MLVs) were frozen
and thawed five times (Mayer et al., 1986a), and then
extruded ten times through 100 nm pore size polycarbonate
filters (Mayer et al., 1986b) employing a lipid extrusion
device obtained from Lipex Biomembranes (Vancouver, BC,
Canada). Production of the DSPC-cholesterol samples
utilised a thermobarrel extruder equilibrated at 65°C. Mean
vesicle diameters were determined by quasielastic light scat-
tering (employing a Nicomp 370 particle sizer). Vincristine
was entrapped by adding liposomes (100 mgmi~') to the
Oncovin solution (1 mg of vincristine per ml) to achieve a
drug-to-lipid ratio of 0.05:1 (w/w). The pH of the sample
was then raised to pH 7.0-7.2 with 0.5 M sodium hydrogen
phosphate and subsequently heated at 60°C for 10 min. Vin-
cristine entrapment was determined by column chromato-
graphy techniques (Mayer et al., 1993) using Absy; (in
ethanol—water 8:2) and Abs,s spectroscopic assays for quan-
titation of vincristine and lipid respectively. Initial drug-to-
lipid ratios were determined prior to the alkalinisation step.
Analysis by HPLC employing radiolabelled and non-
radiolabelled drug indicated that decomposmon of vincristine
during encapsulation or upon storage prior to in vivo use was
negligible (>95% purity).

The anti-tumour activity of free and liposomal vincristine
was assessed using the B16/BL6 melanoma solid tumour
model. BDF1 mice (4-5 per group) were inoculated s.c. with
2 x 10° B16/BL6 cells derived from culture. Tumour growth
was allowed to progress for 14 days before initiation of
therapy. Tumour size was measured using a calliper and
tumour weights were calculated according to the following
formula: tumour length (cm) X tumour width (cm) squared,
divided by 2 (Mayer et al., 1990b). This conversion formula
provided accurate determinations of tumour weights as
confimed by comparing calculated weights based on the for-
mula and actual measured weights of excised tumours.
Typical tumour weights on day 14 post inoculation ranged
between 0.2 and 0.5 g. On day 14 animals were injected in a
lateral tail vein with either free or liposomal vincristine at the
indicated dose. Tumours were then monitored daily for
growth until tumours either became ulcerated or exceeded
10% of the animal’s body weight, at which time animals were
euthanised with carbon dioxide. Mean tumour weights
(*standard error of the mean) were compared using
analysis of variance (ANOVA).

Plasma clearance and tissue distribution studies were per-
formed by injecting four mice (18—22 g) per time point with
the indicated doses of free or liposomal vincristine containing
PH]vincristine (0.6puCi per 100pg of drug) and [“C]
cholesterol hexadecyl ether as a lipid label (0.5 uCi per mg of
lipid) via a lateral tail vein. The lipid label selected has been
shown to be non-metabolisable and non-exchangeable, par-
ticularly with lipoproteins (Scherphof er al., 1987), and as
such is a reliable marker for liposome disposition. At the
indicated times, blood was collected from anaesthetised mice
via heart puncture and placed into Microtainer tubes con-
taining EDTA beads (Becton Dickinson). Plasma samples
were obtained by pelleting the blood cells with centrifugation
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(500 g for 10 min). Tissue samples were washed in saline and
blotted to remove excess blood, weighed and prepared as a
10% homogenate in saline using a Polytron homogeniser.
Aliquots of the tissues were digested at 50°C with Solvable
(NEN, Dupont, Canada). Subsequently, the samples were
cooled and 50 pul of 200 mM EDTA was added to prevent
foaming upon decolorising with 0.2 ml of 30% hydrogen
peroxide. A 25pul aliquot of 10N hydrochloric acid was
added to reduce chemiluminescence. Samples were then
assayed for radioactivity by scintillation counting (counting
efficiencies were always in excess of 25%). All tissue radio-
activity levels were corrected for plasma contribution as des-
cribed previously (Mayer et al., 1989). It should be noted
that vincristine analysis for selected samples by HPLC
indicated that >90% of the radioactivity in the biological
specimens was due to intact drug (data not shown).

Results

Pharmacokinetics and tumour uptake of free and liposomal
vincristine in normal and L1210 tumour-bearing mice

Previous inv&stigations have demonstrated that encapsulation
of vincristine in 120 nm DSPC-cholesterol liposomes sig-
nificantly increases the anti-tumour actmty of i.v. admini-
stered drug against i.p. L1210 tumours in mice (Mayer et al.,
1993). Although the increase in efficacy was accompanied by
extended drug circulation lifetimes, the basis for the im-
proved anti-tumour effect was unclear because plasma blood
levels were obtained in tumour-free mice and tumour
accumulation of drug and lipid was not determined. This is
particularly relevant in view of recent investigations from our
laboratories demonstrating that liposomes are capable of
gaining direct access to the peritoneum of normal and
tumour-bearing mice via extravasation from the blood com-
partment (Bally et al., 1994). We therefore investigated the
effect of the L1210 tumour on the pharmacokinetics of
liposomal vincristine as well as the delivery of liposomal lipid
and vincristine to L1210 ascites tumours in BDF1 mice.
Figure 1 presents the plasma vincristine levels over 24 h in
control mice as well as mice bearing L1210 tumours. In both
normal and tumour-bearing mice, i.v. administration of
DSPC-cholesterol entrapped vincristine at 2 mg kg~! results
in plasma drug levels that are >100-fold higher than
observed for free vincristine injected at the same dose.
Plasma drug concentrations in BDF1 mice were -not
significantly affected by the presence of an established
tumour, regardless of whether vincristine was given in free or
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Figwre 1 Plasma vincristine levels in control (circles) and L1210~
bearing (triangles) BDF1 mice after i.v. injection of liposome-
encapsulated (closed symbols) or free (open symbols) drug at a
dose of 2.0 mg kg~'. Blood was collected via heart puncture from
anaesthetised mice into EDTA-containing tubes. Plasma vincris-
tine levels were determined as described in Materials and
methods.
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liposomal form (Figure 1). Plasma vincristine levels after
injection of free drug were somewhat lower in L1210-bearing
mice than in control mice, however this difference was statis-
tically different only at the 1h time point.

Further studies were conducted here to determine whether
the elevated plasma drug levels observed with liposome en-
trapped vincristine correlated with increased drug accumula-
tion in the peritoneum of mice bearing the L1210 tumour
subsequent to i.v. administration. Liposomal lipid levels were
also monitored in order to assess the direct uptake of
liposomes into the peritoneal tumour site. Figure 2a presents
the vincristine levels recovered from the peritoneal cavity
over 72 h post i.v. injection of free and liposomal vincristine
at 2 mg drug (40 mg lipid kg~'). Peak peritoneal drug con-
centrations for free vincristine (14.0 ng per peritoneal cavity)
are observed immediately after injection and a gradual de-
cline occurs until no vincristine can be detected in the
peritoneal cavity at the 48 h time point. In contrast, vincris-
tine is observed to accumulate in the peritoneal cavity when
administered in liposomal form, with peak drug concentra-
tions (91.3 ng per peritoneal cavity) developing at 4 h (Figure
2a). This peak drug level in the peritoneum for liposomal
vincristine represents approximately 0.25% of the injected
dose. Total peritoneal drug levels subsequently fall to
53.2ng, 38.5ng and 13.6ng at 24 h, 48 h and 72 h respec-
tively.

The accumulation of liposomal lipid in the peritoneal
cavity after injection of liposomal vincristine is illustrated by
the data in Figure 2b. Consistent with previous observations
on liposomal carrier systems (Bally er al., 1994), uptake of
the liposomes into the peritoneum occurs over an extended
period of time, with peak liposomal lipid levels achieved at
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Figwre 2 Vincristine (a) and liposomal lipid (b) accumulation
into the peritoneal cavity of BDF1 mice bearing the L1210 ascites
tumour. Twenty-four hours after i.p. tumour inoculation, vincris-
tine in free form (O) or encapsulated in DSPC-cholesterol
liposomes (@) was injected i.v. at a dose of 2.0mgkg™'.
Peritoneal drug and liposomal lipid levels were determined from
peritoneal lavages as described in Materials and methods.

24 h post injection. Subsequently, the amount of liposomal
lipid slowly decreases. The peritoneal vincristine and
liposomal lipid levels were used to calculate drug-to-lipid
ratios at 1 h, 4 h and 24 h after injection. These values reflect
drug-to-lipid weight ratios of 0.045, 0.031 and 0.008 respec-
tively (drug-to-lipid ratio for injected liposomal prepara-
tions = 0.05:1), which correspond well with drug-to-lipid
ratios observed in the plasma over the same time course
(Figure 3). Since a non-exchangeable, non-metabolisable lipid
marker was used for these studies (Scherphof ez al., 1987) the
appearance of liposomal lipid in the peritoneum indicates
that intact liposomes have extravasated into this cavity. Fur-
ther, the fact that peritoneal and plasma drug-to-lipid ratios
are very similar suggests that vincristine extravasation into
the peritoneum arises from liposomal drug. Specifically, if
peritoneal drug accumulation is related primarily to free
vincristine released from liposomes, this would yield drug-to-
lipid ratios that are much higher in the peritoneal cavity than
in plasma, which is consistent with the results shown in
Figure 3.

Pharmacokinetics, tumour accumulation and anti-tumour
activity of free and liposomal vincristine in the B16/BL6 solid
tumour model

The results above suggest that lipsomal vincristine exhibits
enhanced tumour accumulation properties relative to free
drug. However, since the ability of liposomes and their en-
trapped contents to gain access to extravascular sites will be
highly dependent on the nature of the surrounding vascular
bed (Gerlowski and Jain, 1986; Heuser and Miller, 1986), it
may be expected that accumulation of liposomal vincristine
in a site of solid tumour growth may differ from the ascites
tumour model. We therefore used the B16/BL6 murine
melanoma model in order to establish whether enhanced
vincristine delivery is achieved for this solid tumouor and if
increased drug accumulation translates to improved therapy.

Similar to observations in the L1210 model, liposomal
vincristine levels in plasma of mice bearing the B16/BL6
tumour are dramatically higher than seen with free drug after
i.v. injection (Figure 4). Owing to the low levels of drug in
the plasma at 24 h for free vincristine in B16/BL6-bearing
mice (below minimum detection limit of 5.0 ng ml~! plasma),
definitive comparisons of free and liposomal vincristine for
these animals could not be made. However, given the
minimum detection limit, the data indicate that 24 h drug
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Figare 3 Vincristine/liposomal lipid weight ratios observed in
plasma ([]) and L1210-bearing peritoneum (NN ) 1 h, 4 h and
24 h after i.v. injection of liposomal vincristine. The drug-to-lipid
ratios were normalised to the initial drug-to-lipid ratio of 0.05:1.
Liposomal vincristine was administered at 2.0 mgdrugkg~' 24 h
after i.p. inoculation of mice with L1210 cells. Vincristine and
liposomal lipid levels were determined using scintillation counting
as described in Materials and methods.



levels are at least 200-fold higher for the liposomal system at
24 h and 200-, 1000- and 1100-fold higher at 0.25h, 1 h and
4 h respectively. Plasma levels of liposomal vincristine are
unaffected by the B16/BL6 tumour at the 1h and 4 h time
points and are slightly lower for the tumour-bearing mice at
24 h. In contrast, plasma drug levels in tumour-bearing mice
were 3.5-, 2.3- and =>2.1-fold lower than observed for con-
trol mice administered free vincristine at 0.25h, 1h and 4h
respectively.

The accumulation of vincristine and liposomal lipid in the
B16/BL6 tumours after i.v. injection of vincristine at a dose
of 20mgkg™"' is shown in Figure 5. Free vincristine is
rapidly taken up into the tumour such that the peak concen-
tration of 0.77 pug vincristine per g of tumour is achieved 1 h
after injection and drug levels fall to 0.20 pg g~', 0.08 pgg~'
and 0.02 pg g~' tumour at 24 h, 48 h and 72 h respectively
(Figure 5a). As observed for the L1210 ascites tumour, vin-
cristine accumulation in the B16/BL6 tumour after injection
of liposomal vincristine at 2 mgkg~' gradually increases to
reach peak levels of 0.88 pg g~' tumour at 24 h that fall to
0.57ugg ' and 0.43pgg! at 48h and 72 h post injection
respectively.

Lipsomal lipid uptake in B16/BL6 tumours after injection
of liposomal vincristine at 2.0 mgkg~' (40mgkg! lipid
dose) is shown in Figure 5b. Tumour-associated liposomal
lipid increases steadily over the first 24 h post administration
and then slowly over the remaining 48 h of the experimental
study period. This is in contrast to the L1210 ascites tumour
model, in which liposomal lipid levels in the peritoneal
tumour site decreased after 24 h (Figure 2b). However, both
tumour models are similar in that the tumour-associated
drug-to-lipid ratios compare favourably with the drug-to-
lipid ratio observed in the circulation.

For the B16 tumour model employed here, we tested the
anti-tumour activity and tumour accumulation in well-
established solid tumours whose pretreatment weights 14
days after s.c. tumour implantation were in the range of
0.2-0.5 g (Figure 6a and b). Untreated tumours grow to a
size of approximately 2.5 g within 22-24 days post tumour
inoculation, at which time the mice are euthanised. Figure 6a
demonstrates that free vincristine, when administered i.v. up
to its maximum tolerated dose, provides no therapeutic
activity against the B16/BL6 solid tumour. Tumours continue
to grow despite the occurrence of drug-induced toxicity,
especially at the 3 mg kg~! dose, when weight loss nadirs can
reach 15-20% of total body weight (data not shown).
Administration of a single dose of vincristine entrapped
inside 120 nm DSPC-cholesterol, however, induces a sig-
nificant therapeutic effect (Figure 6b). Liposomal vincristine
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Figwre 4 Plasma vincristine levels in control (circles) and L1210-
bearing (squares) BDF1 mice after i.v. injection of liposome-
encapsulated (closed symbols) or free (open symbols) drug at a
dose of 2.0mgkg~'. Blood collected via heart puncture from
anaesthetised mice was placed into EDTA-containing tubes and
plasma vincristine levels were determined as described in
Materials and methods.
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at 2mgkg™' and 3mgkg~' inhibits tumour growth for
approximately 6 days aftet drug injection and maximal
activity is obtained with the 3 mgkg~' dose. Subsequently,
these tumours resume a growth rate similar to untreated
controls.

Comparison of tumour drug levels and systemic exposure of
vincristine to healthy tissue after administration of free and
liposomal vincristine

The studies described above demonstrate that the improved
therapeutic activity observed for vincristine encapsulated in
120nm DSPC-cholesterol liposomes correlates with in-
creased delivery of drug to the tumour site. Further, as
shown here and previously (Mayer er al., 1993), liposomal
vincristine systems exhibiting enhanced anti-tumour activity
also display extended circulation lifetimes and increased drug
retention while circulating in the blood compartment. How-
ever, these data are insufficient to determine whether the
increased anti-tumour activity is related to a pool of vincris-
tine that is slowly released systemically from circulating
liposomes or to vincristine that is directly delivered by the
liposomes to the tumour. In order to differentiate between
these two possible mechanisms, we compared the accumula-
tion of vincristine in tumour and healthy muscle tissue after
1.v. administration of the drug in free and liposomal form.
Muscle was selected as an indicator for systemic exposure to
unencapsulated vincristine on the basis of previous reports
indicating that liposomes display very low uptake levels in
this tissue (Bally et al., 1993). Therefore, the level of drug
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Figwre 5 Vincristine (a) and liposomal lipid (b) accumulation in
s.c. B16/BL6 solid tumours grown in BDF1 mice. Once tumours
had grown to a size of 0.2-0.5g (14 days tumour inoculation)
vincristine in free form (O) or encapsulated in DSPC - cholesterol
liposomes (@) was injected i.v. at a dose of 2.0 mg kg~'. Tumour
drug and liposomal lipid levels were determined from homo-
genised tumour samples as described in Materials and methods.
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uptake in this tissue following i.v. administration of
liposomal vincristine should be a reflection of the free drug
availability within the plasma compartment.

Figure 7 presents the vincristine levels observed in the
B16/BL6 solid tumour and muscle tissue over 72 h after i.v.
administration of free and liposomal drug at a dose of
2mg kg~'. Free vincristine demonstrates modest preferential
accumulation into the tumour compared with muscle tissue
throughout the 72 h time course (Figure 7a). The 0-72h
trapezoidal area under the curve (AUC) value of 5.01 pugh
g~! determined for muscle tissue is 2.6-fold lower than that
observed for tumour tissue (13.3pughg™!), indicating in-
creased total drug exposure to the neoplastic site (Table I).
Interestingly, peak tissue drug uptake levels are similar for
both tissues (0.75pugg™' muscle and 0.77pgg™' tumour
achieved at 15 min and 1 h respectively). In contrast, vincris-
tine administered in liposomal form exhibits a dramatic in-
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Fig-'e 6 Growth of B16/BL6 tumours inoculated s.c. in BDF1
mice in the absence of treatment (@) or after i.v. injection of
free vincristine (a) at 2mgkg~' (O) and 3mgkg~' (A) or
liposomal vincristine (b) at 2mg kg~' (M) and 3mgkg~' (A).

crease in peak and total exposure of drug to the solid tumour
compared with muscle (Figure 7b). Peak vincristine levels of
0.13pugg-! are observed between 4h and 24 h in muscle
tissue compared with 0.77 pug g~' in tumour tissue. Further,
tumour and muscle trapezoidal AUC values for the
liposomal vincristine formulation are 54.0pghg~' and
43pghg! respectively, reflecting a 12.6-fold increase in
total drug exposure to tumour tissue (see Table I). The data
shown in Figure 8 demonstrate that tumour associated
liposomal lipid increases over 24—48 h to achieve levels in
excess of 100 pugg~! tumour compared with peak muscle
levels of 2.1 pg lipid per g of tissue at 48 h. The correspon-
ding liposomal lipid of 0—72h trapezoidal AUC value for
the B16/BL6 tumour of 5530 pg hg~! tissue was approx-
imately 44-fold larger than the AUC obtained in muscle
tissue (125pg h g~! muscle, Table I).

Similar to the B16/BL6 tumour model, 0-72 h trapezmdal
AUC values for the L1210 tumour reveal that total vincris-
tine exposure to the tumour-bearing peritoneum is drama-
tically increased when the drug is administered in liposomal
form. Specifically, injection of free vincristine results in an
AUC of 0.264 pugh per peritoneum, whereas an AUC of
3.4pugh per peritoneum is obtained with liposomal vincris-
tine (Table I). This difference reflects a 12.9-fold increase in
drug exposure for the liposomal formulation and is substan-
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Figwre 7 Vincristine accumulation in B16/BL6 tumour (circles)
and muscle (squares) tissue after i.v. injection of free (a) and
liposomal (b) vincristine at a drug dose of 2.0 mg kg~'. Drug was
administered once the tumours had grown to a size of 0.2-0.5g
(14 days after tumour inoculation) and tissue vincristine levels
were determined by scintillation counting as described in
Materials and methods.

Table I Peak concentrations and area under the curve analysis in tumour and muscle tissue for free and liposomal vincristine*

L1210 tumour B16/BL6 tumour Muscle tissue
Dose Peak level 0-72h AUC Peak level 0-72h AUC  Peak level 0-72h AUC
Formulation (mgkg=')  (ng per peritoneum) (pug h per peritoneum) (ngg!) (nghg') (ngg!) (ughg')
Free VINC 20 13.8 0.26 0.77 13.3 0.75 5.0
Lipo VINC
Drug 20 919 34 0.88 54.0 0.13 43
Lipid 40.0 6400 432 103 5530 2.1 124

*BDF1 mice were injected i.v. with the indicated formulations. Vincristine and liposomal lipid were determined using [’H]}vincristine and
[“Clcholesterylhexadecylether as described in the Materials and methods section. Area under the curve calculations were based on 0-72 h
trapezoidal AUC analysis using PC Nonlin.



[ ]
3125—
i
=
% 100
o]
‘g 5+
h=d
S S0f
5
2 ®r
0‘: ——8 ——§ — N
0 24 48 72

Time following i.v. administration (h)

Figwre 8 Liposomal lipid accumulation in B16/BL6 tumour (@)
andmusde(l)nssucaﬁenv injection of liposomal vincristine
at 20 mgdrugkg~'. Drug was administered once the tumours
had grown to a size of 0.2-0.5 g (14 days after tumour inocula-
tion) and tissue liposomal lipid levels were determined by scintil-
lation counting as described in Materials and methods.

tially greater than the 6.5-fold improvement in peak
peritoneal drug levels observed for vincristine encapsulated in
DSPC—cholesterol liposomes compared with free drug.

Di .

The ability of liposomes to improve the therapeutic index of
a variety of anti-cancer drugs is now well established. For
example, the encouraging preclinical results obtained with
doxorubicin and daunorubicin entrapped in liposomes
(Mayer et al., 1989; Forssen et al., 1992; Huang et al., 1992b)
appear to be extending to their activity in humans as revealed
in several clinical trials (Batist er al., 1992; Cowens et al.,
1993; Hengge et al., 1993; Gabizon et al., 1994; Money-Kyrle
et al., 1993). The enhanced activity of liposomal drugs over
their conventional non-entrapped counterparts can result
from a combination of decreased toxicity and improved anti-
tumour potency. While the anti-cancer agent toxicity-
buffering properties of liposomes are well established, the
mechanism(s) responsible for maintained or enhanced anti-
tumour potency have not yet been resolved. For vincristine, a
cell cycle-specific agent, it is believed that increased drug
exposure at the disease site achieved with the use of
liposomal carriers results in improved efficacy (Horton ez al.,
1988). The proposed relationship between duration of drug
exposure and therapeutic potency is supported by studies
demonstrating that the concentration of vincristine required
to achieve 50% inhibition of tumour cell growth decreases by
a factor of 10° as the duration of drug exposure increases
from 1h to 72h (Jackson and Bender, 1979; Mayer et al.,
1993). It is unclear, however, whether increased
exposure achieved following i.v. injection of liposomal vin-
cristine is due to drug released from liposomes in the circula-
tion or liposomes that have accumulated within the site of
tumour growth. The investigations presented here have
addressed this question by correlating plasma, tumour and
muscle tissue drug levels with the therapeutic activity
observed for free and liposomal vincristine in murine ascitic
and solid tumour models.

The results here demonstrate that encapsulation of vincris-
tine in 120nm DSPC-cholesterol liposomes results in
dramatic increases in plasma drug levels over extended
periods of time compared with vincristine administered in
free form. This is similar to earlier results with DSPC-
cholesterol liposomes exhibiting drug-to-lipid weight ratios
from 0.1:1 to 0.01:1 (Mayer ez al., 1993) and indicates that
liposomal vincristine pharmacokinetic properties are not
affected by the presence of B16/BL6 solid or L1210 ascitic
tumours. This drug accumulation is accompanied by tumour
uptake of liposomes and suggests that the majority of
tumour-associated vincristine may have been delivered by the
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liposomal carrier. Efficacy experiments performed here with
the B16/BL6 murine melanoma model also demonstrate
significantly enhanced therapeutic activity for liposomal vin-
cristine compared with free drug, similar to previous observa-
tions with L1210 and P388 ascitic tumour models (Mayer et
al., 1990a, 1993).

The ability to determine the relative contributions of cir-
culating and tumour-associated liposomes toward the anti-
tumour activity of liposomal vincristine has been complicated
by the fact that formulations exhibiting enhanced tumour
accumulation also display extended circulation lifetimes.
Specifically, although circulating vincristine levels are in-
creased over several days when the drug is ted in
DSPC-cholesterol liposomes, approximately 85% of the
drug is released over 24 h from liposomes in the plasma
(Figures 1 and 2). Therefore, it would not be unexpected for
mcmsednnnourvmcnsnnelevelstoansefromdmgthat
has leaked from liposomes in the central blood compartment.
Both the systemic infusion and direct tumour delivery models
could account for the 12.9- and 4.1-fold increase in AUC
values observed for liposomal vincristine in the L1210 and
B16/BL6 tumours respectively. However, if the systemic
infusion model is correct, then other tissues that take up
vincristine but do not take up liposomes should also display
increased vincristine AUC values when liposomes are
employed, compared with unencapsulated drug.

Total plasma drug concentrations are elevated > 100-fold
over the entire time course when vincristine is entrapped in
120 nm DSPC-cholesterol liposomes. Under these condi-
tions, however, total drug exposure to muscle tissue is
actually decreased by approximately 14% and peak muscle
vincristine levels are decreased by 83% compared with mice
injected with free drug. This is in contrast to the 4.1-fold
increase in total drug exposure to tumour tissue observed for
hposomalvxncnsnnecomparedthhfreedrug(FlgureSand
Table I). Further, liposomal lipid levels observed in these two
tissues confirm that liposomal vincristine does not accumu-
late to any significant degree into muscle tissue. The 4 h and
24 h muscle drug-to-lipid ratios of >0.13 and 0.07 obtained
after injection of liposomal vincristine are significantly higher
than the respective plasma values of 0.028 and 0.006 and
indicate that drug levels observed in muscle tissue for this
formulation most likely are derived from free vincristine that
has leaked from liposomes in the circulation. These results
also suggest that systemically released drug does not con-
tribute significantly to the enhanced therapeutic activity
observed for liposomal preparations. Rather, the increase in
vincristine’s anti-tumour potency when encapsulated in small
DSPC—cholesterol liposomes appears related to the delivery
of vincristine directly to the tumour site by the carrier system
and subsequent long-term exposure of drug to resident
tumour cells.

The mechanism of action for liposomal vincristine emerg-
ing from the analysis here has important implications for the
design and future optimisation of vesicle systems for
therapeutic use. Liposomes that have accumulated in
tumours would be expected to slowly release entrapped vin-
cristine, effectively providing a disease site-specific drug
infusion reservoir. This is similar to mechanisms proposed
recently for doxorubicin encapsulated in sterically stabilised
liposomes (Yuan et al., 1994). Alternatively, vincristine-
containing liposomes may be engulfed and processed by
tumour-associated phagocytic cells, resulting in a facilitated
release of vincristine within the tumour, as observed for other
liposomal drugs (Storm ez al., 1988). In both cases, the use of
enhanced liposome circulation longevity to increase tumour
delivery of vincristine will require improved drug retention
properties for the liposomal carrier. The relationship between
drug retention and tumour drug delivery/therapy has been
corroborated by recent investigations demonstrating the
ability of pH 2.0 liposomes containing GM, to improve vin-
cristine retention and anti-tumour activity (Boman et al.,
1994). Such observations indicate the need to develop
liposomal delivery systems that display optimised in vivo drug
retention properties for relatively membrane-permeable
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agents such as vincristine. Investigations focusing on these
problems are currently in progress.

Abbreviations: DSPC. distearoylphosphatidylcholine; MLV, mult-
lamellar vesicle; GM,, monosialoganglioside; EDTA, ethylenedia-
minetetraacetic acid: AUC. area under the curve: i.v., intravenous;
i.p., intraperitoneal.
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