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Abstract

The purposes are to meet the individual needs of leather production, improve the efficiency

of leather cutting, and increase the product’s competitiveness. According to the existing

problems in current leather cutting systems, a Fault Diagnosis (FD) method combining Con-

volutional Neural Network (CNN) and the Support Vector Machine (SVM) of Gray Wolf Opti-

mizer (GWO) is proposed. This method first converts the original signal into a scale

spectrogram and then selects the pre-trained CNN model, AlexNet, to extract the signal

scale spectrogram’s features. Next, the Principal Component Analysis (PCA) reduces the

obtained feature’s dimensionality. Finally, the normalized data are input into GWO’s SVM

classifier to diagnose the bearing’s faults. Results demonstrate that the proposed model has

higher cutting accuracy than the latest fault detection models. After model optimization,

when c is 25 and g is 0.2, the model accuracy can reach 99.24%, an increase of 66.96%

compared with traditional fault detection models. The research results can provide ideas

and practical references for improving leather cutting enterprises’ process flow.

1. Introduction

The textile industry is vital in the early stage of China’s Reform and Opening-up, which has

boosted China’s economic growth directly [1]. The leather industry occupies the majority of

the textile industry. Traditionally, leather is cut by hand. However, manufacturers have begun

to utilize high-efficiency and high-performance leather cutting devices due to the increasing

demand for leather products [2]. Most manufacturers employ the high-frequency vibration

Computer Numerical Control (CNC) cutting machine because of advantages such as fast cut-

ting speed, good cutting quality, and high utilization [3]. However, large CNC cutting

machines are imported. Maintaining these machines is troublesome because of intellectual

property protection and the high costs of after-sales services, which dramatically limits indus-

trial development [4]. Researches on the control system of CNC cutting machines in China are

backward. Only some Chinese enterprises produce clothing-cutting machines; most Chinese

factories utilize relay-contactor control technology, but the cutting accuracy is low. Because
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the thickness of the cut fabric is minimal, the relay-contactor control technology can cut cloth-

ing samples only, which is challenging to meet large clothing factories’ developmental needs

[5]. As a traditional leather cutting device, the cutting machine is vital in improving leather

cutting accuracy and tire production efficiency [6]. Therefore, constructing a fault detection

model for the original device is urgent [7]. Fault Diagnosis (FD) technology is based on reli-

ability theory, system theory, cybernetics, and information theory. FD is gradually formed by

combining modern testing instruments and computers with various diagnostic objects [8]. FD

technology can find various abnormal situations punctually and correctly, thereby preventing

faults or minimizing the loss of faults in time [9]. Therefore, constructing a fault detection

model for cutting control systems in the leather industry is essential to improve industrial

efficiency.

Many scholars have researched automatic fault detection algorithms for machines. Ellefsen

et al. (2019) proposed a fault detection algorithm for maritime components based on unsuper-

vised reconstruction. They found that this algorithm was very suitable for end-to-end system

solutions in the future [10]. Yılmaz and Bayrak (2019) proposed a new fault detection method

based on non-wavelet transform to overcome wavelet transform limitations in real-time appli-

cations. This method had a wide application range and could detect faults quickly, which was

reliable for the microgrid [11]. Okaro et al. (2019) proposed a machine learning algorithm for

the automatic detection of product failures. This method was semi-supervised and could use

data from builds where the components had been certified and builds where the component

quality was unknown [12]. Ellefsen et al. (2020) proposed a fault-type independent spectral

anomaly detection method for autonomous ferries, achieved 97.66% accuracy in the final test

[13]. Brigham et al. (2020) proposed simplified automatic fault detection in wind turbine

induction generators, with the rotor’s electrical asymmetry. This method was robust in vari-

able speed. It also showed good versatility when it detected failures at speeds and conditions

that did not occur during training [14]. To solve equipment failure, De Martini and Facchi-

netti (2020) proposed an electromechanical system framework based on a fuzzy inference sys-

tem. This method and its specific conditions for electric vehicles had high computational

performance and accuracy [15]. Therefore, deep learning algorithms and AI optimization are

often utilized for fault detection. Nevertheless, different algorithms vary significantly.

Regardless of the above problems, the primary contributions are: (1) the Support Vector

Machine (SVM) in deep neural networks is introduced into the leather cutting control system,

which effectively solves the difficulty of determining the neural network, the local minima, the

over-learning, and the under-learning. (2) The Gray Wolf Optimizer (GWO) is introduced to

improve the algorithm accuracy. The accuracy of model clipping is improved further through

parameter optimization. (3) Although many works have also applied the above two algorithms,

the fusion algorithm’s efficiency is not improved. The research results can provide a practical

basis for the technological development of the leather industry.

2. Related works

2.1 Principles of cutting control system

The leather cutting system works through hydraulic transmission and control. Notably, its

structure is shown in Fig 1. The cutting control system uses hydraulic oil as the primary

medium. The hydraulic pump generates tremendous pressure; then, the power components

convert mechanical energy into hydraulic energy. The logical hydraulic control system

employs hydraulic energy to control the angle and accuracy of leather cutting. Finally, hydrau-

lic oil pressure is converted into mechanical energy via a cylinder or motor, thereby driving
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the mechanical load blade to move linearly or rotationally; consequently, the leather is cut

[16].

The cutting machine’s hydraulic control system is the core to ensure cutting accuracy and

efficiency, including power components, control components, and executive components. The

principle of this system is similar to that of hydraulic transmission. However, the core control

system will have more feedback devices, and the actual situation can be fed back to the com-

puter while the hydraulic pump and its motor are cutting [17]. Principal parameters include

actuator output, such as the displacement, speed, and pressure of the tire or leather. These

parameters are compared with the input before cutting. The deviation between the input and

the output is kept constant according to relevant departments’ requirements, thereby meeting

the accuracy of leather cutting. Here, the core is the series feedback of multiple sensors, critical

for leather cutting [18].

2.2 Research progress of FD

With the continuous development of signal collection technology, data processing technology,

and computer technology, scholars worldwide have obtained many theoretical results in FD,

and new diagnostic methods have also been continuously developed and improved, which

greatly improved the reliability of fault monitoring and diagnosis. The United States has estab-

lished a working group for mechanical fault monitoring and preventive diagnosis. This group

is engaged in research on aviation equipment failure analysis and prediction [19]. In the mean-

time, mechanical FD technology has received much attention in European countries. The

United Kingdom has established a machine health center engaged in mechanical FD research

Fig 1. Hydraulic control system of cutting machine.

https://doi.org/10.1371/journal.pone.0248515.g001
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[20]. The Danish B&K Company has developed advanced sensor manufacturing technology.

With the development of sensor technology, some scholars begin to use various sensors to col-

lect signals under the working state of machinery and analyze the signals to evaluate the status

of rolling machinery [21]. With the application of Fourier transform technology in signal pro-

cessing, researchers begin to introduce spectrum analysis technology into the FD of motor

rolling machinery, such as comparing the characteristic frequency of the vibration signal col-

lected by the acceleration sensor with the characteristic frequency obtained by theoretical cal-

culation or spectrum analyzer, thereby determining whether the working state of the rolling

machinery has changed [22]. The “resonance demodulation” technology can separate fault sig-

nals and effectively determine the location and severity of mechanical faults [23]. With the

development of computer network technology, researchers focus on developing online moni-

toring systems and expert systems for rolling machinery. Although expert systems can solve

remote monitoring problems very well, it cannot extract fault features, or the extracted features

are incomplete. The diagnostic accuracy of the method is not high.

A series of theories and results have been accomplished in the research of the FD algorithm.

Hsu and Liu (2020) proposed a Convolutional Neural Network (CNN) intelligent diagnosis

algorithm, which could automatically extract the mechanical fault features and recognize the

faults. The feasibility of this method was proved through experimental simulation [24]. Amirat

et al. (2020) put forward a method based on variable modal decomposition combined with the

optimized SVM network for joint FD [25]. Qu et al. (2017) combined sparse expression tech-

nology and used its advantages in signal processing to extract features and identify faults of

rolling machinery fault signals, achieving better diagnostic results [26]. Xu et al. (2017)

designed a mechanical FD method based on LMD and morphological filtering. The reliability

and feasibility of this method were verified by building a railway freight car wheel-to-rolling

mechanical test system and analyzing typical mechanical failure signals [27]. Yu et al. (2016)

designed a scheme of a rolling mechanical FD system based on LabVIEW, which analyzed and

processed the signals under the diagnosis platform of LabVIEW. The feasibility of the scheme

was verified through simulation test results [28]. Hong et al. (2017) proposed an early FD

method for wind turbine machinery based on MCKD-EMD. The maximum correlation kurto-

sis deconvolution could highlight the fault shock pulse signal covered by noise in the mechani-

cal vibration signal. The combination of MCKD and EMD was applied to early mechanical FD

[29]. Zhu et al. (2019) proposed rolling machinery fault detection and diagnosis based on com-

pound multi-scale fuzzy entropy and integrated SVM [30]. Ma et al. (2018) put forward a

mechanical FD method based on wavelet packet decomposition and Principal Component

Analysis (PCA) [31]. Deng et al. (2018) combined empirical mode decomposition with inde-

pendent component analysis. They proposed an FD method based on empirical mode decom-

position and independent component, which was successfully applied to mechanical FD [32].

Hu et al. (2019) proposed a rolling mechanical FD method based on feature extraction of com-

pressed information. Apparently, with the development of technology, the methods of FD

have also become diversified. However, these studies mostly stay in the theoretical stage and

use less in actual production.

2.3 Fault detection model

The Programmable Logic Controller (PLC) processor, data collection, data storage, and data

communication need to be placed on the same data processing platform for fault detection

inside the leather cutting system. Multiple sensors must monitor the overall circuit jointly

since the cutting system’s internal circuit and the running process are complicated. Fig 2 illus-

trates the internal fault detection system of the cutting machine. First, the system transmits
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data to the sensor through the operation. The sensor uploads the running data to the central

processing system in time, and the central processing system is coordinated and dispatched via

unified coordination, which is convenient for the operator to analyze and judge the overall

operation of the cutting machine, evaluate the possible problems of the cutting machine, and

thereby arranging the following production.

FD of the cutting system is the key to device operation. On the one hand, nature, degree,

class, location, cause, and development trend of the fault can be determined, thereby providing

an accurate reference for the following forecasting, control, adjustment, and maintenance. On

the other hand, experiences can be accumulated for future FD of the cutting system, and

appropriate solutions can be chosen for different fault types and degrees. However, the cutting

control system’s current fault detection has problems, such as low detection accuracy and low

recognition efficiency. Most of the faults are judged based on human experience, which signifi-

cantly limits fault detection technology development. Therefore, the way to learn and judge

fault detection is fundamental.

Factories are becoming increasingly intelligent and generating loads of process data with

the rapid development of sensor technology, data storage and the internet. Data analysis needs

for large amounts of data arise at the historic moment, and data-based machine learning tech-

nology can effectively improve FD. Commonly used fault detection technologies include

Bayesian network, Artificial Neural Network (ANN), SVM, and Hidden Markov Model

(HMM). Bayesian network is a commonly used machine learning technique for fault detec-

tion. It is a white box model because the graphical representation allows users to intuitively

and easily understand the interaction between model variables. This characteristic is beneficial

for modeling uncertainties and makes it easier for the model to use data from multiple sources.

ANN is a non-parametric machine learning algorithm inspired by the functions of the human

central nervous system. Its adaptive feature provides a robust modeling function, which is suit-

able for the nonlinear relationship between features. The similarity between ANN and a bio-

logical neural network is that both can calculate the various parts of the function collectively

and in parallel, without the necessity of describing each unit’s specific tasks. ANN’s non-

parametric nature and the ability to model nonlinear and complicated problems with high pre-

cision make it applicable in FD problems. ANN is easy to initialize because it does not require

specifying the network structure. SVM uses different kernel functions (such as radial basis

Fig 2. Fault detection model.

https://doi.org/10.1371/journal.pone.0248515.g002
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functions) to find a hyperplane that can best separate the data, with good classification perfor-

mance when used with a small training set. SVM is an excellent technique for modeling linear

and nonlinear relationships. Compared with other non-parametric techniques, its calculation

time is relatively short. The availability of large training datasets is a challenge in machine

learning. However, even in the case of limited training data, SVM has good results. HMM is

an extension of the Markov chain model, which estimates the probability distribution of state

transition and measurement output in a dynamic process, assuming that the process’s state is

unobservable. HMM is a probabilistic model and is excellent in terms of unobservable states

(such as chemical processes or the health of equipment) during the modeling process; hence, it

is very suitable for FD.

2.4 GWO for solving engineering problems

There are many reports about GWO solving engineering problems. Fu et al. (2019) proposed a

novel method for rotating machinery FD improved by blind parameter identification of MAR

model and abrupt hybrid GWO. Signals collected from different fault types were divided into

intrinsic mode function datasets through variational mode decomposition, and multiple auto-

regressive models of all IMFs were established. Afterward, key features were extracted through

decomposition and recognition models and PCA. The results proved the effectiveness and

superiority of this method [33]. To improve the accuracy and recognition efficiency of bearing

DF, Huang et al. (2019) put forward an FD method based on improved GWO and SVM,

where SVM was optimized by GWO to obtain the most suitable parameters of the new diag-

nostic model. Ultimately, this model improved the problem that the algorithm was easy to fall

into the local optimum [34]. Li et al. (2020) proposed an optimized binary SVM classifier

based on GWO to identify the pantograph arc. Then, the contribution rate of each feature

value was calculated according to the current data state obtained from the pantograph experi-

ment. The feature value data with a high contribution rate functioned on the training samples

for learning and recognition via the classifier optimized by GWO. The results showed that

GWO could quickly and accurately identify the pantograph arc. The obtained classification

model was more accurate than the commonly used Genetic Algorithm (GA) and Particle

Swarm Optimization (PSO) algorithm [35]. Almomani (2020) proposed a feature selection

model for NIDS. The model was based on PSO, GWO, Firefly Algorithm (FFA), and GA, aim-

ing to improve NIDS performance. It used GA, PSO, GWO, and FFA to deploy wrapper-based

methods for selection. Anaconda Python Open Source was used to implement its functions.

The proposed feature selection model could effectively identify and discover computer net-

work attacks [36]. The above works prove that GWO has been widely applied to solve the engi-

neering problems, especially in fault identification and processing.

3. Model construction

3.1 Support vector machine

SVM is a supervised learning model for analyzing data in classification and regression analysis

in machine learning. SVM is based on the theory of statistical learning knowledge, which can

analyze data, classify the samples, and process the nonlinear problems effectively [37]. Essen-

tially, SVM aims to find an optimal classification hyperplane from multiple classification

planes. Specifically, the structure of the SVM is shown in Fig 3. The two dashed lines represent

the plane supported by the points closest to the optimal classification surface in the samples of
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the two classes, the red line represents the optimal classification hyperplane, and the data sam-

ples on these dashed lines are support vectors [38].

In Fig 4, the yellow and blue symbols represent two different types of samples, provided

that the two types of samples are linearly separable. The sample set to be classified is {xi, yi},
i = 1, 2, . . .n, yi 2 {−1, +1}, xi 2 Rd; yi is the class label number of sample xi, and the value is [-1,

Fig 3. Schematic diagram of SVM principles.

https://doi.org/10.1371/journal.pone.0248515.g003

Fig 4. Mathematical expression of SVM.

https://doi.org/10.1371/journal.pone.0248515.g004
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+1]; the sample is a d-dimensional vector. SVM algorithm aims to find a straight line to sepa-

rate the two parts and maximize the shortest distance between the plane and the two samples.

The function of the hyperplane is denoted as f (x), and it is calculated as:

f ðxÞ ¼ oTxþ b ð1Þ

In (1), ω represents the effective distance from the hyperplane to the sample, T is the coordi-

nate of the support vector sample point, and b is the intercept. If f (x) is greater than 0, the sam-

ple point is above the hyperplane, indicating that the sample point is positive, and the label

value is +1; if f (x) is less than 0, the sample point is below the hyperplane, indicating that the

sample point is negative, and the label value is -1; if f (x) is 0, the sample point is above the

hyperplane. The geometric distance between the sample point and the hyperplane is calculated

as follows.

t ¼
joTxþ bj
kok

ð2Þ

In (2), τ is the geometric distance of each sample point on the hyperplane. The algorithm

aims to find the optimal hyperplane. Hence, the distance between the nearest sample of the

dividing line and the dividing line should be as far as possible. If the sample is (xk, yk), the

objective function with constraints and optimization can be obtained.

yiðo
Txi þ bÞ
kok

�
ykðo

Txk þ bÞ
kok

; i ¼ 1; . . . n ð3Þ

maxo; b
ykðo

Txk þ bÞ
kok

ð4Þ

In (3) and (4), yi is the distance from point i to the y-axis, and yk is the distance from point k
to the y-axis. If the nearest point on the hyperplane satisfies |f(x)| = 1, the mean distance to the

hyperplane will be τ = 1/||ω||; hence, the classification distance between the two class samples

is τ = 2/||ω||, and the exact classification function values are:

oTxk þ b � þ1; y ¼ þ1

oTxk þ b � � 1; y ¼ � 1

(

ð5Þ

The expression of learning objective is changed into a mathematical form:

max
1

kok
ð6Þ

s:t:yiðo
Txi þ bÞ � 1; i ¼ 1; 2 . . . n ð7Þ

In (6) and (7), s.t. represents the constraint condition. If the optimal plane satisfies yi(ωT xi
+ b)� 1, i = 1, 2. . .n, the objective function 1/||ω|| obtains the maximum value equivalent to
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the minimum value. Then, the original analysis process can be changed into:

min
1

2
kok

2
ð8Þ

s:t:yiðo
Txi þ bÞ � 1; i ¼ 1; 2 . . . n ð9Þ

The above equations show that under the constraint of inequality, the original problem can

be transformed into a dual problem using Lagrange through mathematical analysis; that is,

into an equality constraint problem. After the Lagrangian transformation changes it into a

dual problem, the optimal ||ω|| is searched. Once the constraints are satisfied, the dual problem

becomes a set of α to maximize the objective function. Hence, the original problem is trans-

formed from an inequality problem to an equality problem. If a set of new samples needs to be

predicted for class labels, the following equations are applied.

f ðxÞ ¼ sgn
�
Xn

i¼1

a� ixiyiðx � xiÞ þ b�
�

ð10Þ

o� ¼
Xn

i¼1

a� ixiyi; b
� ¼ �

1

2
o� xi þ yið Þ ð11Þ

In actual situations, a penalty factor parameter c is introduced for nonlinear problems,

whose expression is:

min
kok

2

2
þ C

Xn

i¼1

zi ð12Þ

s:t:
yiðo � xi þ bÞ � 1 � zi

zi > 0
; i ¼ 1; 2; . . . n

(

ð13Þ

In (12) and (13), zi represents the slack variable, which represents the allowable data point

to deviate from the interval,
Xn

i¼1

zi represents the overall possibility of training errors. Parame-

ter c can control the tolerance of the sample training credibility; the larger the c, the greater the

importance of the sample. The feature space product can be calculated directly by introducing

the kernel function and using the original space’s input data. The data are then mapped to the

high dimension through the Lagrangian transformation and the kernel function and classified

effectively by adjusting the penalty factor parameters. Finally, the classification results are

obtained. K represents the coefficient, and the specific calculation is as follows:

f ðxÞ ¼ sgn
Xn

i¼1

a� iyiKðxi; yiÞ þ b�
 !

ð14Þ

3.2 Gray wolf optimizer

GWO is a new meta-heuristic optimization algorithm with fast convergence speed and high

optimization accuracy. Hence, it has excellent reference value in the application. GWO algo-

rithm simulates the social organization leadership mechanism of the grey wolf packs. The

group hunting behaviors, including searching for prey, surrounding prey, and hunting, can
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help obtain the optimal solution position via continuous iterative optimization [39]. The

detailed principles are shown in Fig 5. There are three superior search individuals in the wolf

packs, which are jointly responsible for specifying the movement direction of the inferior ω.

Then, ω feeds back the information to the superior search individuals. Once the maximum

number of iterations is met, the position of α is the optimal solution, the position of β is the

sub-optimal solution, and the position of δ is the sub-sub-optimal solution [40]. GWO algo-

rithm imitates the behaviors of wolves via three steps: surrounding, hunting, and attacking.

The particular process is as follows:

1. Surrounding prey: the population will find the best route for hunting by surrounding the

prey during optimizing. The following equations can determine the target position and the

optimal population position in the surrounding phase:

~D ¼ j~C � ~XpðtÞ � ~XðtÞj ð15Þ

~Xðt þ 1Þ ¼ ~XpðtÞ � ~A � ~D ð16Þ

In (15) and (16), t represents the current iteration number, ~A � ~D is the coefficient vector,

~Xp is the optimal target vector (the position of the prey), ~XðtÞ is the current position vector

of a searching individual, and ~Xðt þ 1Þ is the next moving direction vector. ~A and~C can be

Fig 5. Structure of GWO.

https://doi.org/10.1371/journal.pone.0248515.g005
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represented by:

~aðtÞ ¼ 2ð1 � t=MÞ ð17Þ

~A ¼ 2~a �~r1 � ~a ð18Þ

~C ¼ 2~r2 ð19Þ

In (17)–(19), M is the maximum number of iterations,~a decreases linearly to 0 as the num-

ber of iterations t increases,~r1 and~r2 are random vectors between [0,1]. Therefore, the

points around the optimal solution are searched by adjusting the size of the coefficient vec-

tor ~A and~C. Furthermore, the local optimization ability of the algorithm is guaranteed. The

optimization population can find all the offensive target paths while ensuring the algo-

rithm’s global searchability.

2. Hunting and attacking: when hunting and attacking prey, according to the signal sent by α,

β, δ, ω will move and determine whether it is close to the target or far away. This process

can be expressed as:

~Da ¼ j
~C1 �

~Xa �
~Xj

~Db ¼ j
~C2 �

~Xb �
~X j

~Dd ¼ j
~C3 �

~Xd �
~Xj

8
>><

>>:

ð20Þ

~X1 ¼
~Xa �

~A1
~Da

~X2 ¼
~Xb �

~A2
~Db

~X3 ¼
~Xd �

~A3
~Dd

8
>><

>>:

ð21Þ

~Xðt þ 1Þ ¼ ð~X1 þ
~X2 þ

~X3Þ=3 ð22Þ

In (20), (21), and (22), ~Da ;
~Db ;

~Dd respectively, represents the direction vector between α, β,

δ and ω, and ~X1 ;
~X2 ;

~X3 respectively represents the direction vector that α, β, δ determines the

next move. GWO algorithm realizes the modeling of the entire process of iterative optimiza-

tion based on the wolves’ hierarchical division of labor system and wolf packs’ hunting behav-

iors. GWO algorithm is applied to the parameter optimization of the FD and recognition

network of the cutting control system, optimizing the parameters c and g of the SVM training

network, thereby improving the accuracy and efficiency of fault classification and recognition.

3.3 GWO-SVM-based fault detection model

An FD model is proposed based on GWO-SVM. The model’s core is optimizing the penalty

coefficient c and the kernel function radius g of the SVM through the GWO algorithm. The

optimal combination of c and are chosen to improve the classification accuracy and speed of

SVM. The structure of the GWO algorithm is simple and easy to understand, which can be
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realized by setting a few parameters. GWO algorithm has a significant advantage in finding

the optimal solution of SVM. The particular fault identification and the prediction model is

shown in Fig 6. First, a dataset is prepared. After data normalization, the dataset is divided into

a test set and a training set. After SVM processes the training set, it builds a fault prediction

model based on the initial c and g, in an effort to minimize the error rate. Second, the positions

are respectively updated according to the relations among the objective function’s values and

the objective functions of α, β, and δ wolves. The positions are then divided into different lev-

els, i.e., α, β, and δ, according to the fitness value. New Xα, Xβ, and Xδ are determined accord-

ing to the updated optimal objective function values. Finally, the GWO algorithm optimizes

the data parameters that do not meet the requirements, and the best parameters c and g are uti-

lized for constructing the prediction model, predicting the unknown data sample, and analyz-

ing the test results.

3.4 Model parameters and training

1. Model parameter determination: the AlexNet model is chosen as the feature extraction

model. AlexNet includes five convolutional layers, three fully-connected layers, and a Soft-

max layer at the bottom. A Local Response Normalization (LRN) layer comes after the first

and second convolutional layers. The largest convergence layer appears in the two LRN lay-

ers and the last convolutional layer. The Rectified Linear Unit (ReLU) activation function is

used at the end of each layer. Each state’s data is converted into a spectrogram. The trained

Fig 6. Automatic detection and recognition model of cutting control faults based on GWO-SVM algorithm.

https://doi.org/10.1371/journal.pone.0248515.g006
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AlexNet model is adopted to extract the features of the signal scale spectrogram. The feature

extraction layer is fc7, and the number of iterations is 200. The AlexNet model can directly

mine fault features from the original data, possessing a more vital ability to process high-

dimensional and nonlinear data. Hence, it can clearly distinguish the health status of leather

cutting and provide better support for the classification model. The performance parame-

ters for different models are shown in Table 1.

2. Model training: the cross-validation method is adopted. Generally, the data are divided into

three sets randomly: the training set, the validation set, and the test set. The training set is

utilized for model training. The validation set is applied to evaluate the prediction of the

model and select the model parameters. Finally, the models are run on the test set to decide

which model to use and the corresponding parameters. The experimental data are the oper-

ating data of the control system of a leather cutting company for 5 years. The training set,

test set, and verification set account for 7:2:1 [41]. First, the operational data are extracted

and scaled to fall into a small interval. The unit limit of the data is removed, and the data

are converted into a dimensionless pure value, convenient for indicators of different units

or magnitudes to be compared and weighted. Then the data are normalized, and the origi-

nal data are linearly transformed so that the result falls into the [0,1] interval, where max is

the maximum value of the sample data, and min is the minimum value of the sample data.

The training sample set trains the SVM, the test sample set tests the trained SVM, and

whether the diagnosis is accurate. Finally, the failure can be automatically detected by the

SVM network that reaches the requirements. In the experiments, 500 normal samples,

1,000 inner ring failure samples, 1,000 outer ring failure samples, and 1,000 rolling element

failure samples are selected to form the training set, totaling 3,500 samples. In the mean-

time, 1,000 samples are selected to form the test sample set, 500 samples are the validation

set. All experiments perform 10 times of diagnosis, each failure analysis is independently

completed. Each diagnosis repeats three experiments, and the average value is taken as the

final result [42].

3.5 Model simulation and performance text

1. Model simulation: the hardware is: Intel(R) Core(TM) i5-8300H 2.300 GHz, 8 GB internal

memory, 64-bit operating system; the software is MATLAB R2019a. The details are shown

in Table 2.

Table 1. Performance parameters for different models.

Model/Parameter SVM CV-SVM GA-SVM PSO-SVM GWO-SVM CNN-SVM GA PSO

Penalty coefficient c 10^2 10^2 10^2 10^2 10^2 10^2 10^2 10^2

Kernel function Linear kernel Linear kernel Linear kernel Linear kernel Linear kernel Linear kernel Linear kernel Linear kernel

Kernel function radius g 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Group size - 20~100 20~100 20~100 20~100 20~100 20~100 20~100

Number of iterations 200 200 200 200 200 200 200 200

Learning factors C1 and C2 - - - 2 - - 2 -

Convolution kernel size - - - - 5x3 3x3,5x5 - -

Number of convolution kernels - - - - - 2 - -

Crossover rate - - 0.5 - - - 0.5 -

Mutation rate - - 0.06 - - - 0.06 -

Inertia weight - - - 0.9 - - - 0.9

https://doi.org/10.1371/journal.pone.0248515.t001
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2. Performance test: the proposed GWO-SVM model is compared with traditional SVM,

OpenCV (CV), GA [43], PSO [44], Convolution Neural Network (CNN), and GWO. The

optimal algorithm model optimizes the penalty coefficient c of the SVM and the radius g of

the kernel function, thereby comparing the fitness curves of the obtained classification

models for comparative experiments. Accuracy (Acc), Precision (Pre), Recall (Rec), and F1

are criteria for evaluating the model performance [45]. The details are shown in the follow-

ing equations:

Acc ¼
P1 þ P2

P1 þ P2 þ P3 þ P4

ð23Þ

Pr e ¼
P1

P1 þ P2

ð24Þ

Re call ¼
P2

P2 þ P4

ð25Þ

F1 ¼
2�Pr e�Re c
Pr eþ Re c

ð26Þ

In (23)–(26), P1 is the number of faults correctly identified by this model, P2 is the number

of non-faults correctly identified by this model, P3 is the number of unrecognized faults,

and P4 is the number of unrecognized non-faults.

3. Statistical analysis: The data obtained are processed using SPSS 24.0 (SPSS Inc., Chicago,

Illinois, USA) on the Windows platform. Continuous variables with normal distribution

are expressed as mean ± standard deviation (SD), and non-normal variables are reported as

median (interquartile range). The average of two continuous normally distributed variables

is compared through the independent sample T-test, and it is considered significant when

P<0.05. Data are visualized using Origin 2019 64 Bit and Visio 2013 [46].

4. Results and analyses

4.1 Comparative analysis of algorithm performance

Tables 3–6 demonstrate the performance comparison of different algorithms under different

detection number sets. In terms of Pre and Rec of fault prediction, the GWO-SVM model

presents the best performance, whose Pre can reach 92.69%. However, the Acc of the

GWO-SVM model is not excellent. A possible reason is that the Acc indicator belongs to

mixed calculation; for the model with less number of tests, the performance difference is

Table 2. Experimental environment.

Simulation Environment Parameters

Computer system version Ubuntu 14.04 OS

GPU graphics card model Intel(R) Core(TM) i5-8300H

Video memory 11G

RAM 16G

Programming language Python 3.6.3

https://doi.org/10.1371/journal.pone.0248515.t002
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Table 3. Accuracy results of different algorithms under the detection number sets.

ACC (%) SVM CV-SVM GA-SVM PSO-SVM GWO-SVM CNN-SVM

1 0.726782 0.871621 0.884682 0.885907 0.927351 0.873309

2 0.785154 0.884181 0.880707 0.889129 0.929161 0.882132

3 0.794099 0.871287 0.883244 0.883678 0.873954 0.870088

4 0.758205 0.882511 0.884272 0.872653 0.906775 0.885144

5 0.823153 0.873959 0.885622 0.88482 0.884799 0.883401

6 0.786202 0.88515 0.877553 0.875782 0.871252 0.878924

7 0.751107 0.868417 0.871228 0.88173 0.904868 0.882008

8 0.777529 0.888537 0.880383 0.883542 0.877969 0.884103

9 0.81695 0.874892 0.88404 0.883543 0.880639 0.88228

10 0.82924 0.866494 0.871463 0.873772 0.915982 0.882608

Average value 0.784842 0.876705 0.880319 0.881455 0.897275 0.8804

https://doi.org/10.1371/journal.pone.0248515.t003

Table 4. Precision results of different algorithms under the detection number sets.

Pre (%) SVM CV-SVM GA-SVM PSO-SVM GWO-SVM CNN-SVM

1 0.808324 0.866346 0.874321 0.860915 0.902109 0.863094

2 0.801351 0.864088 0.866996 0.864134 0.929002 0.872406

3 0.785509 0.876461 0.87114 0.86162 0.91477 0.862436

4 0.805348 0.86477 0.8637 0.873317 0.922296 0.870137

5 0.789317 0.877593 0.874373 0.861823 0.926976 0.878288

6 0.766259 0.878374 0.867307 0.879116 0.925773 0.867187

7 0.794223 0.871204 0.867427 0.861411 0.91091 0.864729

8 0.76695 0.86552 0.864569 0.879743 0.916905 0.860504

9 0.784628 0.871181 0.871995 0.871438 0.902054 0.862811

10 0.795072 0.873138 0.875402 0.864881 0.923252 0.872001

Average value 0.789698 0.870867 0.869723 0.86784 0.917405 0.867359

https://doi.org/10.1371/journal.pone.0248515.t004

Table 5. Recall results of different algorithms under the detection number sets.

Rec (%) SVM CV-SVM GA-SVM PSO-SVM GWO-SVM CNN-SVM

1 0.793634 0.870106 0.875302 0.86952 0.925487 0.863733

2 0.755136 0.863404 0.872078 0.877887 0.927678 0.864295

3 0.734558 0.872757 0.869155 0.872547 0.903599 0.87424

4 0.768872 0.867445 0.872721 0.876091 0.914801 0.873173

5 0.824158 0.866017 0.871584 0.872734 0.91576 0.877635

6 0.812635 0.870826 0.86746 0.870054 0.906597 0.866932

7 0.780835 0.862633 0.86219 0.863347 0.911978 0.875639

8 0.758155 0.877469 0.864685 0.87726 0.926811 0.876715

9 0.827515 0.86042 0.871679 0.878606 0.904712 0.861555

10 0.793496 0.877836 0.872376 0.874123 0.916074 0.868725

Average value 0.784899 0.868891 0.869923 0.873217 0.91535 0.870264

https://doi.org/10.1371/journal.pone.0248515.t005
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inferior. The performance of CNN-SVM ranks second, with the highest Pre reaching 87.24%.

Compared with GA, PSO, and CV, the CNN network has multi-threaded data analysis capabil-

ities; as the number of data increases, the model Acc is continuously improving. The above

results prove that the proposed GWO-SVM algorithm shows better performance in fault

prediction.

4.2 Determination of optimal parameters

Table 7 indicates the result of optimizing different c and g values under the GWO-SVM

model. When the c value is 25, the Acc of the model reaches 96%, and the classification

requires at least 337s. When the g value is 0.2, the model Acc reaches 95%, and the classifica-

tion costs 352s. According to the above results, the subsequent experiments are conducted

under the conditions of c = 25 and g = 0.2.

Table 7. Parameter optimization results under the GWO-SVM model.

Parameters Change value ACC (%) Time (s)

c 10 0.85 435

15 0.86 424

20 0.9 406

25 0.96 337

30 0.95 387

35 0.93 392

40 0.92 410

g 0.01 0.93 403

0.02 0.95 352

0.03 0.89 395

0.04 0.86 410

0.05 0.88 424

0.06 0.85 436

0.07 0.8 445

https://doi.org/10.1371/journal.pone.0248515.t007

Table 6. F1-score results of different algorithms under the detection number sets.

F1-score SVM CV-SVM GA-SVM PSO-SVM GWO-SVM CNN-SVM

1 0.800911 0.868222 0.874811 0.865196 0.913649 0.863413

2 0.777558 0.863746 0.869529 0.870956 0.92834 0.868332

3 0.75918 0.874605 0.870146 0.867049 0.90915 0.868298

4 0.786687 0.866106 0.868187 0.874702 0.918533 0.871653

5 0.806361 0.871766 0.872976 0.867244 0.921334 0.877962

6 0.788766 0.874583 0.867384 0.874561 0.916084 0.867059

7 0.787472 0.866897 0.864801 0.862378 0.911443 0.87015

8 0.762527 0.871454 0.864627 0.8785 0.921831 0.868534

9 0.805501 0.865767 0.871837 0.875008 0.903381 0.862183

10 0.794283 0.875481 0.873886 0.869477 0.919649 0.87036

Average value 0.786925 0.869863 0.869818 0.870507 0.916339 0.868794

https://doi.org/10.1371/journal.pone.0248515.t006
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4.3 Comparison with traditional models

As shown in Tables 8 and 9, the Case Western Reserve University electrical engineering exper-

imental dataset is utilized to test the traditional model’s fault handling results and the proposed

GWO-SVM under different datasets. In terms of model Acc in fault prediction, the

GWO-SVM model is significantly better than other traditional models, with the highest aver-

age Acc reaching 99.24%, which is 15.6% higher than that of the traditional models. The num-

ber of different fault predictions is compared with the time to obtain specific model processing

efficiency. The average processing efficiency of the GWO-SVM model is 0.8667, while that of

the traditional models is 0.2864; the former is 66.96% higher than the latter. The above results

prove the effectiveness of the proposed GWO-SVM model.

4.4 Model performance verification and computational complexity

The Wilcoxon method tests the model. The results are summarized in Tables 10–14. The

obtained results are consistent with the results of Section 4.1 above. There are significant dif-

ferences between the SVM algorithm and other algorithms. In terms of the model accuracy,

there is no significant difference between the GWO-SVM and CNN-SVM algorithms (p

>0.05). According to accuracy, recall, and F1 results, the proposed algorithm is significantly

better than other algorithms. There are significant differences between the proposed algorithm

and other algorithms (p<0.001). The traditional algorithms and the proposed algorithm are

tested as well, revealing significant differences. Hence, the proposed algorithm has obvious

advantages in performance.

Table 9. Fault handling efficiency results compared with traditional models.

Traditional method (times/min) GWO-SVM (times/min)

100 0.18978 0.292738

200 0.299965 0.560678

300 0.299528 0.756941

400 0.326211 0.991022

500 0.350044 1.191019

600 0.253022 1.407801

Average value 0.286425 0.8667

https://doi.org/10.1371/journal.pone.0248515.t009

Table 8. Accuracy results compared with traditional models.

Traditional method (%) GWO-SVM (%)

100 0.8635 0.9836

200 0.8534 0.9924

300 0.8247 0.9815

400 0.8351 0.9935

500 0.8016 0.9814

600 0.8219 0.9925

Average value 0.833367 0.987483

https://doi.org/10.1371/journal.pone.0248515.t008
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Table 11. Computational complexity test results for precision of different models.

Pre (%) SVM CV-SVM GA-SVM PSO-SVM GWO-SVM CNN-SVM

1 0.80832 0.86635 0.87432 0.86092 0.90211 0.86309

2 0.80135 0.86409 0.867 0.86413 0.929 0.87241

3 0.78551 0.87646 0.87114 0.86162 0.91477 0.86244

4 0.80535 0.86477 0.8637 0.87332 0.9223 0.87014

5 0.78932 0.87759 0.87437 0.86182 0.92698 0.87829

6 0.76626 0.87837 0.86731 0.87912 0.92577 0.86719

7 0.79422 0.8712 0.86743 0.86141 0.91091 0.86473

8 0.76695 0.86552 0.86457 0.87974 0.91691 0.8605

9 0.78463 0.87118 0.872 0.87144 0.90205 0.86281

10 0.79507 0.87314 0.8754 0.86488 0.92325 0.872

Average value 0.789698 0.870867 0.869724 0.86784 0.917405 0.86736

https://doi.org/10.1371/journal.pone.0248515.t011

Table 12. Computational complexity test results for recall of different models.

Rec (%) SVM CV-SVM GA-SVM PSO-SVM GWO-SVM CNN-SVM

1 0.79363 0.87011 0.8753 0.86952 0.92549 0.86373

2 0.75514 0.8634 0.87208 0.87789 0.92768 0.8643

3 0.73456 0.87276 0.86916 0.87255 0.9036 0.87424

4 0.76887 0.86745 0.87272 0.87609 0.9148 0.87317

5 0.82416 0.86602 0.87158 0.87273 0.91576 0.87764

6 0.81264 0.87083 0.86746 0.87005 0.9066 0.86693

7 0.78084 0.86263 0.86219 0.86335 0.91198 0.87564

8 0.75816 0.87747 0.86469 0.87726 0.92681 0.87672

9 0.82752 0.86042 0.87168 0.87861 0.90471 0.86156

10 0.7935 0.87784 0.87238 0.87412 0.91607 0.86873

Average value 0.784902 0.868893 0.869924 0.873217 0.91535 0.870266

https://doi.org/10.1371/journal.pone.0248515.t012

Table 10. Computational complexity test results for accuracy of different models.

ACC (%) SVM CV-SVM GA-SVM PSO-SVM GWO-SVM CNN-SVM

1 0.72678 0.87162 0.88468 0.88591 0.92735 0.87331

2 0.78515 0.88418 0.88071 0.88913 0.92916 0.88213

3 0.7941 0.87129 0.88324 0.88368 0.87395 0.87009

4 0.75821 0.88251 0.88427 0.87265 0.90678 0.88514

5 0.82315 0.87396 0.88562 0.88482 0.8848 0.8834

6 0.7862 0.88515 0.87755 0.87578 0.87125 0.87892

7 0.75111 0.86842 0.87123 0.88173 0.90487 0.88201

8 0.77753 0.88854 0.88038 0.88354 0.87797 0.8841

9 0.81695 0.87489 0.88404 0.88354 0.88064 0.88228

10 0.82924 0.86649 0.87146 0.87377 0.91598 0.88261

Average value 0.784842 0.876705 0.880318 0.881455 0.897275 0.880399

https://doi.org/10.1371/journal.pone.0248515.t010
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The model proposed is compared with the state of the art methods. Its complexity is

expressed as the algorithm processing efficiency per unit time. The results are shown in

Table 15. Under the fixed experimental conditions, the traditional feature extraction methods

and deep feature extraction methods are compared. Feature extraction (CNN) by comparing

wavelet packet feature extraction and deep learning shows that using AlexNet for deep feature

extraction, the obtained features are more obvious, making the classification effect more excel-

lent. Besides, the optimization time is compared as well. Using deep learning for feature extrac-

tion requires less optimization time than traditional methods. Moreover, whether it is

Table 15. Failure processing efficiency results compared with other models.

Accuracy/% Classification time/s Algorithm complexity

Wavelet packet-GA-SVM [19] 83.25 2415.94 0.034458637

Wavelet packet-PSO-SVM [20] 89.25 3860.78 0.02311709

Wavelet packet-GWO-SVM [21] 89.25 1249.86 0.071407998

CNN-GA-SVM [22] 97.29 435.13 0.223588353

CNN-PSO-SVM [23] 99.26 681.00 0.145756241

GWO-SVM 99.27 337.2 0.294395018

https://doi.org/10.1371/journal.pone.0248515.t015

Table 14. Fault handling efficiency compared with traditional models.

Traditional method (Times/min) GWO-SVM (Times/min)

100 0.8635 0.9836

200 0.8534 0.9924

300 0.8247 0.9815

400 0.8351 0.9935

500 0.8016 0.9814

600 0.8219 0.9925

Average value 0.833367 0.987483

https://doi.org/10.1371/journal.pone.0248515.t014

Table 13. Computational complexity test results for F1-score of different models.

F1-score SVM CV-SVM GA-SVM PSO-SVM GWO-SVM CNN-SVM

1 0.80091 0.86822 0.87481 0.8652 0.91365 0.86341

2 0.77756 0.86375 0.86953 0.87096 0.92834 0.86833

3 0.75918 0.87461 0.87015 0.86705 0.90915 0.8683

4 0.78669 0.86611 0.86819 0.8747 0.91853 0.87165

5 0.80636 0.87177 0.87298 0.86724 0.92133 0.87796

6 0.78877 0.87458 0.86738 0.87456 0.91608 0.86706

7 0.79428 0.87548 0.87389 0.86948 0.91965 0.87036

8 0.76253 0.87145 0.86463 0.8785 0.92183 0.86853

9 0.8055 0.86577 0.87184 0.87501 0.90338 0.86218

10 0.79428 0.87548 0.87389 0.86948 0.91965 0.87036

Average value 0.787606 0.870722 0.870729 0.871218 0.917159 0.868814

https://doi.org/10.1371/journal.pone.0248515.t013
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traditional feature extraction or deep extraction, the GWO-SVM model is far superior to the

PSO-SVM model and the GA-SVM model in terms of training time and testing time, which

improves the speed of model classification. In terms of the classification accuracy, the features

extracted by the deep learning method are more precise and effective, so that more useful fea-

tures can be input into the classifier, making the classification accuracy higher. Also, the classi-

fication accuracy of the GWO-SVM model is higher than the PSO-SVM model and the

GA-SVM model. According to Table 10, the recognition rate of the GWO-SVM model is

greatly improved with the increase in the number of diagnoses. The optimization time and

diagnostic accuracy are the key factors to measure the diagnosis model. Compared with the

state of the art algorithms, the performance of the proposed algorithm model in complexity is

0.29439, which is better than other models. Therefore, the GWO-SVM model has strong prac-

ticability in rolling machinery FD.

5. Discussion

An FD method for leather cutting is proposed based on deep learning feature extraction and

GWO-SVM. The signal features can be better obtained by converting the signal into a scale

spectrum and using the SVM network for feature extraction. The GWO algorithm is employed

to optimize SVM; in this way, the adjustment parameters are reduced, the optimization speed

is fast, and the classification accuracy is high. After parameter optimization, this method can

significantly improve the accuracy of FD. This is also verified in the study of Fu et al. (2019), in

which they proposed an FD method for rotating machinery based on the blind parameter

identification of the MAR model and the mutation hybrid GWO-SCA optimization; the actual

application and comparative analysis proved the effectiveness and superiority of this method

[47]. The SVM algorithm is based on the statistical learning theory and the principle of struc-

tural risk minimization. It minimizes the confidence risk by fixing the empirical risk and maps

the input space to the high-dimensional inner product space, effectively avoiding the

“dimensionality disaster.” It has significant advantages in solving small sample sets and nonlin-

ear high-dimensional pattern recognition problems, which has received widespread attention

in the field of FD. The simulation results also show that compared with the traditional algo-

rithms, the average accuracy rate of the proposed algorithm is increased by 15.62%, which has

also been verified in previous reports. Yan and Jia (2018) proposed an optimization-based sup-

port Multi-domain feature fault classification algorithm of SVM; this algorithm included three

stages: multi-domain feature extraction, feature selection, and feature recognition; finally, the

experimental analysis found that the proposed method could achieve higher diagnosis accu-

racy under different working conditions and was better than the traditional methods men-

tioned above and published in other literature [48].

The structure of the GWO algorithm is simple and easy to understand, which can be real-

ized by setting a few parameters. GWO algorithm has a significant advantage in finding the

optimal SVM solution, which is also proved in the above simulation results. Using deep learn-

ing for feature extraction requires less optimization time than traditional feature extraction.

Moreover, whether it is traditional feature extraction or deep extraction, the speed of the

GWO-SVM model is far superior to the PSO-SVM model and the GA-SVM model in terms of

training time and test time, which improves the speed of model classification. In terms of clas-

sification accuracy, the features extracted by deep learning features are more apparent and sig-

nificant so that more useful features can be input into the classifier, making the classification

accuracy higher. Besides, the classification accuracy of the GWO-SVM model is higher than

the PSO-SVM model and the GA-SVM model. As the number of diagnoses increases, the rec-

ognition rate of the GWO-SVM model is greatly improved. The optimization time and
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diagnostic accuracy are the key factors to measure the diagnosis model. Hence, the

GWO-SVM model has strong practicability in the FD of leather cutting. Dong et al. (2019)

combined the advantages of TSMWPE and proposed an intelligent FD method for rolling

bearings combined with GWO-SVM. The FD method was applied to the experimental data

analysis of two rolling bearings. The results showed that the method could accurately diagnose

the fault category and severity of rolling bearings, and the corresponding recognition rate was

higher than the current comparison method [49], which is consistent with the above results.

On the one hand, nature, degree, class, location, cause, and development trend of the fault can

be determined, thereby providing an accurate reference for the following forecasting, control,

adjustment, and maintenance. On the other hand, experiences can be accumulated for future

FD of the cutting machines, and appropriate solutions can be chosen for different fault types

and degrees.

Feature extraction using deep learning requires less optimization time than traditional fea-

ture extraction. Moreover, whether it is traditional feature extraction or deep extraction, the

speed of the GWO-SVM model is far superior to the PSO-SVM model and the GA-SVM

model in terms of training time and test time, which improves the speed of model classifica-

tion. In terms of classification accuracy, the features extracted by deep learning features are

more apparent and significant so that more useful features can be input into the classifier,

making the classification accuracy higher. Besides, the classification accuracy of the

GWO-SVM model is higher than the PSO-SVM model and the GA-SVM model. As the num-

ber of diagnoses increases, the recognition rate of the GWO-SVM model is significantly

improved. The optimization time and diagnostic accuracy are the key factors to measure the

diagnosis model. Hence, the GWO-SVM model has strong practicability in the FD of leather

cutting. When the Gaussian kernel’s radius is minimal, over-fitting will occur due to the classi-

fier’s over-reliance on training samples, resulting in poor classification results. As Gaussian

kernel’s parameters increase, the algorithm’s performance gradually improves. Once the

parameter reaches a particular value, the classifier’s learning ability begins to deteriorate grad-

ually, and the error rate also increases. The reason is that the proposed algorithm is a down-

sampling algorithm, and the selected samples are representative. Therefore, SVM and GWO

algorithms have particular advantages and can well exert these advantages in dealing with

faults.

6. Conclusions

Problems in the current leather cutting system are analyzed deeply. A fault detection model is

constructed according to the principles of SVM. Then, the GWO algorithm parameters that

influence the recognition effect, i.e., the penalty factor parameter c and the kernel function

parameter g, are optimized. The model is trained by 5-year operational data. Afterward, it can

learn and recognize the feature vectors that characterize the fault mode. Finally, the experi-

mental results prove that the hybrid FD model using the GWO-SVM classification network

has a better recognition effect. Compared with other models, the GWO-SVM model has

higher cutting accuracy and more straightforward system operation, which can provide a theo-

retical basis for the process improvement of leather cutting enterprises. Although the model’s

accuracy is high, several problems are found, and some methods need improving. First, the

accuracy of fault pattern recognition is connected to selecting feature vectors and closely corre-

lated to the training network’s parameter settings. In the future, the method of network identi-

fication optimization can be improved to analyze and mine the data’s internal structure,

thereby improving FD’s identification efficiency and accuracy. Second, the operating condi-

tion database of all cutting sensing systems can be established. The control signals are
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collected, analyzed, judged, and diagnosed in real-time using the computer and other software

systems to monitor the cutting machines. These two aspects will be explored in-depth to

improve the fault detection models of cutting machines in the future.
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