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Abstract

Motivation: Automatic biomedical named entity recognition (BioNER) is a key task in biomedical

information extraction. For some time, state-of-the-art BioNER has been dominated by machine

learning methods, particularly conditional random fields (CRFs), with a recent focus on deep learn-

ing. However, recent work has suggested that the high performance of CRFs for BioNER may not

generalize to corpora other than the one it was trained on. In our analysis, we find that a popular

deep learning-based approach to BioNER, known as bidirectional long short-term memory

network-conditional random field (BiLSTM-CRF), is correspondingly poor at generalizing. To ad-

dress this, we evaluate three modifications of BiLSTM-CRF for BioNER to improve generalization:

improved regularization via variational dropout, transfer learning and multi-task learning.

Results: We measure the effect that each strategy has when training/testing on the same corpus

(‘in-corpus’ performance) and when training on one corpus and evaluating on another (‘out-of-cor-

pus’ performance), our measure of the model’s ability to generalize. We found that variational

dropout improves out-of-corpus performance by an average of 4.62%, transfer learning by 6.48%

and multi-task learning by 8.42%. The maximal increase we identified combines multi-task learning

and variational dropout, which boosts out-of-corpus performance by 10.75%. Furthermore, we

make available a new open-source tool, called Saber that implements our best BioNER models.

Availability and implementation: Source code for our biomedical IE tool is available at https://

github.com/BaderLab/saber. Corpora and other resources used in this study are available at https://

github.com/BaderLab/Towards-reliable-BioNER.

Contact: john.giorgi@utoronto.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

PubMed contains over 30 million publications and is growing rapidly.

Accurate, automated text mining tools are needed to maximize dis-

covery and unlock structured information from this massive volume

of text (Cohen and Hunter, 2008; Rzhetsky et al., 2009). Biomedical

named entity recognition (BioNER) is the task of identifying biomed-

ical named entities—such as genes and gene products, diseases, chemi-

cals and species—in raw text. Biomedical named entities have several

characteristics that make their recognition in text challenging (Zhou

et al., 2004), including the use of descriptive entity names (e.g. ‘nor-

mal thymic epithelial cells’) leading to ambiguous term boundaries,

and several spelling forms for the same entity (e.g. ‘N-acetylcysteine’,

‘N-acetyl-cysteine’ and ‘NAcetylCysteine’). Many solutions for reli-

able BioNER have been proposed (e.g. Del_eger et al., 2016; Kim

et al., 2004) and current state-of-the-art approaches employ a

domain-independent approach, based on deep learning and statistical

word embeddings, called bidirectional long short-term memory

network-conditional random field (BiLSTM-CRF; Habibi et al.,
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2017; Lample et al., 2016; Ma and Hovy, 2016) or modifications to

this approach [e.g. transfer learning (Giorgi and Bader, 2018) and

multi-task learning (Wang et al., 2018)].

While BiLSTM-CRF paired with pre-trained word embeddings as

inputs is a powerful approach to sequence labeling (Huang et al., 2015),

it has many trainable parameters which could lead to a reduction in gen-

eralizability. Here, we are concerned with the ability of a model to gen-

eralize from training on one corpus to testing on another for the same

biomedical entity. This simulates a real-world scenario where the model

is used to annotate text which is outside the corpus it was trained on,

but still within the biomedical domain. Generalization across biomedical

corpora appears to be a problem even for less-parameterized machine

learning methods. For example, Gimli, an open-source tool for BioNER

based on a CRF classifier, achieved an F1 score of 87.17% when trained

and tested on the GENETAG corpus (Campos et al., 2013a), but only a

45–55% F1 score when trained on the GENETAG corpus and tested on

the CRAFT corpus for genes and proteins (Campos et al., 2013b).

Galea et al. (2018) explore this further by demonstrating that perform-

ance of a CRF model for BioNER trained on individual corpora

decreases substantially for recognition of the same biomedical entity in

independent corpora. They conclude that bias in the available BioNER

evaluation corpora is partly to blame. In a simple orthographic

feature analysis (i.e. what does a word look like?), they find that features

which significantly predict biomedical named entities in one corpus (e.g.

number of digits or capital letters, text span length) are not necessarily

useful to predict those same entities in a different corpus. We need to ad-

dress this problem if BiLSTM-CRF models are to be useful in real-world

scenarios involving the large-scale annotation of diverse articles.

To address this challenge, we evaluate successful ideas from re-

cent work on BiLSTM-CRF models for BioNER (Giorgi and Bader,

2018; Habibi et al., 2017; Wang et al., 2018) and sequence labeling

with BiLSTM-CRFs in general (Reimers and Gurevych, 2017) and

propose several model-based strategies to improve generalization,

namely: additional regularization via variational dropout, transfer

learning and multi-task learning. We assessed the performance of

the model on the same corpus it was trained on (‘in-corpus’ perform-

ance) and when trained on one corpus and tested on another corpus

annotated for the same entity class (‘out-of-corpus’ performance).

All proposed strategies achieved an improvement in out-of-corpus

performance without degrading the average in-corpus performance.

The best improvement resulted from a combination of multi-task

learning and variational dropout, which boosts out-of-corpus per-

formance by 10.75%. We make available to the community a user-

friendly, open-source tool for BioNLP (‘Saber’) which incorporates

these successful model features (https://github.com/BaderLab/saber).

2 Materials and methods

We evaluated three modifications to a BiLSTM-CRF model’s archi-

tecture and training strategy aimed at improving generalization,

described briefly below (details in Supplementary Material). We use

the BiLSTM-CRF neural network architecture introduced by Lample

et al. (2016) as our baseline (BL) model (Supplementary Fig. S1).

2.1 Variational dropout
As neural networks have many parameters, model regularization is

critical for generalization performance. Traditionally, the ‘dropout’

technique, which randomly drops units during training, is used for

this purpose (Srivastava et al., 2014). Previous applications of

BiLSTM-CRF models for BioNER (Giorgi and Bader, 2018; Habibi

et al., 2017) have only applied dropout to the character-enhanced

word embeddings, the final inputs to the word-level BiLSTM layers,

as originally proposed by Lample et al. (2016). However, no regu-

larization technique is applied to the recurrent layers of the model,

which contain the majority of the model’s trainable parameters. Part

of the reason for this is likely that the standard dropout implementa-

tion is ineffective for regularizing recurrent connections, as it dis-

rupts the recurrent neural networks ability to retain long-term

dependencies (Bayer et al., 2013; Pachitariu and Sahani, 2013;

Zaremba et al., 2014). Variational dropout, where the same units

are dropped across multiple time steps (in our case, tokens of an in-

put sentence), has been proposed to overcome this (Gal and

Ghahramani, 2016) (Supplementary Fig. S2). We hypothesize that

regularizing the recurrent layers of the BiLSTM-CRF model via vari-

ational dropout will improve out-of-corpus generalization. To test

this, we compare the performance of two BiLSTM-CRF models for

the task of BioNER: one with the standard dropout strategy (Giorgi

and Bader, 2018; Habibi et al., 2017; Lample et al., 2016), and a se-

cond where variational dropout is additionally applied to the input,

recurrent and output connections of all recurrent layers.

2.2 Transfer learning
Transfer learning is a machine learning research problem which

aims to perform a task on a ‘target’ dataset using knowledge learned

from a ‘source’ dataset (Li, 2012; Pan and Yang, 2010; Weiss et al.,

2016). Ideally, transfer learning reduces training time on the target

dataset and the amount of labeled data needed to obtain high

performance. It can be used to improve model generalization by

training on very large, but usually lower quality silver standard

corpus (SSC), and then using the learned parameters to initialize

training on a smaller, manually generated and more reliable gold-

standard corpus (GSC). We recently showed that transfer learning

for BioNER (Giorgi and Bader, 2018) reduces the amount of labeled

data needed to achieve high performance from a BiLSTM-CRF

model, but we did not assess its impact on generalizability. As in

Giorgi and Bader (2018), here we apply transfer learning by first

training on a large, semi-automatically generated and lower quality

SSC and then transfer to continued training on a GSC. Like Giorgi

and Bader (2018), we use CALBC-SSC-III (Collaborative

Annotation of a Large Biomedical Corpus) as our SSC (Kafkas et al.,

2012; Rebholz-Schuhmann et al., 2010).

2.3 Multi-task learning
Multi-task learning (Caruana, 1993) is a machine learning method in

which multiple learning tasks are solved at the same time. The idea is

that by sharing representations between tasks, we can exploit com-

monalities, leading to improved learning efficiency, prediction accur-

acy and generalizability for the task-specific models, when compared

to training the models separately (Baxter et al., 2000; Caruana, 1997;

Thrun, 1996). Recently, Crichton et al. (2017) demonstrated that a

neural network multi-task convolutional neural network (CNN)

model outperforms a comparable single-task model, on average, for

the task of BioNER. Similarly, Wang et al. (2018) found that multi-

task learning outperforms single-task learning for BioNER with a

BiLSTM-CRF. Neither study explored the effect of multi-task learn-

ing on the model’s ability to generalize across corpora. We hypothe-

size that multi-task learning will improve across-corpora

generalization, potentially as a result of exposing the model to more

training data. To test this, we compare the performance of a single-

task and multi-task BiLSTM-CRF model for the task of BioNER.

Our multi-task model (MTM) builds off this BiLSTM-CRF architec-

ture. The MTM is a global model comprised of distinct, task-specific
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input and output layers, while the hidden layers (and their parameters)

are shared across all tasks (Supplementary Fig. S3). We follow Wang

et al. (2018) who found it best to share all hidden layers of the BiLSTM-

CRF model for BioNER. During training, all corpora are used to update

the parameters of the hidden layers of the model but the output ‘task’

layers are trained using only their corresponding corpus. In our multi-

task experiments, two corpora of the same entity type are used to train

the model. The ‘train’ corpus is used to train the output layer that is then

evaluated on the ‘test’ corpus. The ‘partner’ corpus contributes to hidden

layer training and is used to train its output layer, but the corresponding

output is not used for performance evaluation. During training, the

model optimizes the log-probability of the correct tag sequence for each

corpus. In practice, the model is trained in an end-to-end fashion.

3 Results

3.1 Establishing a baseline
To establish a baseline for each corpus used in this study, we performed

5-fold cross-validation using the hyperparameters presented in

Supplementary Material, Section 3.5. We use the dropout strategy pro-

posed by Lample et al. (2016) and employed by Habibi et al. (2017)

and Giorgi and Bader (2018), which applies a single dropout layer

(with a dropout rate of 0.3) to the character-enhanced word embed-

dings, which is the final input to the word-level BiLSTM layers. In

Supplementary Table S3, we present our baseline F1 scores along with

the best reported F1 scores from Habibi et al. (2017), Wang et al.

(2018) and Giorgi and Bader (2018), all of whom use nearly identical

BiLSTM-CRF models and the same word embeddings as used in this

study, and Crichton et al. (2017), who used a CNN-based model for

BioNER. Our baseline significantly outperforms previous results

obtained with BiLSTM-CRF models for 7 out of the 12 corpora eval-

uated and was comparable to the best method in the remaining 5 cases.

Since our architecture is nearly identical and paired with the same word

embeddings, this is likely due to our hyperparameter choice as presented

by Reimers and Gurevych (2017). For the remainder of the study, we

compare all performance scores to our baseline.

3.2 Can BiLSTM-CRF generalize for BioNER?
To test the out-of-corpus generalizability of a BiLSTM-CRF model for

BioNER, we trained the model on various corpora and evaluated its

performance on independent corpora annotated for the same entity

type. Even when corpora are annotated for the same entity type, they

may have different biases, given that they are typically independently

developed with different annotation guidelines. To control for the

expected drop in performance due to differing annotation guidelines,

we used a relaxed matching criterion in our evaluation (described in

Supplementary Material, Section 3.7). We found that, even with a

relaxed matching criterion, performance of the model as measured by

F1 score falls by an average of 31.16% when the model is evaluated on

a corpus other than the one it was trained on (Supplementary Table

S4). Out-of-corpus performance was worst for chemicals, falling by an

average of 33.45%, followed by genes/proteins (29.27%), species

(28.47%) and disease (26.09%). These results demonstrate the dra-

matically poor out-of-corpus generalizability of BiLSTM-CRF for

BioNER, even though the model obtains state-of-the-art results when

trained and tested on the same corpus (Supplementary Table S3).

3.3 Improved regularization
We next explored the effect that additional regularization of the

BiLSTM-CRF model via variational dropout (see Section 2.1) has on

both in-corpus and out-of-corpus performance. In Table 1, we compare

the in-corpus performance of the baseline (BL) BiLSTM-CRF model

employing a simple dropout strategy—proposed by Lample et al.

(2016) and used in previous applications of BiLSTM-CRF to BioNER

(Giorgi and Bader, 2018; Habibi et al., 2017)—compared to a model in

which variational dropout has been additionally applied to the recurrent

layers. We use dropout ratios of 0.3, 0.3 and 0.1 for the input, output

and recurrent connections, respectively. In Table 2, we measure the ef-

fect that variational dropout has on the generalizability of the model, by

comparing out-of-corpus performance to the baseline.

In general, variational dropout has a small positive impact on in-

corpus performance. For at least two corpora, S800 and BC2GM,

variational dropout leads to a large improvement in performance,

but only the latter case is statistically significant. For out-of-corpus

performance, variational dropout improves performance for nearly

every train/test corpus pair we evaluated, with an average F1 score

improvement of 4.62%. In some cases, variational dropout leads to

sizable improvements in out-of-corpus performance, such as when

the model was trained on S800 and tested on CRAFT (19.34%), or

trained on CRAFT and tested on BC5CDR (15.05%). In one case—

when trained to recognize chemicals on BC4CHEMD and tested on

BC5CDR—variational dropout reduced out-of-corpus performance,

although the performance difference was minimal (<0.5%). Thus,

variational dropout improves the out-of-corpus performance of the

model, without degrading in-corpus performance. Regularization of

the recurrent layers of a BiLSTM-CRF model via variational drop-

out, therefore, can improve model generalizability for BioNER.

3.4 Transfer learning
In this experiment, we measure the effect that a transfer learning

strategy for BiLSTM-CRF has on both in-corpus and out-of-corpus

performance. In Table 3, we compare the in-corpus performance of

the baseline BiLSTM-CRF model (BL) to that of the model trained

with transfer learning and in Table 4 we similarly compare out-of-

corpus performance of the two models. In the transfer learning set-

ting, the model was pre-trained on the CALBC-SSC-III corpus, which

is annotated for chemicals, diseases, species and genes/proteins, before

Table 1. In-corpus (IC) performance, measured by F1-score, of the

baseline (BL) BiLSTM-CRF compared to a BiLSTM-CRF with

variational dropout (VD)

BL VD

Entity Corpus Average r Average r

Chemicals BC4CHEMD 88.46 0.61 88.71 0.76

BC5CDR 92.82 0.80 93.08 0.82

CRAFT 84.98 1.98 85.22 1.37

Disease BC5CDR 84.49 0.33 85.10 0.56

NCBI-disease 87.01 1.17 87.60 1.50

Variome 85.75 2.83 85.69 3.81

Species CRAFT 96.28 2.21 96.38 2.26

Linnaeus 89.44 3.91 89.66 7.47

S800 72.75 2.42 77.39 4.17

Genes/proteins BC2GM 81.48 0.48 83.10** 0.50

CRAFT 84.46 6.08 86.09 5.19

JNLPBA 80.92 2.50 81.95 2.62

Note: In the BL model, dropout is applied only to the character-enhanced

word embeddings. In the VD model, dropout is additionally applied to the in-

put, recurrent and output connections of all LSTM layers. IC performance is

derived from 5-fold cross-validation, using exact matching criteria. Statistical

significance is measured through a two-tailed t-test. Bold, best scores, r,

standard deviation.

**Significantly different than the BL (P� 0.01).
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being trained on one of the 12 GSCs, each annotated for a single en-

tity class. The state of the optimizer is reset during this transfer, but

model weights for all layers beside the final CRF layer are retained

(see Section 2.2 and Supplementary Material, Section 3.5).

In general, transfer learning had a small positive effect on in-

corpus performance, boosting the average F1 score by �1%. In con-

trast, transfer learning had a large positive effect on out-of-corpus

performance, improving performance for nearly every train/test pair

we evaluated for an average improvement of 6.48%. In a handful of

cases, such as when the model was trained on the CRAFT corpus

and tested on the BC5CDR corpus, performance improved by over

10%. In a single case (i.e. when the model was trained on Variome

and tested on BC5CDR) transfer learning doubled out-of-corpus

performance over the baseline. Thus, the use of transfer learning

improves the generalizability of BiLSTM-CRF models for BioNER,

in some cases dramatically, while preserving in-corpus performance.

3.5 Multi-task learning
To assess the effect that a multi-task learning strategy for BiLSTM-

CRF has on both in-corpus and out-of-corpus performance, we

evaluate a model trained on all corpus pairs within an entity class.

Each model is simultaneously trained on a ‘train’ and ‘partner’ cor-

pus, each defined as a separate task, and a ‘test’ corpus is used to

evaluate performance on the ‘train’ task (see Section 2.3 and

Supplementary Material, Section 3.5). In Table 5 we compare the

in-corpus performance of the single-task, baseline BiLSTM-CRF

model, to that of the MTM. In Table 6 we similarly compare out-of-

corpus performance of the BL and MTM.

Multi-task learning, as applied here, appears to have little impact

on in-corpus performance. Average performance of the BL and the

Table 2. Out-of-corpus (OOC) performance, measured by F1 score,

of the baseline (BL) BiLSTM-CRF compared to a BiLSTM-CRF with

variational dropout (VD)

Entity Train Test BL VD DF1

Chemicals BC4CHEMD BC5CDR 90.90 90.61 �0.29

CRAFT 47.44 47.67 0.23

BC5CDR BC4CHEMD 71.81 72.41 0.60

CRAFT 39.55 41.30** 1.74

CRAFT BC4CHEMD 40.50 42.65 2.14

BC5CDR 41.59 56.64** 15.05

Diseases BC5CDR NCBI-disease 76.67 80.86* 4.19

Variome 74.03 74.83 0.81

NCBI-disease BC5CDR 69.62 74.96** 5.33

Variome 74.98 75.69 0.72

Variome BC5CDR 22.45 30.38* 7.93

NCBI-disease 40.17 45.16** 4.99

Species CRAFT Linnaeus 45.32 53.25* 7.93

S800 36.88 46.10** 9.21

Linnaeus CRAFT 82.49 82.85 0.36

S800 62.90 66.93* 4.02

S800 CRAFT 57.09 76.44** 19.34

Linnaeus 61.43 67.05* 5.62

Genes/proteins BC2GM CRAFT 56.04 58.17 2.12

JNLPBA 69.77 70.79** 1.02

CRAFT BC2GM 44.11 49.12* 5.01

JNLPBA 52.88 56.30 3.42

JNLPBA BC2GM 51.03 55.61 4.57

CRAFT 44.29 49.08 4.79

Note: In the BL model, dropout is applied only to the character-enhanced

word embeddings. In the VD model, dropout is additionally applied to the in-

put, recurrent and output connections of all LSTM layers. OOC performance

is derived by training on one corpus (train) and testing on another annotated

for the same entity type (test) using a relaxed, right-boundary matching crite-

ria. Bold, best scores.

*Significantly different than the BL (P� 0.05).

**Significantly different than the BL (P� 0.01).

Table 3. In-corpus (IC) performance, measured by F1-score, of the

baseline (BL) BiLSTM-CRF compared to a BiLSTM-CRF trained with

transfer learning (TL)

BL TL

Entity Corpus Average r Average r

Chemicals BC4CHEMD 88.46 0.61 88.98 0.63

BC5CDR 92.82 0.80 92.20 0.86

CRAFT 84.98 1.98 85.80 1.74

Disease BC5CDR 84.49 0.33 84.41 0.24

NCBI-disease 87.01 1.17 87.66 0.86

Variome 85.75 2.83 86.69 3.03

Species CRAFT 96.28 2.21 96.55 1.72

Linnaeus 89.44 3.91 90.72 4.90

S800 72.75 2.42 74.93 3.27

Genes/proteins BC2GM 81.48 0.48 80.65* 0.57

CRAFT 84.46 6.08 85.50 4.59

JNLPBA 80.92 2.50 81.56 2.73

Note: The TL model was pre-trained on the CALBC-Small-III corpus. IC

performance is derived from 5-fold cross-validation, using exact matching cri-

teria. Statistical significance is measured through a two-tailed t-test. Bold,

best scores, r, standard deviation.

*Significantly different than the BL (P� 0.05).

Table 4. Out-of-corpus (OOC) performance, measured by F1 score,

of the baseline (BL) BiLSTM-CRF compared to a BiLSTM-CRF

trained with transfer learning (TL)

Entity Train Test BL TL DF1

Chemicals BC4CHEMD BC5CDR 90.90 90.73 �0.17

CRAFT 47.44 47.02 �0.42

BC5CDR BC4CHEMD 71.81 74.27* 2.46

CRAFT 39.55 41.20* 1.64

CRAFT BC4CHEMD 40.50 46.15* 5.64

BC5CDR 41.59 58.57** 16.98

Diseases BC5CDR NCBI-disease 76.67 78.51* 1.83

Variome 74.03 77.18 3.16

NCBI-disease BC5CDR 69.62 73.19 3.56

Variome 74.98 76.95* 1.97

Variome BC5CDR 22.45 50.28** 27.83

NCBI-disease 40.17 58.64** 18.47

Species CRAFT Linnaeus 45.32 53.37 8.04

S800 36.88 46.46** 9.57

Linnaeus CRAFT 82.49 83.07 0.57

S800 62.90 67.64* 4.73

S800 CRAFT 57.09 69.56** 12.47

Linnaeus 61.43 67.21* 5.78

Genes/proteins BC2GM CRAFT 56.04 56.84 0.79

JNLPBA 69.77 70.27 0.50

CRAFT BC2GM 44.11 49.69* 5.58

JNLPBA 52.88 57.91* 5.03

JNLPBA BC2GM 51.03 57.81* 6.78

CRAFT 44.29 56.90** 12.61

Note: The TL model was pre-trained on the CALBC-Small-III corpus.

OOC performance is derived by training on one corpus (train) and testing on

another annotated for the same entity type (test) using a relaxed, right-bound-

ary matching criteria. Statistical significance is measured through a two-tailed

t-test. Bold, best scores.

*Significantly different than the BL (P� 0.05).

**Significantly different than the BL (P� 0.01).
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MTM were nearly identical, at 85.74 and 85.99% respectively,

though in a few cases, such as when the model was trained on

BC2GM alongside CRAFT or JNLPBA, the MTM significantly

underperforms the baseline. On the other hand, multi-task learning

improved out-of-corpus performance for every train/partner/test

corpus set we evaluated, with an average improvement of 8.42%. In

some cases, this improvement was substantial, such as when the

model was trained on the Variome and NCBI-Disease corpora and

tested on the BC5CDR corpus (37.61%). However, we do observe

significant variability overall in the degree of improvement, suggest-

ing that multi-task learning is sensitive to the choice of train/partner

pairs. Thus, a multi-task learning strategy of simultaneously training

on multiple corpora can substantially boost out-of-corpus perform-

ance of BiLSTM-CRF models for BioNER.

3.6 Combining modifications
We next evaluate if combinations of the above modifications improve

BiLSTM-CRFs model performance above individual modifications

(Fig. 1). In general, all combinations of the proposed modifications im-

prove average out-of-corpus performance without degrading in-corpus

performance. However, not all combinations are additive. For ex-

ample, multi-task learning improves out-of-corpus performance by

8.42%, transfer learning by 6.48% but together only by 5.61%. The

biggest boost to out-of-corpus performance is achieved by the MTM

paired with additional regularization of the recurrent layers via vari-

ational dropout, improving average performance by 10.75%.

Therefore, we recommend using this combination to produce a model

with the highest expected out-of-corpus performance.

4 Discussion

We demonstrate that BiLSTM-CRF, a popular deep learning-based

approach to BioNER and sequence labeling in general, does a poor

job generalizing to corpora other than the one it was trained on.

While some drop in performance is expected whenever a model is

evaluated on data outside the train set, the magnitude of decrease

we observed was substantial, falling by an average of over 30% F1

score. This was true even though we used a liberal scoring criterion

and any two corpora in our experiments were annotated for the

same entity type (and sometimes even used similar annotator guide-

lines, such as the case with BC5CDR and NCBI-Disease).

There are two possible explanations for the poor out-of-corpus

generalization we observed—either the corpora are biased or insuffi-

cient or the model is prone to training in a corpora specific manner.

Likely both reasons contribute to the problem. We elected to explore

improving the model because corpus creation is extremely laborious

and modification of existing corpora would make it difficult to com-

pare our methods against existing solutions. The three modifications

we evaluated—variational dropout, transfer learning and multi-task

learning—are straightforward to implement and improve across-

corpora generalizability without degrading average in-corpus per-

formance. On average, variational dropout improves out-of-corpus

performance by 4.62%, transfer learning by 6.48% and multi-task

learning by 8.42%, and the best combination of these (multi-task

learning and variational dropout) improves average out-of-corpus

performance by 10.75%. We provide our model to the community

as an easy-to-use tool for BioNLP under a permissive MIT license

(https://github.com/BaderLab/saber).

Table 5. In-corpus (IC) performance, measured by F1-score, of the baseline (BL) BiLSTM-CRF compared to the multi-task model (MTM)

BL MTM

Entity Train Partner Average r Average r

Chemicals BC4CH. BC5CDR 88.46 0.61 88.81 0.60

CRAFT — — 88.67 0.50

BC5CDR BC4CH. 92.82 0.80 93.00 0.55

CRAFT — — 91.52* 0.68

CRAFT BC4CH. 84.98 1.98 85.06 1.49

BC5CDR — — 84.74 1.33

Diseases BC5CDR NCBI-disease 84.49 0.33 83.85 0.64

Variome — — 83.29* 0.80

NCBI-disease BC5CDR 87.01 1.17 86.89 1.74

Variome — — 86.27 1.44

Variome BC5CDR 85.75 2.83 86.13 2.49

NCBI-disease — — 85.73 2.46

Species CRAFT Linnaeus 96.28 2.21 96.82 1.51

S800 — — 96.90 1.31

Linnaeus CRAFT 89.44 3.91 89.72 4.51

S800 — — 92.18 3.42

S800 CRAFT 72.75 2.42 74.80 2.98

Linnaeus — — 74.43 1.90

Genes/proteins BC2GM CRAFT 81.48 0.48 79.41** 0.14

JNLPBA — — 79.60** 0.53

CRAFT BC2GM 84.46 6.08 87.76 2.65

JNLPBA — — 85.36 4.74

JNLPBA BC2GM 80.92 2.50 81.61 2.53

CRAFT — — 81.15 2.04

Note: The MTM is trained on pairs of corpora (train, partner), where each corpus is used during training to update the parameters of all hidden layers. IC per-

formance is derived from 5-fold cross-validation, using exact matching criteria. Statistical significance is measured through a two-tailed t-test. Bold, best scores,

r, standard deviation.

*Significantly different than the BL (P� 0.05).

**Significantly different than the BL (P� 0.01).
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We note three limitations of our work. First, the most promising

modification to BiLSTM-CRF, multi-task learning, appears to be sensi-

tive to the choice of train/partner corpus pairs. A user should, there-

fore, evaluate multiple train/partner corpora to determine the most

beneficial combination for their use case. Second, while transfer

learning is not part of our recommended combination, we previously

found it to significantly improve performance on smaller corpora

(<6000 labels) (Giorgi and Bader, 2018). While we did not evaluate

the effect of corpus size, presumably, transfer learning would still be

useful and should be considered for small corpora. Third, in our multi-

task experiments, we restricted ourselves to training only on two cor-

pora, which were annotated for the same entity type. These restrictions

were made only to keep the number and the training time of the multi-

task experiments within a reasonable range and not because of inher-

ent limitations in the model’s architecture. Previous work has suggested

that multi-task learning with deep neural networks for the task of

BioNER may increase performance even when trained on corpora that

do not annotate the same entity class. Crichton et al. (2017) report, for

example, that the best partner for Linnaeus (Species) out of 15 corpora

was NCBI-Disease (Disease), not another Species corpus. Additionally,

previous work (Wang et al., 2018) has suggested that training a

BiLSTM-CRF on many corpora (i.e. >2) in a multi-task setting leads

to sizable improvements in BioNER. Thus, a further direction for our

work could be to explore performance improvements as increasing

numbers of corpora annotated for different entity types are used for

training. We suspect that this could significantly boost out-of-corpus

performance. Further, these results suggest that a single model trained

on many corpora (and even additionally pre-trained on an extremely

large SSC) may produce a robust and reliable tagger suitable for de-

ployment on massive literature databases (such as PubMed).

Our strategy for transfer learning involves pre-training a model on a

large SSC and transferring the learned weights to initialize training on a

smaller, but typically much higher quality, GSC. As we were writing

this paper, a novel transfer learning strategy for NLP demonstrated

Table 6. Out-of-corpus (OOC) performance, measured by F1 score, of the baseline (BL) BiLSTM-CRF compared to the multi-task model

(MTM)

Entity Train Partner Test BL MTM DF1

Chemicals BC4CHEMD BC5CDR CRAFT 47.44 47.74 0.29

CRAFT BC5CDR 90.90 90.97 0.07

BC5CDR BC4CHEMD CRAFT 39.55 44.79** 5.24

CRAFT BC4CHEMD 71.81 72.54 0.73

CRAFT BC4CHEMD BC5CDR 41.59 71.68** 30.09

BC5CDR BC4CHEMD 40.50 49.80** 9.30

Diseases BC5CDR NCBI-disease Variome 74.03 76.84* 2.81

Variome NCBI-disease 76.67 77.33 0.66

NCBI-disease BC5CDR Variome 74.98 76.32* 1.34

Variome BC5CDR 69.62 70.72 1.10

Variome BC5CDR NCBI-disease 40.17 69.35** 29.18

NCBI-disease BC5CDR 22.45 60.06** 37.61

Species CRAFT Linnaeus S800 36.88 50.26 13.38

S800 Linnaeus 45.32 57.80** 12.48

Linnaeus CRAFT S800 62.90 67.90 4.99

S800 CRAFT 82.49 82.69 0.20

S800 CRAFT Linnaeus 61.43 67.90** 6.46

Linnaeus CRAFT 57.09 80.04** 22.94

Genes/proteins BC2GM CRAFT JNLPBA 69.77 70.26 0.49

JNLPBA CRAFT 56.04 57.17 1.12

CRAFT BC2GM JNLPBA 52.88 58.78* 5.89

JNLPBA BC2GM 44.11 45.12 1.01

JNLPBA BC2GM CRAFT 44.29 52.78* 8.49

CRAFT BC2GM 51.03 57.35** 6.32

Note: The MTM is trained on pairs of corpora (train, partner), where each corpus is used during training to update the parameters of all hidden layers, but

only the train corpus task is used for evaluation on another corpus annotated for the same entity type (test) using a relaxed, right-boundary matching criteria.

Bold, best scores.

*Significantly different than the BL (P� 0.05).

**Significantly different than the BL (P� 0.01).

Fig. 1. Violin plot of the average in-corpus (IC) and out-of-corpus (OOC) per-

formance, measured by F1 score, of the BiLSTM-CRF model. IC performance

is derived from 5-fold cross-validation, using exact matching criteria. OOC

performance is derived by training on one corpus (train) and testing on an-

other corpus annotated for the same entity type (test) using a relaxed, right-

boundary matching criterion. The average performance of a model employ-

ing one of each of the proposed modifications: variational dropout (VD),

transfer learning (TL) and multi-task learning (MTL) independently as well as

models which employ all combinations of these methods are shown
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state-of-the-art performance on many benchmark corpora (https://s3-

us-west-2.amazonaws.com/openai-assets/research-covers/language-un

supervised/language_understanding_paper.pdf; Devlin et al., 2018;

Howard and Ruder, 2018). This transfer learning strategy involves

first training a language model on a massive corpus of unlabeled text.

The task of a language model is to predict the next most probable

word given a sequence of words (or more recently, to predict random-

ly masked words). By learning this task, the model is required to cap-

ture both syntax and semantics and is also required to encode

something akin to common sense. This is followed by the addition of

task-specific layers, which take the output of the language model as

input and are trained on labeled data in order for the model to learn a

specific classification task such as NER. This transfer learning strategy

has already been applied to BioNER with some success (Lee et al.,

2019; Sachan et al., 2018). In the future, we plan to explore this trans-

fer learning strategy for BioNER, and also for other tasks in the bio-

medical text mining pipeline, such as relation and event extraction.

5 Conclusion

While BioNER has recently made substantial advances in perform-

ance with the application of deep learning, current applications suffer

from poor generalizability in real-world scenarios. We show that out-

of-corpus performance of a BiLSTM-CRF model for BioNER (train-

ing on one corpus and testing on another annotated for the same en-

tity type) suffers when using a current state-of-the-art model.

Straightforward model modifications (variational dropout, transfer

learning, and multi-task learning and their combinations) substantial-

ly improve across-corpora generalization performance. We propose

that our model will significantly outperform previous applications of

BiLSTM-CRF models to BioNER when deployed for the large-scale

annotation of widely diverse articles, such as the articles found in

databases like PubMed. We make our model accessible as an easy-to-

use BioNLP tool, Saber (https://github.com/BaderLab/saber).
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