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Abstract: Marine natural products are abundant resources for antioxidants, but the antioxidant
property of the soft corals-derived sinularin and dihydrosinularin were unknown. This study
aimed to assess antioxidant potential and antiproliferation effects of above compounds on can-
cer cells, and to investigate the possible relationships between them. Results show that sinularin
and dihydrosinularin promptly reacted with 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azinobis
(3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS), and hydroxyl (•OH), demonstrating a general rad-
ical scavenger activity. Sinularin and dihydrosinularin also show an induction for Fe+3-reduction
and Fe+2-chelating capacity which both strengthen their antioxidant activities. Importantly, sinularin
shows higher antioxidant properties than dihydrosinularin. Moreover, 24 h ATP assays show that
sinularin leads to higher antiproliferation of breast, lung, and liver cancer cells than dihydrosinularin.
Therefore, the differential antioxidant properties of sinularin and dihydrosinularin may contribute to
their differential anti-proliferation of different cancer cells.

Keywords: antioxidant; cytotoxicity; soft coral; marine natural products; sinularin; dihydrosinularin

1. Introduction

Oxidative stress affects cellular function. Changes in the oxidative status may generate
peroxidation impacts on lipids, proteins, and RNA and regulate cell response, signaling,
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and metabolism [1,2]. Peroxidation of lipids, proteins, DNA, and RNA may damage their
biological functions and provide mitochondrial dysfunction and apoptosis [3]. Peroxida-
tions were reported to be associated with several diseases such as neurodegenerative [4],
atherosclerosis [5], and kidney disorders [6]. Therefore, antioxidation would assist in
avoiding such cellular and tissue damages [7,8].

Marine natural compounds are rich exogenous resources of antioxidants [9–12]. Exoge-
nous antioxidants commonly show a bi-phase oxidative stress-modulating ability towards
cancer cells [13]. Compounds with antioxidant ability show different mediations of cellular
oxidative stress. Exogenous antioxidants provide oxidative stress-suppressing ability at
physiological concentrations, however, show oxidative stress-promoting power at cyto-
toxic concentrations.

Soft corals contain many bioactive natural compounds [14] that show anticancer
effects [15–21]. Sinularin was isolated from the soft corals Sinularia flexibilis [22] and
S. manaarensis [23]. Similarly, dihydrosinularin was firstly isolated from the soft coral
S. flexibilis [24]. The IUPAC names for sinularin and dihydrosinularin are (9E)-13-hydroxy-
4,9,13-trimethyl-17-methylidene-5,15-dioxatricyclo[1 2.3.1.04,6]octadec-9-en-16-one and
(9E)-13-hydroxy-4,9,13,17-tetramethyl-5,15-dioxatricyclo[1 2.3.1.04,6]octadec-9-en-16-one,
respectively [25]. The main chemical difference between them is that sinularin possesses a
conjugated double bond which lacks in dihydrosinularin.

Although sinularin and dihydrosinularin are similar marine natural compounds, they
show different bioactivities if investigated as yet. The antiproliferation ability of sinularin
was reported in several types of cancer cells [16,20,22,26–29]. However, the antiproliferation
reports of dihydrosinularin are rare. Cytotoxicity of dihydrosinularin was reported with
respect to lymphocytic leukemia [22], lung and colon cancer cells [30]. The antioxidant
properties of these related compounds were rarely investigated. Most of those studies
focused on bioactive compound identification and cancer cell cytotoxicity. They rarely
reported the detailed anticancer mechanisms, especially the role of antioxidant properties
providing anticancer effect.

The present study aims at the antioxidant properties through radical-scavenging
activities and examines the antiproliferation effect to breast, lung, and liver cancer cells
applying an ATP assay for the similar compounds sinularin and dihydrosinularin.

2. Results
2.1. Radical Scavenging Activity of 2,2-Diphenyl-1-picrylhydrazyl (DPPH)

DPPH [31] is a common method for detecting in vitro antioxidant properties. Figure 1A
shows the structures of sinularin and dihydrosinularin. In Figure 1B, the DPPH scavenging
activity of sinularin increases below a threshold of 250 µM and reaches a plateau of 40%
scavenging activity at 400 µM. DPPH scavenging activity of dihydrosinularin increases
below 200 µM and reaches a plateau of 10% activity at 400 µM. Therefore, sinularin shows
higher DPPH scavenging activity than dihydrosinularin.

2.2. Radical Scavenging Activity for 2,2-Azinobis (3-Ethyl-benzothiazoline-6-sulfonic
Acid) (ABTS)

ABTS•+ [32] is another in vitro antioxidant detection method. In Figure 2, the ABTS
scavenging activity of sinularin dramatically increases to 50% at 15 µM and reaches a
plateau of 60% activity above 250 µM. ABTS scavenging activities of dihydrosinularin
increase in a dose-response manner within 400 µM, but it gets 30% at 400 µM. Therefore,
sinularin shows higher ABTS scavenging activity than dihydrosinularin.

2.3. Hydroxyl (•OH) Radical Scavenging Activity
•OH initiates an early stage of lipid hydroperoxidation for producing the lipid radical

to trigger lipid peroxidation [33]. Accordingly, measurement of •OH radical scavenging
activity was also used to assess in vitro antioxidant properties [34]. In Figure 3, the •OH
scavenging activity of sinularin dramatically increases to 35% at 15 µM and reaches plateaus



Molecules 2021, 26, 3853 3 of 9

of 60% and 70% activity at 250 and 400 µM, respectively. •OH scavenging activities of
dihydrosinularin increase in a dose-response manner within the 400 µM range, but it
reaches only 40% at 400 µM. Therefore, sinularin shows higher •OH scavenging activity
than dihydrosinularin.
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ferent concentrations of sinularin (SINU) and dihydrosinularin (DHSI) are compared to blank. Ac-
cording to multiple comparisons, data of the same characters showing non-overlap indicate signif-
icant differences (p < 0.05–0.001). 
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Figure 1. Structures and DPPH scavenging activities of sinularin and dihydrosinularin. (A) Structures.
(B) DPPH scavenging activities. Data, mean ± SD (n = 3). DPPH scavenging activities for different
concentrations of sinularin (SINU) and dihydrosinularin (DHSI) are compared to blank. According
to multiple comparisons, data of the same characters showing non-overlap indicate significant
differences (p < 0.05–0.001).
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2.4. Ferric Ion (Fe+3)-Reducing Power

Fe+3-reducing power is an iron-based in vitro antioxidant measurement [35]. In Figure 4,
sinularin and dihydrosinularin increase Fe+3-reducing power in a dose-response manner.
Sinularin shows higher Fe+3-reducing powers than dihydrosinularin.
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2.5. Ferrous Ion (Fe+2)-Chelating Capacity

Fe+2-chelating capacity is also the iron-based in vitro antioxidant detection [35]. In
Figure 5, the Fe+2-chelating capacity of sinularin dramatically increases to 6% at 15 µM
and reaches a plateau for 7% activity larger than 250 µM. Dihydrosinularin increases Fe+2-
chelating capacity in a dose-response manner within 400 µM, but it comes 4% at 400 µM.
Therefore, sinularin shows a higher Fe+2-chelating capacity than dihydrosinularin.
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showing non-overlap indicate significant differences (p < 0.05–0.001).

2.6. Cell Viabilities of Several Drug-Treated Cancer Cell Lines

We applied an ATP assay as a mitochondrial function-based detection of cell viabil-
ity [36]. In triple-negative breast MDA-MB-231, lung H1299 cells, and liver HA22T/VGH
cancer cells, the IC50 values of sinularin at 24 h ATP assays were 32, 2, and 12 µM, re-
spectively. In comparison, the IC50 values of dihydrosinularin in MDA-MB-231, H1299,
and HA22T/VGH cells were 60, 70, and 120 µM, respectively. Therefore, sinularin shows
higher antiproliferation ability than dihydrosinularin to breast, lung, and liver cancer cells.
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3. Discussion

The main difference between sinularin and dihydrosinularin is that sinularin, but not
dihydrosinularin, has a conjugated double bond within the carbonyl group of the lactone
ring. However, the antioxidant and antiproliferation abilities of sinularin and dihydrosinu-
larin were rarely investigated. Differences between sinularin and dihydrosinularin were
evaluated in the present study. The possible reasons why sinularin and dihydrosinularin
exhibit differential antioxidant and antiproliferation abilities were discussed.

Different double bonds may contribute to the differential antioxidant effect. For
example, polyunsaturated fatty acids (PUFA) containing many double bonds and bis-
allylic hydrogen atoms are easily oxidized and show antioxidant abilities [37]. Double
bonds at different positions may have differential antioxidant powers. For example, iso-
moracin C contains the double bond at conjugation position, which is not the case in
moracin C. Iso-moracin C shows higher antioxidative activity than moracin C [38].

Free radicals tend to directly attack the conjugated double bonds [39], indicating
their potential antioxidant properties. For example, conjugated double bonds of terpenes
contribute to the high antioxidant properties of free radical scavenging [40]. In contrast,
blocking conjugated double bonds suppresses the antioxidant power of monoterpenes [41].
Accordingly, chemicals with conjugated double bonds exhibit a relative higher redox-
related antioxidant power than chemicals without conjugated double bonds. However,
above studies focused on the relationship of structure and antioxidant effects without
aiming at possible anticancer effects.

The current study reports for the first time the antioxidant abilities of the soft-coral-
derived compounds sinularin and dihydrosinularin using several well-established assays.
Although both sinularin and dihydrosinularin showed antioxidant properties, sinularin
exhibits higher DPPH, ABTS•+, and •OH scavenging activity as well as Fe+3-reducing
power and Fe+2-chelating capacity than dihydrosinularin. We conclude that the high
antioxidant ability of sinularin is probably caused from its conjugated double bond, which
becomes a single bond with dihydrogen atoms in dihydrosinularin (Figure 1A).

Several marine natural products with antioxidant abilities show anticancer effects. This
finding is confusing because the antioxidant is regarded as a protector from several cellular
oxidative stress damages. Recently, a dual role of antioxidants has been proposed. At low
concentrations of antioxidants, oxidative stress for cancer cell proliferation can be reduced.
In contrast, lethal concentrations of antioxidants may induce oxidative stress that causes
antiproliferation of cancer cells. Similarly, a famous natural antioxidant grape seed extract
shows antioral cancer effect with oxidative stress generation at high concentrations but not
at low concentrations [42]. Therefore, the exogenous antioxidant exhibits a concentration-
dependent modulation of cellular oxidative stress.

As described above, lethal concentrations of antioxidants have oxidative stress-
generating potential. Since sinularin exhibits higher antioxidant effects than dihydros-
inularin, it is expected that sinularin may have a higher potential to generate oxidative
stress at lethal concentrations and leads to the death of cancer cells. This notion was
supported by the finding that dihydrosinularin triggered oxidative stress that inhibited
cell proliferation of oral [28] and renal [29] cancer cells. Consistently, the antiproliferation
ability of sinularin is higher than dihydrosinularin in the example of breast and lung cancer
cells (Figure 6). The higher antiproliferation ability of sinularin are explained here with its
higher antioxidant ability than dihydrosinularin when high concentrations are applied to
cancer cells.

In addition to their different antioxidant abilities, the more potent cytotoxicity of sinu-
larin than dihydrosinularin is explained here with the ability of the conjugated exocyclic
double bond of sinularin to form an adduct through a “Michael addition” with the thiol
group of specific enzymes. This possible mechanism warrants more detailed investigations
in the future.
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Figure 6. Cell viability of triple-negative breast and liver cancer cells following sinularin and dihydrosinularin treatments.
Breast MDA-MB-231, lung H1299, and liver Ha22T cancer cells were treated with sinularin (SINU) and dihydrosinularin
(DHSI) for 24 h incubation. Subsequently, their viabilities were determined by ATP assay (data, mean ± SD (n = 3)).
According to multiple comparisons, data of the same characters showing non-overlap indicate significant differences
(p < 0.05–0.001).

4. Materials and Methods
4.1. Preparation of Two Bioactive Diterpenoids and Chemicals

Following a previous study [23], the lyophilized bodies of the soft coral S. manaarensis
were minced and extracted with ethyl acetate, and the crude extract was chromatographed
to yield both cembranoids sinularin and dihydrosinularin in high purity, as confirmed
by NMR spectra of the two compounds. Both of them were dissolved in ethanol for
antioxidant assays and in dimethyl sulfoxide (DMSO) for cell viability assays. All chemical
reagents were purchased from Sigma-Aldrich Inc (St. Louis, MO, USA).

4.2. DPPH Radical Scavenging Activity

The scavenging effect for DPPH was assessed as mentioned [32,43]. An amount of
125 µM DPPH (dissolved in ethanol) was equally mixed and reacted with either sinularin
or dihydrosinularin (dissolved in ethanol) in the darkness for 30 min. A multiplate reader
(800 TS, BioTek Instruments, Inc., Winooski, VT, USA) measured the reaction at 517 nm.

4.3. ABTS•+ Radical Scavenging Activity

The scavenging effect for ABTS was assessed as mentioned [32,44]. 7.4 mM ABTS•+/2.6 mM
persulfate solution was equally mixed and reacted with sinularin or dihydrosinularin (dis-
solved in ethanol) in the darkness for 15 min. A multiplate reader measured the reaction at
734 nm.

4.4. •OH Radical Scavenging Activity

The scavenging effect for •OH radical was assessed as mentioned [34]. An amount
of 690 µL of 2.5 mM 2-deoxyribose (in phosphate buffer (0.2 M, pH 7.4) and 100 µL of
0.1 mM FeCl3 (dissolved in 1.04 mM EDTA) were mixed with 100 µL of sinularin or
dihydrosinularin (dissolved in ethanol). Subsequently, they were allowed to react with
the mixture (100 µL of 10 mM ascorbic acid and 10 µL of 0.1 M H2O2) at 37 ◦C for 10 min.
Finally, they were combined with a mixture (500 µL of 1% thiobarbituric acid (TBA) and
1000 µL of 2.8% trichloroacetic acid (TCA)) for 10 min. A multiplate reader measured the
reaction at 532 nm.

4.5. Fe+3-Reducing Power

Reducing power was assessed as mentioned [31,44]. 100 µL of 0.2 M phosphate buffer
(pH 6.6) and 100 µL of 1% potassium ferricyanide were reacted with 100 µL of sinularin
or dihydrosinularin (dissolved in ethanol) at 50 ◦C for 20 min. Subsequently, they were
reacted with the mixture (500 µL of 2% TCA and 400 µL of 0.1% FeCl3) for 15 min. A
multiplate reader measured the reaction at 705 nm.
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4.6. Fe+2-Chelating Capacity

Chelating capacity was assessed as mentioned [44]. 740 µL of deionized water was
mixed with 20 µL of 2 mM FeCl2 to react with 200 µL of sinularin or dihydrosinularin
(dissolved in ethanol). Subsequently, they were reacted in shaking with 40 µL of 5 mM
ferrozine for 10 min. A multiplate reader measured the reaction at 562 nm.

4.7. Cell Viability

Human triple-negative breast (MDA-MB-231) and lung (H1299) cancer cell lines
were obtained from ATCC, and liver (HA22T/VGH) cancer cell lines were obtained from
Bioresource Collection and Research Center (Hsinchu, Taiwan). These cell lines were
maintained by DMEM medium (Gibco, Grand Island, NY, USA) containing 10% fetal
bovine serum (FBS) and antibiotics as previously described [45]. Cell viabilities following
sinularin and dihydrosinularin exposure were assessed at 24 h incubation using an ATP
detection kit (PerkinElmer Life Sciences, Boston, MA, USA) [46]. A microplate luminometer
(Berthold Technologies GmbH & Co., Bad Wildbad, Germany) measured the light reaction.

4.8. Statistical Analysis

The analysis of variance (ANOVA) followed by a HSD Post-Hoc Test were applied
for significance analysis. Data showing non-overlapping the same characters indicate a
significant difference in multiple comparisons.

5. Conclusions

Antioxidants exhibit a comprehensive biological function. A similar chemical structure
may demonstrate different antioxidant power. For the first time, the current study reported
the antioxidant ability of marine coral-derived sinularin and dihydrosinularin by using
several well-established in vitro assays. The antioxidant properties of sinularin were
higher than those of dihydrosinularin. This high antioxidant power of sinularin at lethal
concentrations may generate high oxidative stress. This explains our observation that
sinularin has higher antiproliferation abilities than dihydrosinularin in breast, lung, and
liver cancer cells.
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