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Abstract

Single-cell multi-omics techniques, which enable the simultaneous measurement of multiple modalities such as RNA gene expression
and Assay for Transposase-Accessible Chromatin (ATAC) within individual cells, have become a powerful tool for deciphering the
intricate complexity of cellular systems. Most current methods rely on motif databases to establish cross-modality relationships
between genes from RNA-seq data and peaks from ATAC-seq data. However, these approaches are constrained by incomplete database
coverage, particularly for novel or poorly characterized relationships. To address these limitations, we introduce single-cell Multi-omics
Integration (scMI), a heterogeneous graph embedding method that encodes both cells and modality features from single-cell RNA-seq
and ATAC-seq data into a shared latent space by learning cross-modality relationships. By modeling cells and modality features as
distinct node types, we design an inter-type attention mechanism to effectively capture long-range cross-modality interactions between
genes and peaks. Benchmark results demonstrate that embeddings learned by scMI preserve more biological information and achieve
comparable or superior performance in downstream tasks including modality prediction, cell clustering, and gene regulatory network
inference compared to methods that rely on databases. Furthermore, scMI significantly improves the alignment and integration of
unmatched multi-omics data, enabling more accurate embedding and improved outcomes in downstream tasks.
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Introduction
Single-cell sequencing techniques, such as single-cell RNA
sequencing (scRNA-seq) and single-cell Assay for Transposase-
Accessible Chromatin sequencing (scATAC-seq), have revo-
lutionized the exploration of cellular heterogeneity. These
techniques allow scientists to analyze genomics, transcriptomics,
epigenomics, and other molecular characteristics of cells in
unprecedented detail, revealing crucial insights in diverse fields
such as cancer biology, immuno-oncology, and neuroscience [1].
Traditional single-cell studies typically concentrate on a single
modality, such as scRNA-seq or scATAC-seq data, which can lead
to an incomplete view of cellular information. Those approaches
may overlook crucial interactions and information, limiting the
holistic understanding of cellular systems [2].

Advancements in sequencing technology have enabled
single-cell multi-omics techniques to simultaneously measure
multiple modalities within individual cells [3]. These techniques
facilitate a more comprehensive analysis of cellular processes
by capturing diverse modalities from the same cell. In partic-
ular, the integration of data from scRNA-seq and scATAC-seq
technologies has become a critical topic of research [4]. This
integration necessitates sophisticated representation learning
strategies to effectively interpret the vast and complex multi-
omics datasets. The representations enable simultaneous

profiling of transcriptomic and epigenomic features within
individual cells, providing a comprehensive and integrated
perspective on cell phenotypes and regulatory mechanisms. For
instance, integrated representations of scRNA-seq and scATAC-
seq data can be used to identify different cell types, gaining deeper
insights into cellular heterogeneity. Additionally, gene regulatory
networks (GRNs) inferred from integrated representations help
understand the regulatory mechanisms driving gene expression
and cellular functions [5].

Several approaches have been developed to integrate scRNA-
seq and scATAC-seq data. These methods typically involve align-
ing or correlating different modalities at the single-cell level to
create a unified representation that captures the full spectrum of
cell phenotypes. Typical solutions can be classified into three cat-
egories: correlation-based methods, such as canonical correlation
analysis [6] and matrix factorization [7], which identify shared
components across modalities for integration; joint dimension-
ality reduction methods, like multi-omics factor analysis (MOFA)
[8], which reduce the dimensionality of multiple omics datasets
while preserving inter-modality relationships; and neighbor-
based approaches, such as Seurat v4’s weighted nearest neighbor
algorithm [9], which identifies mutual nearest neighbors across
modalities to facilitate cohesive analysis. While these approaches
show promise, they often rely on predefined relationships
between modalities, limiting their ability to uncover complex
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interactions. This highlights the need for more robust and flexible
integration techniques.

Recently, heterogeneous graphs have emerged as a powerful
tool in multimodal learning. In the context of single-cell multi-
omics analysis, researchers encode cells and modality features
from different omics, such as genes and chromatin accessibility
peaks, as distinct types of nodes and model their relationships
within a heterogeneous graph. By capturing the complex rela-
tionships and interactions between different types of nodes, het-
erogeneous graphs facilitate the discovery of intricate biological
insights that are otherwise challenging to uncover using tradi-
tional methods. Heterogeneous graph attention network models
show their effectiveness in node classification tasks, particularly
in biological contexts [10]. Furthermore, DeepMAPS employs a
heterogeneous graph transformer to analyze cells and genes from
single-cell multi-omics data, aiming to infer cell-type-specific
gene regulatory networks [11]. However, DeepMAPS integrates
multi-omics data primarily based on prior knowledge instead
of utilizing heterogeneous graphs to capture the complex cross-
modality relationships. Some researchers have begun incorpo-
rating modality features, such as genes and peaks, into het-
erogeneous graphs using prior knowledge. For example, SIMBA
links genes and peaks through motifs and utilizes heterogeneous
graph learning to generate general embeddings for downstream
analysis [12]. Unlike traditional methods, heterogeneous graphs
provide greater flexibility by avoiding the need for direct pro-
jection of ATAC-seq features onto RNA-seq genes. Instead, they
construct heterogeneous graphs based on cross-modality rela-
tionships from databases, allowing the integration of multi-omics
information within a heterogeneous graph framework. However,
the graph construction in these methods heavily relies on prior
knowledge, specifically by identifying active transcription factor
(TF) binding sites using known motifs.

While these approaches have merit, their effectiveness is
compromised when motif information in existing databases
is incomplete. Additionally, the inherent cellular heterogeneity
at the single-cell level can lead to distinct motif expression
patterns across different cell subpopulations, complicating
motif enrichment analysis and potentially resulting in an
incomplete understanding of TFs activity. In those cases, the
nodes representing genes and peaks in the heterogeneous graph
are not directly connected, forcing information to be propagated
solely through intermediary cell nodes. This limitation hampers
the ability of these methods to effectively capture long-range
dependencies and uncover hidden cross-modality relationships.
As a result, the integration of data from scRNA-seq and scATAC-
seq remains challenging, with current methods often failing to
discover novel cross-modality interactions beyond those already
encoded in the motif databases. Consequently, there is a need for
more advanced approaches that can autonomously detect and
model these complex relationships to improve the integration of
multi-omics data.

In this paper, to tackle the above challenges and limitations,
we propose an inter-type relationship deep learning method on
heterogeneous graphs for single-cell Multi-omics Integration
(scMI). scMI models cells, genes and peaks from multi-omics
datasets within a unified heterogeneous graph. By leveraging a
frequency-based multiple-restart Random Walk (RW) strategy,
scMI ensures the consistent capture of both structural patterns
and data features inherent in the heterogeneous graph. Further-
more, we design an inter-type attention mechanism to capture
long-range topological structures across different node types
within heterogeneous graphs, effectively enhancing the discovery

of accurate cross-modality relationships between peaks and
genes. Compared to existing heterogeneous graph methods, scMI
excels by autonomously learning and optimizing cross-modality
relationships without relying on extensive prior knowledge,
making it more adaptable to complex, novel datasets. In our
framework, we combine scMI with existing multi-omics integra-
tion methods, particularly for unmatched multi-omics datasets,
and leverage the inter-type relationship deep learning method
to improve cell alignment in these datasets, thus enhancing
the accuracy and robustness of multi-omics data integration. To
validate scMI, we conduct extensive experiments on real-world
datasets involving modality prediction, cell clustering, and GRN
inference. Results demonstrate that scMI achieves comparable or
superior performance compared to previous methods.

Materials and methods
Overview
Figure 1(a) depicts the overview of our proposed scMI framework.
scMI starts by preprocessing scRNA-seq and scATAC-seq data,
filtering out genes and peaks that are not expressed in a sub-
stantial portion of the dataset. The preprocessed data are then
used to construct a heterogeneous graph, modeling the intricate
relationships between cells and modality features. To handle the
data’s complexity, a frequency-based subgraph sampling method
generates smaller, more manageable subgraphs for analysis. scMI
then jointly learns low-dimensional embeddings for cells and
features, employing an inter-type attention mechanism to high-
light key relationships. Finally, scMI incorporates a collaborative
learning strategy that simultaneously optimizes the embeddings
with downstream tasks, such as cell clustering and GRN inference,
for further biological analysis.

Datasets
Peripheral blood mononuclear cells
Peripheral blood mononuclear cells (PBMCs) consist of a hetero-
geneous mix of immune cells, including lymphocytes (such as T
cells, B cells, and NK cells), monocytes, and dendritic cells, each
playing a critical role in the immune system. These cells are
isolated from peripheral blood and are widely used in research.
Three PBMC datasets, PBMC 3k, PBMC 7k, and PBMC 10k datasets,
derived from healthy donors, are selected for single-cell multi-
omics integration.

The PBMC 3k (https://www.10xgenomics.com/datasets/pbmc-
from-a-healthy-donor-granulocytes-removed-through-cell-sortin
g-3-k-1-standard-2-0-0) and 10k (https://www.10xgenomics.com/
datasets/pbmc-from-a-healthy-donor-granulocytes-removed-
through-cell-sorting-10-k-1-standard-2-0-0) datasets are avail-
able at 10X Genomics official website. The two datasets are
processed using the 10x Genomics Chromium platform, and
annotated with the Cell Ranger pipeline. The PBMC 7k datasets
can be obtained from NCBI GEO under accession GSE156478. All
datasets provide valuable insights into immune cell diversity and
serve as essential resources for advancing the field of single-cell
multi-omics analysis.

Bone marrow mononuclear cells
Bone marrow mononuclear cells (BMMCs) are a diverse popula-
tion of cells found in the bone marrow, consisting primarily of
lymphocytes, monocytes, and hematopoietic stem and progenitor
cells. These cells are crucial for studying hematopoiesis, immune
function, and various hematological disorders. BMMCs serve as
an important model for understanding the complex processes of
blood cell formation and the regulation of immune responses.
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Figure 1. The architecture of scMI. (a) The overview of scMI. (b) A frequency-based RW algorithm with restart to sample subgraphs. The algorithm
samples m subgraphs starting from the same node, and the final subgraph is obtained by filtering based on frequency. (c) Representation learning with
inter-type attention heterogeneous graph neural networks. Graph convolutions preserve the topological structure information of the subgraph, while
the inter-type attention mechanism aims to capture the implicit cross-modality relationships within the multi-omics data.

The BMMC dataset, sourced from the NeurIPS 2021 competition
and available from NCBI GEO under accession GSE194122, served
as a benchmark for evaluating model performance in modality
prediction and data integration tasks [13].

The GSE194122 dataset includes data from 4 sites and 10
donors. In our study, to ensure the generalization ability of the
model, we selected three datasets—s1d2, s2d1, and s3d6—for our
experiments, where s stands for sequencing site and d stands for
donor number.

Human brain tissue
The flash-frozen Human healthy Brain Tissue dataset was
obtained from 10X Genomics official website(https://www.10
xgenomics.com/datasets/frozen-human-healthy-brain-tissue-3-
k-1-standard-2-0-0). Nuclei were isolated from a 2605-mg section
of the brain and prepared following established protocols for
single-cell multiome ATAC and gene expression sequencing.
Paired ATAC and gene expression libraries were generated and
sequenced to provide key insights into chromatin accessibility
and gene expression in human cerebellar cells and is a valuable
resource for single-cell multi-omics analysis.

Mouse embryonic and adult brain cortex
The Mouse Embryonic Brain Cortex (MEBC) dataset, available
under the accession number GSE126074, was generated by Chen
et al. using SNARE-seq, a pioneering single-cell sequencing tech-
nique that simultaneously captures scRNA-seq and scATAC-seq
data from the same cell [14]. We select joint profiles of 5081 cells
from neonatal mouse brain cortices for analysis.

Additionally, we include a dataset of cells from the adult Mouse
Brain Cortex, which can be accessed in BioStudies under the ID
E-MTAB-11264. This dataset provides further insights into the
cellular landscape of the mature mouse brain cortex.

Mouse skin tissue and retina cells
The Mouse Skin Tissue (MST) dataset, available under the acces-
sion number GSE140203, was obtained by Ma et al., offering valu-
able insights into the regulatory mechanisms that govern skin cell
differentiation and function [15].

This dataset provides a detailed view of the transcriptional
programs and epigenetic states within mouse skin tissue by inte-
grating scRNA-seq and scATAC-seq data. The combined anal-
ysis of RNA-seq and chromatin accessibility data facilitates a
deeper understanding of how chromatin potentially influences
gene expression during skin development and maintenance.

The adult Mouse Retina Cells dataset, available under the
accession number GSE201402, was generated using the 10x
Genomics Multiome ATAC+RNA kit to capture both scRNA-seq
and scATAC-seq data from an adult mouse retina sample. This
dataset offers a comprehensive view of the gene expression and
chromatin accessibility profiles, enabling the study of various
neuronal and non-neuronal cell types in the retina.

The detailed statistical information for all datasets above is
provided in Supplementary Table 1.

Building single-cell multi-omics heterogeneous
graphs using scRNA-seq and scATAC-seq data
The construction of a single-cell multi-omics heterogeneous
graph network involves integrating four distinct types of nodes:
cells from scRNA-seq data, cells from scATAC-seq data, genes,
and chromatin accessibility peaks, as shown in Fig. 1(a). In
the graph, edges are established based on specific biological
relationships. First, corresponding cells from scRNA-seq and
scATAC-seq data are connected by edges, representing the same
underlying biological cell across different modalities. Additionally,
edges are formed between scRNA-seq cells and genes that are
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highly expressed in those cells, reflecting the transcriptional
activity captured in the scRNA-seq data. To identify highly
expressed genes, we first select highly variable genes within
the dataset. For each highly variable gene, we determine its
expression threshold by calculating the 95th percentile of its
expression values across all cells. A gene is considered highly
expressed in a cell if its expression in that cell exceeds this
threshold, thereby establishing an edge between the cell and
the corresponding gene to represent transcriptional activity.
Similarly, scATAC-seq cells are connected by edges to chromatin
regions (peaks) that are accessible within those cells, indicating
potential regulatory regions. This graph structure allows for the
simultaneous representation and integration of multiple omics
layers, enabling the exploration of complex cellular relationships
and regulatory mechanisms within a unified framework.

For multi-omics datasets lacking cell matching information,
however, the edges between cells are unknown. To facilitate the
integration of unmatched datasets, we employ established algo-
rithms, Seurat v4, GLUE [16], and bindSC [17], to perform initial
pairing among cells. All three methods ultimately map cells from
different modalities into a shared latent space. In this space,
biologically similar cells originating from different modalities
are positioned near each other. To establish connections in our
heterogeneous graph, we identify the nearest scATAC-seq cell for
each scRNA-seq cell in this shared space, based on the cosine sim-
ilarity of their embeddings. An edge is then established between
these paired cells in the heterogeneous graph, facilitating the
integration of multi-omics data in the absence of direct cell-to-
cell correspondence.

Subgraph sampling via Frequency-based
Random Walk with Restart
In heterogeneous graph representation learning, sampling sub-
graphs plays a crucial role due to the complexity and size of real-
world graphs. Traditional RW methods randomly select nodes and
their neighbors, reducing computational complexity while pre-
serving the structural features of the original graph. However, in
biological heterogeneous graphs, the nodes are more massive and
the graphs are sparser. Traditional subgraph sampling methods
exhibit significant uncertainty, which can introduce noise and
instability to subsequent learning processes. In addition, dispar-
ities in the quantities of different edge types lead to limitations
like uneven coverage across node types, biases towards more
prevalent edge types, and inefficiencies. To address this, as illus-
trated in Fig. 1(b), we introduce a Frequency-based Random Walks
with Restart (FRWR) algorithm to sample subgraphs. Starting from
a node, the algorithm performs multiple restart RWs based on
edge weights to generate m distinct subgraphs, promoting path
diversification. For each type of node, the k most frequently
sampled nodes, along with their associated edges, form the final
subgraph, which is subsequently used for representation learning.
This algorithm reliably captures the most salient aspects of the
graph’s topology and feature distribution in a stable manner.

Inter-type attention heterogeneous graph neural
networks
To extract biological information, it is essential to extract the
topological and data features of nodes within subgraphs.
Heterogeneous graph convolutional networks (HGCNs) extend
GCNs to operate on heterogeneous graphs that contain multiple
types of nodes and edges. These networks leverage the graph’s
complex structure to aggregate feature information from
different types of nodes and their interactions, thereby learning

rich and comprehensive node representations. The fundamental
operation of an HGCN layer can be expressed as follows:

Ãr = Ar + I, (1)

D̃r = diag

⎛
⎝∑

j

Ãr,ij

⎞
⎠ , (2)

H(l+1) = σ

(∑
r∈R

D̃
− 1

2
r ÃrD̃

− 1
2

r H(l)W(l)
r

)
, (3)

where Ãr is the adjacency matrix for edge type r with added self-
loops (where Ar is the original adjacency matrix for edge type r and
I is the identity matrix), D̃r is the degree matrix corresponding to
Ãr, and W(l)

r is the trainable weight matrix for edge type r at the
lth layer and R is a set of edge types in the heterogeneous graph.

In current multi-omics integration methods, such as SIMBA,
traditional heterogeneous graph learning techniques are employed
to integrate information from genes and peaks connected through
prior knowledge including motif databases. To uncover potential
cross-modality relationships that may be missing from the
database, scMI needs to identify and focus on inter-type nodes
that are not connected by edges but exhibit co-occurrence or
similarity in data expression. To capture these long-range inter-
type relationships within subgraphs, we propose an inter-type
attention mechanism. Subgraphs based on frequency sampling
reflect the relationships between nodes, where any two nodes
within a subgraph exhibit high correlation. Based on this, we
extend the original subgraph into a fully connected graph by
connecting all pairs of nodes in the subgraph, and then compute
the attention weights between nodes. For each node vi, attention
coefficients are computed between node vi and its neighboring
nodes vj, considering of the type of edges and nodes:

eij = σ
(
hiWrij hj

)
, (4)

where hi and hj are the feature vectors of nodes vi and vj, respec-
tively. Notably, Wrij is a learnable inter-type attention matrix
according to the edge type between nodes vi and vj. The inter-type
attention focuses on the relationship between different types of
nodes, especially the attention parameter matrix between peaks
and genes, which is the key to multimodal integration. Further-
more, these coefficients are normalized across all nodes using the
softmax function:

αr,ij = exp(eij)∑
eik∈rij

exp(eik)
, (5)

where eik denotes to all edges that have the same type as eij

incident to node vi. Node embeddings are obtained by aggregating
the features of neighboring nodes, weighted by the normalized
attention coefficients:

H(l+1) = σ

(∑
r∈R

ArH(l)W(l)
r

)
, (6)

where Ar is the matrix of αr,ij, and W(l)
r is the trainable weight

matrix for edge type r at the lth layer.
In order to jointly consider the subgraph’s topological structure

and long-range inter-type interaction information, we combine
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equations (3) and (6) to obtain the final aggregation:

H(l+1) = σ

[∑
r∈R

(
D̃

− 1
2

r ÃrD̃
− 1

2
r + Ar

)
H(l)W(l)

r

]
, (7)

This approach effectively captures the complex interplay
between different node types and their relationships within the
heterogeneous graph. By capturing rich contextual information,
The aggregated embeddings form a fundamental basis for
downstream analysis.

Since most scRNA-seq and scATAC-seq data lack labels
for supervised learning, scMI employs a contrastive learning
approach to refine node embeddings by ensuring that similar
nodes within a subgraph are closer in the embedding space, while
dissimilar nodes, from outside the subgraph, are farther apart.
For each node, positive samples are drawn from other nodes
within the same subgraph, leveraging the inherent similarities in
their properties or relationships. Negative samples are randomly
chosen nodes from other subgraphs.

The training employs the Noise Contrastive Estimation (NCE)
loss to differentiate between these positive and negative samples.
The NCE loss for a node v and the graph G are given by

Lv = −
∑

v+∈Vi

log
exp(cos(hv, hv+ )/τ)

exp(cos(hv, hv+ )/τ) + ∑
v− exp(cos(hv, hv− )/τ)

, (8)

LG =
∑
v∈V

Lv, (9)

where hv+ is the embedding of the positive sample, hv− are embed-
dings of negative samples, cos(.) denotes the cosine similarity, and
τ is a temperature parameter.

Contrastive learning enables embeddings to capture the multi-
omics information inherent in the heterogeneous graph. To
enhance the embeddings’ ability to represent data patterns
and improve generalization, scMI incorporates modality recon-
struction as a supervisory signal during training. Node features
and associated edges for 50% of the cells from the scATAC-seq
data in training sets are masked in a manner that varies across
epochs, ensuring that different nodes are masked each time
and promoting robustness in learning. This strategy enhances
the model’s ability to generalize by training it to infer missing
information and adapt to variability. The reconstruction of
masked modality feature values is assessed using the Root Mean
Square Error (RMSE). The loss is formulated as follows:

Lomics =
√√√√ 1

n

n∑
i=1

∥∥yi − ŷi

∥∥2
2, (10)

where yi represents the modality feature values of the masked
cells, ŷi is the predicted values from the embedding, and n is the
total number of masked cells. By minimizing the RMSE loss, scMI
refines the embeddings to accurately capture interconnections
among features across modalities.

Downstream tasks and evaluation
Modality prediction
Modality prediction is a key task for assessing whether multi-
omics data has been successfully integrated. The objective is to
predict one modality of multi-omics data from another, such as
inferring scATAC-seq data from scRNA-seq data, or vice versa.
This process is similar to modality reconstruction but is carried

out on the test set to ensure that the data being predicted is com-
pletely new to the model. This task is essential for understanding
the relationships between different omics and for imputing miss-
ing data in multi-omics datasets.

The effectiveness of models performing modality prediction
is evaluated using multiple metrics, including RMSE, Pearson
correlation coefficient (PCC), and for RNA-seq to ATAC-seq pre-
dictions, the Area Under the Receiver Operating Characteristic
Curve (AUROC) is additionally calculated. A lower RMSE indi-
cates a smaller discrepancy between the predicted and actual
data, reflecting the model’s accuracy in inferring missing modal-
ities. Higher PCC values demonstrate stronger linear correlations
between predicted and true values, while higher AUROC scores
assess the model’s classification performance in the restoration
of chromatin accessibility.

Cell clustering
Clustering is crucial in single-cell analysis as it allows for the
identification of distinct cell populations and states. We employ
the k-means algorithm with the embeddings derived from our
heterogeneous graph model. The algorithm aims to partition cells
into k clusters, with each cell assigned to the nearest mean, which
acts as a cluster prototype. The optimization employs the within-
cluster sum of squares as the loss function:

Ltask =
N∑

i=1

k∑
j=1

zij · ||hi − μj||2, (11)

where N is the number of cells, k is the number of clusters, hi is
the embedding of the ith cell, μj is the centroid of the jth cluster,
and zij is a binary indicator variable that equals 1 if the ith cell is
assigned to the jth cluster and 0 otherwise.

To comprehensively evaluate the clustering quality, we use
metrics such as the Adjusted Rand Index (ARI), Normalized
Mutual Information (NMI), and Average Silhouette Width (ASW).
ARI measures the similarity between the clustering labels
assigned by the algorithm and true labels, while NMI quantifies
the mutual dependence between the predicted and true cluster
assignments. ASW assesses how well each cell is clustered by
calculating the average silhouette value, where higher values
indicate that cells are appropriately clustered with their closest
counterparts.

GRN inference
GRN inference is a essential downstream task that aims to unravel
the complex network of interactions that control gene expression
within a cell. This process involves identifying the regulatory rela-
tionships between TFs and their target genes. Transcription factor
genes encode proteins that bind to specific DNA sequences and
modulate the transcription of other genes. By accurately deter-
mining which genes are regulated by specific TFs, researchers can
reconstruct the biological networks that dictate cellular functions
and behaviors.

For this task, we select representative TFs and their corre-
sponding target genes for each cell type. GRN inference can be
framed as a link prediction task. We apply a pairwise scoring func-
tion that calculates the likelihood of a regulatory link between
a TF gene and a target gene. This scoring function takes the
embeddings of the TF gene and the potential target gene as input,
evaluating their compatibility for forming a regulatory link. The
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loss function for link prediction is formulated as a binary cross-
entropy loss:

Ltask = −
∑

i

∑
j

ygTFi
,gj log(ŷgTFi

,gj ) + (1 − ygTFi
,gj ) log(1 − ŷgTFi

,gj ),

(12)

where ygTFi
,gj represents the ground truth label indicating the

presence or absence of a regulatory link between the TFs gene
gTFi and the target gene gj, while ŷgTFi

,gj is the predicted probability
of such a link as determined by the model.

In the context of GRN inference, we assess the performance
of model using AUROC for prediction of regulons associated
with specific TFs. By focusing on regulons, which are groups of
genes regulated by the same TF, we can precisely measure the
model’s ability to capture the underlying regulatory relationships
governed by these TFs. Higher AUROC values demonstrate that
the model accurately identifies the regulatory targets of the TFs,
reflecting its effectiveness in reconstructing the gene regulatory
network. The ground-truth of GRNs is obtained from three public
functional databases, including Reactome [18], DoRothEA [19],
and TRRUST v2 [20]. These three databases provide extensive
information on gene regulation and biological pathways and
have been used for validating GRN enrichment analysis by
several single-cell multi-omics GRN inference methods, such
as DeepMAPS. Additionally, these databases provide specific
annotations for TFs and their target genes for both human and
mouse data. To ensure species consistency, we carefully separated
the regulatory data into human and mouse categories when
selecting the ground-truth, aligning the datasets used for GRN
inference with species-specific regulatory information.

Among three databases, we gathered 1,186 TFs and 43,178 asso-
ciated regulons from human data, and 1,072 TFs with 38,665 asso-
ciated regulons from mouse data. For each dataset, we selected
TFs and their associated regulons based on biological match-
ing and filtered them using highly variable genes to serve as
the ground-truth for that dataset. This selection process further
refines the choice of ground-truth, ensuring that the regulons are
representative within the dataset.

Results and discussion
Overall performance evaluation on matched
datasets
The results of modality prediction on datasets of four types are
shown in Fig. 2(a–c). LS. Lab and Cajal are the winning methods
for RNA-seq to ATAC-seq and ATAC-seq to RNA-seq predictions
in the NeurIPS 2021 competition, respectively [21]. scJoint [22]
and scMoGNN [23] are deep learning-based prediction methods.
In the ATAC-seq to RNA-seq prediction, scMI achieves the lowest
average RMSE and the highest PCC among all compared methods.
Specifically, scMI demonstrates the best RMSE performance in
seven out of eight datasets (Supplementary Table 4) and achieves
the highest PCC in five datasets (Supplementary Table 5). For
the RNA-seq to ATAC-seq task, scMI still achieves the best RMSE
performance and ranks second in terms of PCC. Additionally, it
obtains the highest average AUROC in five out of eight datasets
(Supplementary Table 8), with the overall average being the high-
est among the compared methods.

For cell clustering, we compare scMI with Seurat v1 [24],
MOFA+ [25], DeepMAPS , MultiVI [26], SIMBA, and scEMC [27].
As shown in Fig. 2(d–e), scMI outperforms other methods in
ARI, NMI, and ASW. In particular, scMI achieves the highest

ARI and NMI in five out of the seven datasets (Supplementary
Tables 9–10), and it achieves the highest ASW score across
six datasets(Supplementary Table 11). Compared to the single-
omic method Seurat v1, scMI significantly improves across
all seven datasets, with an average increase of 73.5% ARI. By
integrating data from multiple omics, the model captures the
complex biological relationships between cells more effectively,
leading to more accurate and distinct clustering. Compared to
baseline methods, scMI better captures and preserves biological
differences between cell types, resulting in clearer and more
biologically meaningful clusters.

The UMAP visualization of the embeddings learned by SIMBA
and scMI is shown in Fig. 3, colored by clusters. Compared to
SIMBA, scMI exhibits more distinct clustering boundaries, with
less overlap among the embeddings of different clusters. This
result is attributed to scMI’s ability to simultaneously capture
long-range inter-type relationships and local graph structure,
thereby enhancing the distinction between different cell types
and avoiding over-smoothing. On the other hand, SIMBA focuses
solely on representation learning for biological networks without
differentiating downstream tasks. In contrast, our dynamic
collaborative learning approach optimizes the loss function to
simultaneously refine cell embeddings and minimize the loss for
downstream clustering tasks, enabling fine-tuned embeddings
tailored for cell clustering and resulting in superior performance.

To validate the GRN inference capability of scMI, we select
GRNBoost2 [28], scMTNI [29], DeepMAPS, and SIMBA as baseline
methods. Considering real-world scenarios in single-cell multi-
omics, we calculate the AUROC for inference of regulons (Fig. 2f).
GRNBoost2 infers GRNs solely using scRNA-seq data, while
scMTNI, DeepMAPS, and SIMBA integrate multi-omics infor-
mation to comprehensively infer regulatory relationships. scMI
exhibits superior performance across all datasets (Supplementary
Table 12), excelling in identifying regulons associated with
specific TFs.

The enhancement of GRNs inference through multi-omics inte-
gration lies in supplementing missing gene information from
single-omics data with scATAC-seq data, uncovering more regu-
latory relationships. Our inter-type attention mechanism specif-
ically targets gene-peak relationships, enabling the discovery of
relationships that prior-knowledge-based models may have over-
looked.

It is observed that scMI does not surpass existing methods in
modality prediction and cell clustering on certain datasets. Unlike
baseline methods, scMI does not rely on cross-modality relation-
ships derived from motif databases; instead, it aims to discover
these relationships directly from the data. When dealing with
smaller datasets, the inherent information may be insufficient to
fully capture the cross-modality relationships specific to certain
cell types, resulting in performance that falls short of existing
methods. Nevertheless, scMI maintains robustness across various
tasks and achieves the best average performance across multiple
metrics in different task scenarios.

Performance of omics alignment on unmatched
datasets
The integration of unmatched multi-omics data, such as scRNA-
seq and scATAC-seq, poses considerable challenges due to the
inherent difficulty of establishing direct correspondence between
cells across different omics. This lack of direct alignment compli-
cates efforts to accurately combine the datasets, as traditional
integration methods often rely on matched or paired data.
For unmatched multi-omics datasets, scMI leverages existing

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae711#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae711#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae711#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae711#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae711#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae711#supplementary-data
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Figure 2. Overall performance evaluation on matched datasets. (a) Average RMSE and PCC values of scMI and baselines predicting scRNA-seq data
from scATAC-seq data across eight matched datasets. The x and y axes are average PCC and RMSE values, respectively. Error bars indicate the SD of
eight datasets. (b) Same as (a), but the algorithms predict scATAC-seq data from scRNA-seq data. (c) Bar plots illustrate the AUROC values of scMI and
baselines predicting scATAC-seq data from scRNA-seq data across eight matched datasets. (d) Same as (a), but the results are evaluated by the average
ARI and NMI values of cell clustering across seven datasets. (e) Bar plots illustrate the ASW values of cell clustering across seven datasets. (f) Same as
(e), but the results are evaluated by the average AUROC values of GRN Inference. All the source data can be found in Supplementary Tables 4–12.

Figure 3. The UMAP visualization of clustering results for SIMBA
(ARI=0.836) and scMI(ARI=0.867) on the PBMC 10k dataset, with each color
representing a cluster. Even without relying on motif databases, scMI’s
clustering results still exhibit clearly boundaries.

alignment methods for initial pairing and further integrates
the data with the inter-type attention mechanism. Our results
demonstrate that scMI not only enhances the alignment between
these datasets but also significantly improves the overall
integration process, leading to more accurate and biologically
meaningful insights from the combined multi-omics data.

We assess the alignment quality by visualizing the embeddings
of cells from PMBC scRNA-seq and scATAC-seq data using UMAP.

The embeddings of both node types are combined, and the degree
of mixing is analyzed. As shown in Fig. 4, we visualize the embed-
dings obtained through Seurat v4, GLUE, and bindSC methods,
as well as the concatenated embeddings (Concat) from these
three methods. The plots reveal that the enhanced embeddings
achieved by scMI based on the integration of these three methods
exhibit a higher degree of mixing between cells from the two
omics sources, indicating a more seamless integration facilitated
by scMI.

To quantitatively analyze the alignment and integration per-
formance of the model on unmatched datasets, we define a met-
ric matchk to evaluate the effectiveness of cell pairing between
scRNA-seq and scATAC-seq data in the latent space. For each
scRNA-seq cell (cRNA

i ), we identify the k nearest scATAC-seq cells
(cATAC

j ) based on their embeddings in the latent space. A pairing is

considered successful if the true corresponding cATAC
i is within the

k nearest neighbors of cRNA
i . The matchk is defined as follows:

matchk =
∣∣{cRNA

i | cATAC
i ∈ KNNk(cRNA

i )
}∣∣

|{cRNA
i }| (13)

where KNNk(cRNA
i ) represents the set of k nearest neighbors of

cRNA
i in the latent space. This metric provides a quantitative

measure of the quality of the alignment of the scRNA-seq and
scATAC-seq data, with higher matchk values indicating better
alignment and integration between the two modalities. As shown
in Fig. 4, scMI achieves a matchk value of 0.2218, significantly out-
performing the baseline methods. This substantial improvement

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae711#supplementary-data
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Figure 4. The UMAP of cell embeddings in unmatched PBMC 10k datasets. The six columns represent embeddings generated by Seurat v4, GLUE, bindSC,
their concatenation (Concat), SIMBA, and the proposed scMI. (SIMBA∗ refers to the multi-omics integration analysis module in SIMBA.) Cells are colored
by data source (scRNA-seq or scATAC-seq) in the first row, and by type in the second row. The metric match10, used to assess alignment performance,
indicates the ratio of cases where the corresponding scATAC-seq cell is among the 10 nearest neighbors of scRNA-seq cell in the latent space. The
corresponding t-SNE visualization is shown in Supplementary Fig. 1.

indicates that scMI is more effective in accurately aligning scRNA-
seq and scATAC-seq cells in the latent space, leading to more
successful pairings between the two modalities.

To validate the biological functionality of embeddings obtained
through unmatched multi-omics methods and scMI, we further
visualize the embeddings from the perspective of cell types. As
shown in Fig. 4, the embeddings enhanced by scMI produce more
distinct boundaries between different cell types. This improve-
ment highlights the ability of scMI to maintain and enhance the
biological distinctions among various cell populations.

To further evaluate the alignment and integration performance
of our model in cell subtype heterogeneity, we perform UMAP
visualization on three types of B cells, as shown in Fig. 5. Naive
B cells are activated to become transitional B cells, with a subset
eventually differentiating into memory B cells. The alignment
effectiveness of the four baseline methods has certain limita-
tions, resulting in embeddings that do not adequately distinguish
between the three types of B cells after integration. Due to these
limitations, the boundaries between the different types of B cells
become blurred, making it difficult to achieve accurate clustering
and downstream analyzes. In contrast, the embeddings enhanced
by scMI exhibit significantly improved alignment, which allows
for clearer separation of the three B-cell types. The scMI-enhanced
embeddings reveal distinct boundaries between the different cell
populations, demonstrating the method’s ability to preserve and
highlight biological differences in the data.

Additionally, to evaluate the omics alignment and degree of
mixing of the scRNA-seq and scATAC-seq data on unmatched
datasets, we introduce the integrated Local Inverse Simpson’s
Index (iLISI) [30] as an evaluation metric. iLISI assesses the batch
mixing quality by measuring the diversity of batch labels within
the neighborhood of each cell in the integrated space. For this
analysis, we treat the scRNA-seq and scATAC-seq data as two
distinct batches and compute the iLISI score for each cell type.
The final iLISI score is obtained by averaging across all cell types,
providing a comprehensive metric that indicates how well the
integration method aligns and mixes cells from different omics
sources. Higher iLISI scores suggest better integration, reflect-
ing effective omics alignment. We compare scMI with existing
methods for unmatched datasets, including the baeline methods
Seurat v4, GLUE, bindSC as well as Harmony [30], scJoint, SIMBA
and scBridge [31]. As shown in Table 1, scMI consistently achieves

competitive iLISI scores, demonstrating superior integration capa-
bility across most datasets. It also shows the highest average
iLISI score of 0.810, indicating that it maintains strong alignment
performance across various cell types and datasets. scMI’s overall
results highlight its robust and effective integration of scRNA-
seq and scATAC-seq data, particularly in cases where datasets are
unmatched.

Evaluation of downstream task performance on
unmatched datasets
Enhanced alignment improves the accuracy of data integration
and embedding learning, leading to more precise representations
of the underlying biological relationships. This, in turn, enables
the model to perform better in downstream tasks, such as cell
clustering and gene regulatory network inference, by providing
a more coherent and biologically relevant foundation for these
analyses.

To validate the effectiveness of scMI on unmatched datasets,
we compare scMI with three methods designed for unmatched
datasets. The results are shown in Table 2, with the last row rep-
resenting the results for the fully matched dataset as a reference.
The results demonstrate that scMI not only surpasses all exist-
ing state-of-the-art methods for unmatched datasets but also
approaches the performance levels achieved with fully matched
datasets. This indicates scMI’s superior capability in integrating
multi-omics data and improving the accuracy and reliability of
downstream analyses, even in the absence of direct cell-to-cell
correspondence between different omics.

Furthermore, the GRN inference task also shows excellent
performance on unmatched datasets in Table 3, reinforcing scMI’s
effectiveness in deciphering complex regulatory interactions and
providing robust insights into cellular mechanisms.

While scMI demonstrates superior performance on both
matched and unmatched datasets, computational efficiency
remains a critical consideration, especially for large-scale
datasets. To further evaluate the efficiency of scMI, we compare
its computation time for cell clustering with the baseline methods
mentioned above, providing insights into the computational
scalability of scMI. We record the computational time of scMI
and the baselines across three datasets: PBMC 3k (2,711 cells),
MST (5,692 cells), and PBMC 10k (11,898 cells). All experiments
were conducted under the same hardware configuration. As

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae711#supplementary-data
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Figure 5. The UMAP of cell embeddings among three B cell subtypes in unmatched PBMC 10k datasets. The interpretation of each image is consistent
with that of Fig. 4. Similarly, match3 indicates the ratio of cases where the corresponding scATAC-seq cell is among the three nearest neighbors of
scRNA-seq cell in the latent space. The corresponding t-SNE visualization is shown in Supplementary Fig. 2.

Table 1. Performance comparison on unmatched datasets of iLISI for omics alignment. SIMBA∗ refers to the multi-omics integration
analysis module in SIMBA, which takes unmatched multi-omics data as input. The best-performing results for unmatched datasets are
highlighted in bold

iLISI↑

PBMC 3k PBMC 10k BMMC 1 BMMC 2 BMMC 3 MEBC MST Average

Seurat v4 0.593 0.517 0.676 0.579 0.753 0.454 0.414 0.570
GLUE 0.827 0.687 0.671 0.637 0.740 0.697 0.715 0.710
bindSC 0.721 0.715 0.739 0.583 0.764 0.686 0.624 0.690
Harmony 0.853 0.756 0.759 0.510 0.694 0.649 0.746 0.710
scJoint 0.828 0.749 0.612 0.557 0.666 0.584 0.699 0.671
SIMBA∗ 0.899 0.775 0.661 0.705 0.709 0.750 0.743 0.749
scBridge 0.859 0.835 0.714 0.721 0.734 0.653 0.821 0.762
scMI(unmatched) 0.890 0.815 0.856 0.757 0.757 0.738 0.857 0.810

Table 2. Performance comparison on unmatched datasets of cell clustering. SIMBA∗ refers to the multi-omics integration analysis
module in SIMBA, which takes unmatched multi-omics data as input. The best-performing results for unmatched datasets are
highlighted in bold

ARI↑

PBMC 3k PBMC 10k BMMC 1 BMMC2 BMMC 3 MEBC MST Average

Seurat v4 0.883 0.629 0.652 0.360 0.526 0.382 0.364 0.542
GLUE 0.913 0.731 0.657 0.450 0.553 0.564 0.578 0.635
bindSC 0.905 0.752 0.717 0.586 0.538 0.541 0.603 0.663
Harmony 0.892 0.693 0.725 0.491 0.533 0.472 0.594 0.629
scJoint 0.868 0.750 0.656 0.537 0.491 0.549 0.583 0.633
SIMBA∗ 0.909 0.822 0.675 0.694 0.627 0.598 0.733 0.723
scBridge 0.927 0.819 0.798 0.773 0.528 0.570 0.769 0.741
scMI(unmatched) 0.953 0.854 0.860 0.823 0.813 0.742 0.849 0.842
scMI(matched) 0.968 0.867 0.924 0.855 0.840 0.841 0.881 0.882

shown in Fig. 6, traditional R-based methods (e.g. Seurat and
MOFA+) consistently exhibit lower computational complexity due
to their reliance on pre-computed databases or comparatively
simple model architectures. However, these methods trade
computational efficiency for limited performance and flexibility
when dealing with complex or unmatched datasets.

Among deep learning methods, scMI demonstrates compara-
ble computation time to other graph-based methods, including
SIMBA and DeepMAPS. On the largest dataset, scMI achieves a
shorter running time than SIMBA and DeepMAPS. Notably, as the

number of cells increases, scMI becomes more efficient compared
to SIMBA and DeepMAPS. This improvement can be attributed
to the FRWR algorithm and the inter-type attention mechanism,
which optimize cross-modality relationship learning and enable
scMI to handle larger datasets efficiently.

Ablation study
Frequency-based subgraph sampling
Since the learning of embeddings in scMI relies on subgraph
sampling, we evaluate the efficacy of the FRWR algorithm on the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae711#supplementary-data
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Table 3. AUROC on unmatched datasets of GRN inference comparing regulons from specific TFs. SIMBA∗ refers to the multi-omics
integration analysis module in SIMBA, which takes unmatched multi-omics data as input. The best-performing results for unmatched
datasets are highlighted in bold

AUROC↑

PBMC 3k PBMC 10k BMMC 1 BMMC 2 BMMC 3 MEBC MST Average

GLUE 0.290 0.379 0.356 0.551 0.594 0.405 0.392 0.424
bindSC 0.419 0.376 0.390 0.423 0.503 0.342 0.449 0.415
SIMBA∗ 0.527 0.620 0.494 0.408 0.653 0.362 0.470 0.505
scMI(unmatched) 0.769 0.737 0.654 0.628 0.838 0.667 0.724 0.717
scMI(matched) 0.796 0.798 0.719 0.695 0.887 0.678 0.823 0.771

Figure 6. Computational time comparison between scMI and baseline
methods for cell clustering across three datasets (PBMC 3k, MST, and
PBMC 10k). The source data and hardware configuration can be found
in Supplementary Table 13.

Table 4. Ablation study on subgraph sampling algorithms. The
best-performing results are highlighted in bold

ARI↑

m k PBMC 3k PBMC 10k

RW – – 0.722 0.683
RWR – – 0.721 0.754
FRWR 10 5 0.931 0.815

30 5 0.968 0.840
20 5 0.963 0.867
20 2 0.942 0.855
20 8 0.950 0.852

PBMC datasets, as shown in Table 4. We compare our method with
standard RW and Random Walk with Restart (RWR) approaches.
Our results demonstrate that FRWR achieves better performance
and stability, ensuring that the sampled subgraphs retain biolog-
ically meaningful relationships.

The performance of FRWR depends on several key hyperpa-
rameters, including the number of subgraphs m and parameter
k regulating the size of subgraphs. To ensure optimal sampling
and representation learning, we systematically optimize these
hyperparameters through extensive experiments. We conduct
grid search to optimize m and k within predefined ranges: m ∈
{10, 20, 30} and k ∈ {5, 8, 10}. The results are shown in Table 4.
The number of subgraph samples m significantly influences the
model’s performance by affecting the diversity and stability of
captured subgraph structures. As m increases, the generated sub-
graphs better represent the graph’s overall structure, leading to
enhanced performance in GRN inference. Specifically, we observe
that setting m = 20 strikes a balance between stability and

computational efficiency. While further increasing m (e.g. m = 30)
continues to improve subgraph stability, it results in diminishing
diversity and increased computational costs. When m exceeds
30, the diversity of subgraphs sampled from the same starting
node decreases significantly during training, which can lead to
overfitting.

The parameter k, representing the number of nodes of each
type in a subgraph, plays a crucial role in balancing structural
detail and information aggregation. If k is too small, the sub-
graph lacks sufficient context to capture complex graph struc-
tures, limiting the learning process. Conversely, as k continues to
increase, additional noise can be introduced into the subgraph.
For example, when learning the embedding of an scRNA-seq
cell, the inclusion of multiple unrelated scATAC-seq cell nodes
can lead to blurred clustering boundaries, adversely affecting the
model’s performance in clustering tasks. This noise complicates
the representation and can impair the model’s ability to accu-
rately distinguish cell types.

In our study, m = 20, k = 5 provides the best trade-off, enabling
scMI to maintain effective representation learning without over-
smoothing or excessive noise.

To enhance the performance of scMI, we conduct grid search
for the other hyperparameters of scMI across different down-
stream tasks. The tuning experiments for model hyperparameters
are presented in Supplementary Figs 3–5, and the hyperparame-
ters for all downstream tasks are summarized in Supplementary
Table 2.

Inter-type attention mechanism
Inter-type attention mechanism automatically captures cross-
modality relationships, enhancing scMI’s capability to integrate
multi-omics data. In this ablation study, we evaluate the role of
the inter-type attention mechanism within scMI by conducting
experiments with three different setups: using only HGCN, using
only the Inter-type Attention mechanism (I.A.), and using both
HGCN and inter-type attention together. These experiments are
carried out on the PBMC 3k and PBMC 7k datasets to assess their
performance on modality prediction tasks. As shown in Table 5,
the combination of HGCN and the inter-type attention mecha-
nism achieved the best performance across all three experimental
setups.

HGCN primarily focuses on aggregating local neighborhood
information and preserving topological structure. This means
that while it can capture structural and connectivity patterns in
the graph, it lacks the capability to highlight interactions between
distinct node types, such as those between genes and peaks. As
a result, the model’s performance is constrained by its inability
to fully represent the complex, long-range dependencies that are
crucial for cross-modality learning.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae711#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae711#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae711#supplementary-data
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Table 5. Ablation study on inter-type attention mechanism

RMSE↓

ATAC-seq to RNA-seq RNA-seq to ATAC-seq

PBMC 3k PBMC 7k PBMC 3k PBMC 7k

HGCN 0.1970 0.5317 0.3276 1.0310
I.A. 0.1776 0.2824 0.2689 0.8375
HGCN+I.A. 0.1214 0.2065 0.2238 0.7796

Table 6. Ablation study on multi-omics integration. The
best-performing results are highlighted in bold

AUROC↑

BMMC 1 BMMC 2 BMMC 3

GRNBoost2 0.440 0.592 0.524
scMI(embedding) 0.691 0.601 0.848
scMI 0.719 0.695 0.887

The inter-type attention mechanism addresses some of these
issues by allowing the model to focus on significant cross-
modality relationships between different node types, helping
to capture these long-range dependencies. By learning cross-
modality relationships and combining with information from
one modality, the model can more accurately predict another
modality. Notably, the improvement brought by the inter-
type attention mechanism is more pronounced on larger-scale
datasets, indicating that larger datasets enable the model to learn
more comprehensive cross-modality relationships.

Multi-omics integration in GRN inference
To quantify the enhancement of GRN inference by multi-omics
information and our model, we employ the single-omic GRN
inference method GRNBoost2 for comparison. Three setups
include inferring GRN using scRNA-seq data with GRNBoost2,
using embeddings generated by scMI as input for GRNBoost2,
and inferring GRN with scMI. F-scores for the top K edges with
the highest confidence from each setup are presented in Table 6.
Comparing the first two experimental setups, using integrated
embeddings as input for GRNBoost2 provides more information
than scRNA-seq alone, resulting in higher accuracy in GRN
generation. The outcomes of the latter two experiments show
that our framework and collaborative learning approach, based
on omics integration, better adapt to GRN inference.

Conclusion
In this paper, we introduce scMI, a novel deep learning method
based on heterogeneous graphs for single-cell multi-omics
integration. This approach effectively integrates scRNA-seq
and scATAC-seq data, addressing the limitations of traditional
methods that rely heavily on motif databases. By employing a
frequency-based multiple Random Walk with Restart strategy for
subgraph sampling, scMI effectively balances the representation
of different node types while maintaining biological interpretabil-
ity. A key innovation of scMI is the introduction of an inter-type
attention mechanism, which captures long-range cross-modality
relationships between different node types, such as genes and
chromatin accessibility peaks. This mechanism enhances the
model’s ability to uncover complex biological interactions that
may be missed by other approaches.

To evaluate the effectiveness of our model, we conduct exten-
sive experiments to compare scMI with baselines. The results
on various datasets consistently demonstrate the superiority and
robustness of scMI in tasks including cell clustering and GRN
inference. Notably, scMI enhances the alignment and integration
of unmatched multi-omics data, leading to more accurate and
biologically meaningful insights. The method’s ability to cap-
ture long-range cross-modality relationships without the need for
motif databases further underscores its robustness and adapt-
ability.

Key Points

• We propose scMI, a novel heterogeneous graph embed-
ding approach to integrate scRNA-seq and scATAC-seq
data. Our framework models cells and modality features
from multi-omics datasets onto heterogeneous graphs
for representation learning, eliminating the reliance on
motif databases.

• We introduce an inter-type attention mechanism to cap-
ture long-range cross-modality relationships on hetero-
geneous graphs, enhancing the biological interpretabil-
ity of gene-peak interactions.

• For unmatched datasets, scMI builds upon existing
alignment methods and employs the inter-type atten-
tion mechanism to adjust misaligned pairings, enhanc-
ing alignment accuracy.

• Extensive evaluations are conducted to validate the
effectiveness of scMI. Visualization elucidates the bio-
logical interpretability and insights gained from our
study.

Supplementary data
Supplementary data is available at Briefings in Bioinformatics
online.
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