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Introduction
Idiopathic pulmonary fibrosis (IPF) is the most 
common fibrotic interstitial lung disease (ILD) 
with chronic, progressive, and heterogeneous fea-
tures. While some IPF patients get progressively 
worse over the progression of the disease, others 
remain relatively stable.1 The incidence of IPF 
ranges from 2 to 30 per 100,000 people and prev-
alence ranges from 10 to 60 cases per 100,000 
people.2 These figures are generally equivalent to 
130,000 patients in America, 640,000 patients in 
East Asia, and roughly 3,000,000 worldwide.3–5 

As it progresses, patients experience dyspnea and 
hypoxemia with poor quality of life and a high risk 
of developing complications such as acute exacer-
bations and pulmonary hypertension. Generally, 
the median survival time of IPF ranges from 2 to 
5 years.1 Factors related to a poor prognosis 
include older age, male gender, increased dysp-
nea, and worse physiological abnormalities.

Due to the limited recognition of this disease, early 
diagnosis and prevention remained crucial. IPF is 
usually diagnosed by identifying a radiological or 
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histological pattern of usual interstitial pneumonia 
(UIP) without clear evidence caused by alternative 
diseases.6 A primary challenge for clinicians in 
diagnosis remains the exclusion of other known 
causes, such as connective tissue disease-related 
ILD (CTD-ILD) and interstitial pneumonia with 
autoimmune feature.7

The IPF guideline published in 2022 suggested 
that patients with high-resolution computed 
tomography (HRCT) of UIP and probable UIP 
patterns are not recommended to undergo lung 
biopsy,8 indicating the great value of HRCT for 
IPF diagnosis. Also, a series of studies proved the 
value of chest computed tomography (CT) in IPF 
prognosis.9–12 This review provides a comprehen-
sive CT evaluation of IPF prognostic models and 
discusses the role of  artificial intelligence (AI) in 
constructing prognostic models.

Evaluation of CT in IPF prognostic model
As CT plays a vital role in predicting IPF progno-
sis, recent studies have tried to integrate it into 
models to improve their performance and accu-
racy. The clinical, radiological, and physiological 
(CRP) model by King et  al.13 combined the 
extracted CT features with clinical features and 
pulmonary function indices. Oda et al.14 tried to 
quantify the extent of fibrosis in HRCT and pro-
posed an ΔHRCT scoring system that measured 
the changes in the HRCT fibrosis score (FS) 
from baseline to follow-up. They assessed HRCT 
at baseline and subsequently after 6 and 
12 months, respectively. Patients with higher ele-
vated HRCT scores showed worse outcomes than 
those with relatively stable scores. Inspired by the 
Gender-Age-Physiology (GAP) model, Ley 
et  al.15 replaced the carbon monoxide diffusing 
capacity (DLCO) in the GAP model with the FS of 
radiographs, and proposed the CT-GAP model, 
which had a similar performance to the GAP 
model, suggesting FS could be a substitute for 
DLCO if the latter is unavailable.

In addition to traditional visual features, addi-
tional radiographic characteristics, such as the 
ratio of the diameter of the pulmonary artery to 
the aorta (PA:A), have been suggested as potential 
indicators for outcomes of IPF patients.16 Yagi 
et  al.17 proved that PA:A and mean pulmonary 
artery pressure (mPAP) could be indicators for a 
worse prognosis with an area under the curve 
(AUC) of 0.75. Jacob et  al.12 proposed that 

vessels-related structures (VRSs) in CT-automated 
measures could predict IPF prognosis and aid 
researchers in reducing IPF drug trial sample 
sizes. Moreover, Nakagawa et  al.11 utilized the 
quantitative CT-derived honeycombing area, a 
vital feature of IPF, to predict mortality. The 
study by Loeh et al.10 measured densitometry in 
CT assessments and found that densitometry-
derived parameters were linked to patients’ pul-
monary function and mortality. In addition, 
time-serial CT makes it possible for clinicians to 
monitor and quantify disease progression as Jacob 
et  al.9 calculated change in annualized VRS 
parameters, proved its weak associations with 
forced vital capacity (FVC), and considered it as a 
strong predictor of IPF prognosis.

Therefore, CT images are crucial in assessing and 
predicting IPF prognosis. Various visual features 
observed in CT scans provide valuable insights 
into the disease severity and serve as risk factors. 
Honeycombing and reticular opacity are two 
most critical features of IPF, as both indicate the 
extent and severity of fibrotic lung involvement. 
Other features, such as traction bronchiectasis, 
emphysema, and pulmonary artery hypertension, 
also contribute to the overall risk in IPF patients.

The visual assessment may not objectively and 
accurately calculate the area of specific patterns. 
The variation among observers impairs the subjec-
tivity and introduces potential interference in the 
assessments.18 Thus, applications of AI algorithms 
play a crucial role in automated identification, par-
titioning, and computer-assisted diagnosis in IPF 
prognostic model.

Applications of AI algorithms in the procedures 
of IPF prognostic model construction
To construct a prognostic model for IPF, the ini-
tial step entails the acquisition of a comprehen-
sive dataset. A dataset of superior quality 
necessitates ample data, minimal noise interfer-
ence, precise data cleaning, and accurate labels 
derived from representative samples.19 Then, the 
dataset is partitioned into the training and testing 
set. The subsequent steps involve the evaluation 
of CT, which primarily includes image segmenta-
tion, feature extraction, and analysis. To conduct 
further research, it is common to segment the 
region of interest (ROI), which is highly associ-
ated with the prognosis, such as the fibrosis area 
in IPF. Through automated and semi-automated 
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segmentation methods, AI can assist in effectively 
delineating ROI areas, such as U-net, nnU-net, 
and deeplab.20–23 These models are categorized 
under convolutional neural networks (CNNs), 
utilizing convolution to extract relevant features 
by applying small filters to local regions.

Radiomics is a method that obtains many quanti-
tative features from an image, enabling the auto-
mated classification of medical images into 
predefined categories.24 The radiomic features, 
different from clinical indicators, can uncover 
deeper patterns and characteristics of images and 
reduce the need for unnecessary biopsies.

As the number of extracted features through radi-
omics may be enormous, feature engineering and 
dimensionality reduction must be applied. 
Standard data dimensionality reduction algo-
rithms include isometric mapping, principal com-
ponent analysis, and locally linear embedding. 
These algorithms project data onto a lower-
dimensional space while retaining as much infor-
mation (like variance, local structure, and 
geodesic distances) as possible. In addition, com-
monly used clinical features, including pulmo-
nary function,25 routine blood tests, blood gas 
analysis, and tumor markers can be selected 
according to clinical expertise or machine 
learning algorithms. Due to differences in data 
characteristics, other algorithms such as k-means 
and support vector machine (SVM), may be 
taken to select predictive features for prognosis. 
Through constructing a hyperplane in high-
dimensional or infinite-dimensional space, SVM 
separates different types of data. The k-means 
clustering principle is a widely used unsupervised 
machine learning algorithm that aims to partition 
a dataset into k distinct clusters.26

Subsequent feature selection and model develop-
ment are performed and then evaluated in the 
training set. There are traditional methods like 
Cox regression, Kaplan-Meier analysis, and 
newly developed AI algorithms such as random 
forest (RF), random survival forest (RSF), gradi-
ent boosting decision tree (GBDT), and artificial 
neural network (ANN). Different algorithms 
extract important features through various meth-
ods, such as using p values and hazard ratios in 
Cox regression, splitting of features at nodes in 
RF and RSF, feature contribution scores (the fre-
quency or depth of feature used in building trees) 

in GBDTs, and weight adjustments (based on 
backpropagation and gradient descent) in ANNs. 
RSF combines the concepts of RFs with survival 
analysis, making it suitable for constructing prog-
nostic models by analyzing time-to-event data 
commonly encountered in clinical practice 
(Figure 1).27

Radiomics is widely applied in the prognostic 
models of IPF and analysis of CT images. 
Radiomics describes the geometric properties of 
fibrillated regions, first-order statistical features, 
and higher-order texture features. Budzikowski 
et  al.28 utilized differences in radiomic features 
from lung regions in CT scans of IPF patients to 
explore correlations between genetic variations 
and patient survival. Yang et al.29 demonstrated 
that radiomic features extracted from pretreat-
ment HRCT scans could forecast how patients 
with IPF would respond to antifibrotic treatment. 
Liang et  al.30 demonstrated radiomics model 
based on CT is capable of predicting lung cancer 
development in IPF patients. Refaee et  al.31 
developed a classification model between IPF and 
non-IPF ILDs based on handcrafted radiomics 
and deep learning (DL).

AI-aided CT evaluation in IPF prognostic model
Compared with non-AI, AI presents a promising 
alternative to human readers with more objective 
and standardized assessments by precisely quan-
tifying specific patterns and capturing deep fea-
tures. Also, AI offers the potential for obtaining 
higher efficiency and scalability. For data collec-
tion, AI models allow people to gather high 
throughput and multi-modal data and automati-
cally select highly predictive factors.

Combining quantitative CT analysis with AI 
algorithms, computer-aided lung informatics for 
pathology evaluation and ratings (CALIPER) is a 
quantitative CT analysis tool developed at Mayo 
Clinic Rochester. It can predict the prognosis of 
IPF patients more objectively and reproducibly 
than visual assessments.32 However, integrating 
the composite physiologic index into the 
CALIPER-derived model didn’t improve perfor-
mance, which demonstrates the value of HRCT 
in predicting prognosis.33 Additionally, Romei 
et al.34 applied CALIPER to evaluate radiologic 
progression in IPF, with a clear correlation 
between CALIPER-derived parameters and FVC 
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changes. Beyond CALIPER, Ash et  al.35 devel-
oped a method depending on the histogram of 
lung density and the distance to the surface of the 
pleura. Later, Bak et al.36 applied a texture-based 
automatic system to extract features from initial 
radiographs and proposed a formula that utilized 
an automatically derived FS and emphysema 
index to assess the extent of fibrotic and emphy-
sematous area with a sensitivity of 0.71.

In addition to the fully automated method, there 
are also methods in terms of pre-established train-
ing sets. Lee et al.37 established a CT quantitation 
system following six specific patterns pre-marked 
by radiologists. Shi et  al.38 constructed a model 
including FS, interval changes of FS, age, and 
desaturation, reaching a C-index of 0.768. They 
chose wrapper methods to select features and 
introduced quantum particle swarm optimization 
(QPSO) as an optimizer and RF as a classifier to 
propose the QPSO-RF algorithm. Unlike previ-
ous research, features extracted by the QPSO-RF 
algorithm may not be specific image patterns. 
Other researchers adopted the QPSO-RF  
algorithm to predict ROI as progressive or 

non-progressive with a sensitivity of 0.68 and 
specificity of 0.65 in original images.39 Recently, 
Wu et al.25 designed a lung segmentation network 
to assess the percentage of honeycombing area 
occupying the whole lung and proposed a com-
puted tomography pulmonary function model to 
predict a 3-year survival rate in IPF. Besides, 
research based on computer-aided diagnosis 
(CADx) systems40 and data-driven textural analy-
sis (DTA)41 also reveal satisfying outcomes in the 
training set and may be available in the future. 
The AI algorithms for model construction, radio-
graph assessment, and data collection show great 
potential in joint use with quantitative CT 
analysis.

Comparison of AI and non-AI applications  
in the IPF prognostic model
Through the detailed description and perfor-
mance metrics (AUC, specificity, sensitivity) of 
both non-AI and AI prognosis models (Tables 1 
and 2), we may observe that the AUC of these 
models ranges variably. Sensitivity is the propor-
tion of true negatives among all actual negatives. 

Figure 1.  The applications of AI in the prognostic model of IPF. The relationship between AI, machine learning, and deep learning 
is illustrated by the examples of different algorithms. Also, it shows the four procedures in the prognostic model of IPF and 
representative AI algorithms, in terms of region of interest extraction, image feature selection, clinical feature selection, and model 
construction.
AI, artificial intelligence; GCN, graph convolutional neural networks; IPF, idiopathic pulmonary fibrosis; RF, random forests; RNN, recurrent neural 
network.
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Specificity is the proportion of actual positives. 
While, the AUC represents the area under the 
receiver operating characteristic curve, measuring 
the model’s ability to distinguish between classes.

Though we cannot conclude that AI algorithms 
significantly improve the performance of IPF 
prognostic models, they effectively improve the 
analysis procedure, enhance clinical efficiency, 
and are available for large-scale population 
research. Non-AI models mainly rely on tradi-
tional statistical methods, known clinical features, 
and direct analysis of radiological features. In 
contrast, AI models use machine learning algo-
rithms to construct prognostic models based on 
massive clinical features, deep features, and radi-
omics after segmentation from HRCT. DL algo-
rithms enable a comprehensive understanding of 

HRCT images and maximize the utilization of 
features, including texture analysis, pattern rec-
ognition, and volumetric analysis (Figure 2).

As mentioned above, recent studies attempt to 
combine CT images with other features, utilizing 
newly developed AI algorithms to extract features 
from CT.25,33,38,39 Now, with the help of AI, it is 
possible to quantify the lesion in CT with less 
time and better accuracy.43 There are a few stand-
ard methods available such as density histo-
gram,44,45 adaptive multiple features method 
(AMFM), CALIPER,46 quantitative lung fibrosis 
(QLF),40 functional respiratory imaging (FRI),47 
and DTA.41 Density histogram and QLF may 
measure the extent of lung fibrosis through the 
Hounsfield unit scale. AMFM quantifies lung 
parenchymal patterns on CT and analyses lung 

Figure 2.  Comparison of AI and non-AI techniques in IPF prognostic model. Based on deep learning neural networks, AI technology 
can realize the automatic processing of data collection and CT assessment in the process of model construction. In contrast, non-AI 
technologies require human assistance and rely on human experience for evaluation. Also, AI-aided techniques may extract more 
detailed and deeper features for analysis and construct more effective prognostic models.
AI, artificial intelligence; AMFM, adaptive multiple features method; CALIPER, computer-aided lung informatics for pathology evaluation and ratings; 
CNN, convolutional neural networks; DTA, data-driven textural analysis; FRI, functional respiratory imaging; GBDT, gradient boosting decision tree; 
IPF, idiopathic pulmonary fibrosis; LSTM, long short-term memory; MLP, multilayer perceptron; QLF, quantitative lung fibrosis; RNN, recurrent 
neural network; RSF, random survival forest; XGB, extreme gradient boosting.
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texture. FRI may enable regional quantification 
of the lung, and DTA assesses the severity and 
progression of the disease.

In summary, with AI algorithms being widely 
applied in the prognosis of IPF and other dis-
eases, we can fully utilize CT data, achieve objec-
tive quantification, improve evaluation efficiency, 
and obtain new features from large-scale data.

Limitations of AI algorithms in the research  
of IPF prognostic model
The IPF prognosis study faces limitations in 
terms of scalability, robustness, and application 
range of algorithms or models due to the scarcity 
of data sets (Figure 3). IPF is a relatively rare dis-
ease because of its low incidence rate, difficulty in 
diagnosis, and limitation in clinical cognition. 
Thus, limited data sources and single-center 
research obstruct the development of a universal 
and reliable model for the prognostic model of 
IPF. Relatively, the limited data resources derived 
various models as mentioned in the tables. Larger, 
more diverse datasets across multiple centers to 
train and validate AI models are highly needed. 

Additionally, concerns related to overfitting arise, 
where the model may demonstrate high accuracy 
on the training dataset but fail to generalize well 
to other datasets, leading to potential limitations 
in model robustness and applicability.48,49

The interpretability of the AI model presents a 
significant challenge in terms of widespread appli-
cation. In the medical field, there is still a lack of 
consensus regarding the definition of interpreta-
bility and standardized evaluation. AI may prior-
itize features based solely on accuracy in prognosis 
without considering their medical significance. As 
a result, the “black box” problem hinders its full 
integration into IPF clinical practice.50

In machine learning, model training depends on 
labels obtained by medical experts. However, 
errors or oversights in the labeling or analysis pro-
cess can amplify the mistakes made by AI models. 
Additionally, there are still concerns about legal 
responsibility and ethical issues. Though the AI 
model may make decisions based on a black box 
with relatively stable results, we should be cau-
tious about its applications in the real world and 
be aware of ethics and algorithm discrimination.

Figure 3.  The limitation and the prospect of AI in the IPF prognostic model. Despite some limitations such as limited data sources, 
various models, overfitting of the model, and lack of interpretability, the AI model has many potential application prospects in 
IPF prognosis for its time-series model, multi-modal data, interpretability, and ability to find new features, and these can be 
transformed into each other under certain conditions.
AI, artificial intelligence; IPF, idiopathic pulmonary fibrosis.
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Prospective of AI algorithms in IPF prognostic 
model
Though recent studies have made progress in the 
qualification of CT, there is no doubt that the 
potentiality of CT in predicting outcomes of IPF 
patients needs further exploration (Figure 3). 
Multi-modal data, including CT, pulmonary 
function, tumor markers, and blood gas analysis, 
are increasingly crucial to evaluating IPF patients. 
More than including varieties of new clinical fea-
tures, massive information is hidden in CT to be 
explored. One potential direction is to introduce 
several CTs in a period rather than CT at baseline 
to estimate the progression of IPF and improve 
the prediction of prognostic models. By analyzing 
time-series CT images, models can better evaluate 
the progression of IPF, dynamically guide treat-
ment options, and predict patients’ outcomes. 
Another direction is to explore new CT patterns 
and features through newly developed machine 
learning algorithms to predict patients’ outcomes. 
Aided by AI, CT analysis extends from visual 
designs such as honeycombing and reticular opac-
ity to high-dimensional features.26 Though fea-
tures extracted by AI may be complicated for 
human readers to explain, the algorithm can auto-
matically apply these features to mark and calcu-
late lesion area. Besides, this approach can 
eliminate the inter-observer variation of CT evalu-
ation and improve the accuracy of prognostic 
models. The interpretive approach method for 
IPF DL images mainly includes visualization of 
the lesion area and semantic case. Interpretable 
deep semantic CNNs produced interpretable lung 
cancer prediction and obtained significantly better 
results than the common 3D CNN method.51 The 
success in other fields, such as multi-domain net-
works in pathology,52 attention model,53 and 
Grad-CAM (Gradient-weighted Class Activation 
Mapping) model,54 encourages us to apply more 
technologies to the IPF field. Insights into high-
lighted regions by AI systems above can be pro-
vided through techniques like activation maps 
(the activation values of convolutional layers) and 
attention mechanisms (with higher numerical val-
ues indicating greater relevance), thus enabling 
clinicians to understand which image areas are 
crucial for the model’s decision-making or to 
cross-validate their interpretations.

The AI-aided clinical practice in IPF may be 
expected. The automatic analysis throughout the 
long-term management, the accurate and data-
based prediction, and the full utilization of CT 

series may lower the management burden of IPF 
patients, and allow clinicians to effectively treat 
these patients. The progression of IPF may be 
intervened by corresponding measures such as 
combined antifibrotic medicines, pulmonary 
rehabilitation, and lung transplantation based on 
AI assessments.

Conclusion
The applications of CT in the prognostic model 
of IPF have significantly improved the model per-
formance. AI optimizes the process of data extrac-
tion, model construction, and performance. 
Multi-modal data and AI algorithms will be 
applied to the prognosis model of IPF in the 
future, leading to an accurate, stable, and generic 
prognostic model for the better clinical manage-
ment of IPF patients.
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