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Abstract: |diopathic pulmonary fibrosis (IPF) is a chronic, progressive, and heterogeneous inter-
stitial lung disease with a median survival of 2-5years. Though the diagnosis has been improved
due to newly published guidelines, the recognition of the prognosis of IPF remains a challenge.
Recently, several studies attempted to build prognostic models by extracting predictive variates
from pulmonary function data, basic information, or chest computed tomography (CT) and CT-
derived parameters with clinical characteristics. Artificial intelligence (Al) algorithms, including
principal component analysis, support vector machine, random survival forest, and convolu-
tional neural network, could be applied to the procedure of IPF prognostic model, that is, region
of interest extraction, image feature selection, clinical feature selection, and model construc-
tion. Compared to human visualization, Al algorithms show a higher efficiency in calculating and
extracting deep features and a lower inter-observer variation. Thus, this review provides a com-
prehensive CT evaluation of IPF prognostic models and discusses the role of Al in constructing
IPF prognostic models. The potential improvements of Al in CT assessments, including time-
series CT analysis, optimization of Al algorithms, utilization of multi-modal data, and discov-
ery of new biomarkers through unsupervised algorithms, could be introduced to make a more
accurate and convenient assessment for the prognosis of IPF patients. This review describes
the status quo and future direction of Al applications in CT analysis for prognostic models of IPF.
Take home message The review summarizes the applications of CT and Al algorithms for
prognostic models in IPF and procedures of model construction. It reveals the current
limitations and prospects of Al-aid models, and helps clinicians to recognize the Al algorithms
and apply them to more clinical work.
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Introduction

Idiopathic pulmonary fibrosis (IPF) is the most
common fibrotic interstitial lung disease (ILD)
with chronic, progressive, and heterogeneous fea-
tures. While some IPF patients get progressively
worse over the progression of the disease, others
remain relatively stable.! The incidence of IPF
ranges from 2 to 30 per 100,000 people and prev-
alence ranges from 10 to 60 cases per 100,000
people.? These figures are generally equivalent to
130,000 patients in America, 640,000 patients in
East Asia, and roughly 3,000,000 worldwide.?5

As it progresses, patients experience dyspnea and
hypoxemia with poor quality of life and a high risk
of developing complications such as acute exacer-
bations and pulmonary hypertension. Generally,
the median survival time of IPF ranges from 2 to
5years.! Factors related to a poor prognosis
include older age, male gender, increased dysp-
nea, and worse physiological abnormalities.

Due to the limited recognition of this disease, early
diagnosis and prevention remained crucial. IPF is
usually diagnosed by identifying a radiological or
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histological pattern of usual interstitial pneumonia
(UIP) without clear evidence caused by alternative
diseases.® A primary challenge for clinicians in
diagnosis remains the exclusion of other known
causes, such as connective tissue disease-related
ILD (CTD-ILD) and interstitial pneumonia with
autoimmune feature.”

The IPF guideline published in 2022 suggested
that patients with high-resolution computed
tomography (HRCT) of UIP and probable UIP
patterns are not recommended to undergo lung
biopsy,® indicating the great value of HRCT for
IPF diagnosis. Also, a series of studies proved the
value of chest computed tomography (CT) in IPF
prognosis.®12 This review provides a comprehen-
sive CT evaluation of IPF prognostic models and
discusses the role of artificial intelligence (Al) in
constructing prognostic models.

Evaluation of CT in IPF prognostic model

As CT plays a vital role in predicting IPF progno-
sis, recent studies have tried to integrate it into
models to improve their performance and accu-
racy. The clinical, radiological, and physiological
(CRP) model by King et al.l3 combined the
extracted CT features with clinical features and
pulmonary function indices. Oda et al.l# tried to
quantify the extent of fibrosis in HRCT and pro-
posed an AHRCT scoring system that measured
the changes in the HRCT fibrosis score (FS)
from baseline to follow-up. They assessed HRCT
at baseline and subsequently after 6 and
12 months, respectively. Patients with higher ele-
vated HRCT scores showed worse outcomes than
those with relatively stable scores. Inspired by the
Gender-Age-Physiology (GAP) model, Ley
et al.1> replaced the carbon monoxide diffusing
capacity (DL) in the GAP model with the FS of
radiographs, and proposed the CT-GAP model,
which had a similar performance to the GAP
model, suggesting FS could be a substitute for
DL if the latter is unavailable.

In addition to traditional visual features, addi-
tional radiographic characteristics, such as the
ratio of the diameter of the pulmonary artery to
the aorta (PA:A), have been suggested as potential
indicators for outcomes of IPF patients.!® Yagi
et al.l7 proved that PA:A and mean pulmonary
artery pressure (mPAP) could be indicators for a
worse prognosis with an area under the curve
(AUC) of 0.75. Jacob et al.!2 proposed that

vessels-related structures (VRSs) in CT-automated
measures could predict IPF prognosis and aid
researchers in reducing IPF drug trial sample
sizes. Moreover, Nakagawa et al.ll utilized the
quantitative CT-derived honeycombing area, a
vital feature of IPF, to predict mortality. The
study by Loeh et al.l® measured densitometry in
CT assessments and found that densitometry-
derived parameters were linked to patients’ pul-
monary function and mortality. In addition,
time-serial CT makes it possible for clinicians to
monitor and quantify disease progression as Jacob
et al.% calculated change in annualized VRS
parameters, proved its weak associations with
forced vital capacity (FVC), and considered it as a
strong predictor of IPF prognosis.

Therefore, CT images are crucial in assessing and
predicting IPF prognosis. Various visual features
observed in CT scans provide valuable insights
into the disease severity and serve as risk factors.
Honeycombing and reticular opacity are two
most critical features of IPF, as both indicate the
extent and severity of fibrotic lung involvement.
Other features, such as traction bronchiectasis,
emphysema, and pulmonary artery hypertension,
also contribute to the overall risk in IPF patients.

The visual assessment may not objectively and
accurately calculate the area of specific patterns.
The variation among observers impairs the subjec-
tivity and introduces potential interference in the
assessments.!8 Thus, applications of Al algorithms
play a crucial role in automated identification, par-
titioning, and computer-assisted diagnosis in IPF
prognostic model.

Applications of Al algorithms in the procedures

of IPF prognostic model construction

To construct a prognostic model for IPF, the ini-
tial step entails the acquisition of a comprehen-
sive dataset. A dataset of superior quality
necessitates ample data, minimal noise interfer-
ence, precise data cleaning, and accurate labels
derived from representative samples.!® Then, the
dataset is partitioned into the training and testing
set. The subsequent steps involve the evaluation
of CT, which primarily includes image segmenta-
tion, feature extraction, and analysis. To conduct
further research, it is common to segment the
region of interest (ROI), which is highly associ-
ated with the prognosis, such as the fibrosis area
in IPF. Through automated and semi-automated
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segmentation methods, Al can assist in effectively
delineating ROI areas, such as U-net, nnU-net,
and deeplab.?0-23 These models are categorized
under convolutional neural networks (CNNs),
utilizing convolution to extract relevant features
by applying small filters to local regions.

Radiomics is a method that obtains many quanti-
tative features from an image, enabling the auto-
mated classification of medical images into
predefined categories.?* The radiomic features,
different from clinical indicators, can uncover
deeper patterns and characteristics of images and
reduce the need for unnecessary biopsies.

As the number of extracted features through radi-
omics may be enormous, feature engineering and
dimensionality reduction must be applied.
Standard data dimensionality reduction algo-
rithms include isometric mapping, principal com-
ponent analysis, and locally linear embedding.
These algorithms project data onto a lower-
dimensional space while retaining as much infor-
mation (like variance, local structure, and
geodesic distances) as possible. In addition, com-
monly used clinical features, including pulmo-
nary function,?> routine blood tests, blood gas
analysis, and tumor markers can be selected
according to clinical expertise or machine
learning algorithms. Due to differences in data
characteristics, other algorithms such as k-means
and support vector machine (SVM), may be
taken to select predictive features for prognosis.
Through constructing a hyperplane in high-
dimensional or infinite-dimensional space, SVM
separates different types of data. The k-means
clustering principle is a widely used unsupervised
machine learning algorithm that aims to partition
a dataset into k distinct clusters.2°

Subsequent feature selection and model develop-
ment are performed and then evaluated in the
training set. There are traditional methods like
Cox regression, Kaplan-Meier analysis, and
newly developed AI algorithms such as random
forest (RF), random survival forest (RSF), gradi-
ent boosting decision tree (GBDT), and artificial
neural network (ANN). Different algorithms
extract important features through various meth-
ods, such as using p values and hazard ratios in
Cox regression, splitting of features at nodes in
RF and RSF, feature contribution scores (the fre-
quency or depth of feature used in building trees)

in GBDTs, and weight adjustments (based on
backpropagation and gradient descent) in ANNSs.
RSF combines the concepts of RFs with survival
analysis, making it suitable for constructing prog-
nostic models by analyzing time-to-event data
commonly encountered in clinical practice
(Figure 1).27

Radiomics is widely applied in the prognostic
models of IPF and analysis of CT images.
Radiomics describes the geometric properties of
fibrillated regions, first-order statistical features,
and higher-order texture features. Budzikowski
et al.?8 utilized differences in radiomic features
from lung regions in CT scans of IPF patients to
explore correlations between genetic variations
and patient survival. Yang et al.?° demonstrated
that radiomic features extracted from pretreat-
ment HRCT scans could forecast how patients
with IPF would respond to antifibrotic treatment.
Liang et al.3° demonstrated radiomics model
based on CT is capable of predicting lung cancer
development in IPF patients. Refaee et al.3!
developed a classification model between IPF and
non-IPF ILDs based on handcrafted radiomics
and deep learning (DL).

Al-aided CT evaluation in IPF prognostic model
Compared with non-Al, Al presents a promising
alternative to human readers with more objective
and standardized assessments by precisely quan-
tifying specific patterns and capturing deep fea-
tures. Also, Al offers the potential for obtaining
higher efficiency and scalability. For data collec-
tion, AI models allow people to gather high
throughput and multi-modal data and automati-
cally select highly predictive factors.

Combining quantitative CT analysis with Al
algorithms, computer-aided lung informatics for
pathology evaluation and ratings (CALIPER) is a
quantitative CT analysis tool developed at Mayo
Clinic Rochester. It can predict the prognosis of
IPF patients more objectively and reproducibly
than visual assessments.?2 However, integrating
the composite physiologic index into the
CALIPER-derived model didn’t improve perfor-
mance, which demonstrates the value of HRCT
in predicting prognosis.?> Additionally, Romei
et al.3* applied CALIPER to evaluate radiologic
progression in IPF, with a clear correlation
between CALIPER-derived parameters and FVC
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Figure 1. The applications of Al in the prognostic model of IPF. The relationship between Al, machine learning, and deep learning
is illustrated by the examples of different algorithms. Also, it shows the four procedures in the prognostic model of IPF and
representative Al algorithms, in terms of region of interest extraction, image feature selection, clinical feature selection, and model

construction.

Al, artificial intelligence; GCN, graph convolutional neural networks; IPF, idiopathic pulmonary fibrosis; RF, random forests; RNN, recurrent neural

network.

changes. Beyond CALIPER, Ash et al.3> devel-
oped a method depending on the histogram of
lung density and the distance to the surface of the
pleura. Later, Bak et al.3® applied a texture-based
automatic system to extract features from initial
radiographs and proposed a formula that utilized
an automatically derived FS and emphysema
index to assess the extent of fibrotic and emphy-
sematous area with a sensitivity of 0.71.

In addition to the fully automated method, there
are also methods in terms of pre-established train-
ing sets. Lee et al.37 established a CT quantitation
system following six specific patterns pre-marked
by radiologists. Shi et al.?® constructed a model
including FS, interval changes of FS, age, and
desaturation, reaching a C-index of 0.768. They
chose wrapper methods to select features and
introduced quantum particle swarm optimization
(QPSO) as an optimizer and RF as a classifier to
propose the QPSO-RF algorithm. Unlike previ-
ous research, features extracted by the QPSO-RF
algorithm may not be specific image patterns.
Other researchers adopted the QPSO-RF
algorithm to predict ROI as progressive or

non-progressive with a sensitivity of 0.68 and
specificity of 0.65 in original images.3° Recently,
Wu et al.?> designed a lung segmentation network
to assess the percentage of honeycombing area
occupying the whole lung and proposed a com-
puted tomography pulmonary function model to
predict a 3-year survival rate in IPF. Besides,
research based on computer-aided diagnosis
(CADx) systems*? and data-driven textural analy-
sis (DTA)#! also reveal satisfying outcomes in the
training set and may be available in the future.
The Al algorithms for model construction, radio-
graph assessment, and data collection show great
potential in joint use with quantitative CT
analysis.

Comparison of Al and non-Al applications

in the IPF prognostic model

Through the detailed description and perfor-
mance metrics (AUC, specificity, sensitivity) of
both non-Al and Al prognosis models (Tables 1
and 2), we may observe that the AUC of these
models ranges variably. Sensitivity is the propor-
tion of true negatives among all actual negatives.
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Figure 2. Comparison of Al and non-Al techniques in IPF prognostic model. Based on deep learning neural networks, Al technology
can realize the automatic processing of data collection and CT assessment in the process of model construction. In contrast, non-Al
technologies require human assistance and rely on human experience for evaluation. Also, Al-aided techniques may extract more

detailed and deeper features for analysis and construct more effective progn

ostic models.

Al, artificial intelligence; AMFM, adaptive multiple features method; CALIPER, computer-aided lung informatics for pathology evaluation and ratings;
CNN, convolutional neural networks; DTA, data-driven textural analysis; FRI, functional respiratory imaging; GBDT, gradient boosting decision tree;
IPF, idiopathic pulmonary fibrosis; LSTM, long short-term memory; MLP, multilayer perceptron; QLF, quantitative lung fibrosis; RNN, recurrent

neural network; RSF, random survival forest; XGB, extreme gradient boosting.

Specificity is the proportion of actual positives.
While, the AUC represents the area under the
receiver operating characteristic curve, measuring
the model’s ability to distinguish between classes.

Though we cannot conclude that Al algorithms
significantly improve the performance of IPF
prognostic models, they effectively improve the
analysis procedure, enhance clinical efficiency,
and are available for large-scale population
research. Non-Al models mainly rely on tradi-
tional statistical methods, known clinical features,
and direct analysis of radiological features. In
contrast, AI models use machine learning algo-
rithms to construct prognostic models based on
massive clinical features, deep features, and radi-
omics after segmentation from HRCT. DL algo-
rithms enable a comprehensive understanding of

HRCT images and maximize the utilization of
features, including texture analysis, pattern rec-
ognition, and volumetric analysis (Figure 2).

As mentioned above, recent studies attempt to
combine CT images with other features, utilizing
newly developed Al algorithms to extract features
from CT.25:33:38:39 Now, with the help of Al, it is
possible to quantify the lesion in CT with less
time and better accuracy.4? There are a few stand-
ard methods available such as density histo-
gram,*%5 adaptive multiple features method
(AMFM), CALIPER,% quantitative lung fibrosis
(QLF),% functional respiratory imaging (FRI),*’
and DTA.4! Density histogram and QLF may
measure the extent of lung fibrosis through the
Hounsfield unit scale. AMFM quantifies lung
parenchymal patterns on CT and analyses lung
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Limited data sources but various models
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Figure 3. The limitation and the prospect of Al in the IPF prognostic model. Despite some limitations such as limited data sources,

various models, overfitting of the model, and lack of interpretability, the Al model has many potential application prospects in
IPF prognosis for its time-series model, multi-modal data, interpretability, and ability to find new features, and these can be

transformed into each other under certain conditions.
Al, artificial intelligence; IPF, idiopathic pulmonary fibrosis.

texture. FRI may enable regional quantification
of the lung, and DTA assesses the severity and
progression of the disease.

In summary, with Al algorithms being widely
applied in the prognosis of IPF and other dis-
eases, we can fully utilize CT data, achieve objec-
tive quantification, improve evaluation efficiency,
and obtain new features from large-scale data.

Limitations of Al algorithms in the research

of IPF prognostic model

The IPF prognosis study faces limitations in
terms of scalability, robustness, and application
range of algorithms or models due to the scarcity
of data sets (Figure 3). IPF is a relatively rare dis-
ease because of its low incidence rate, difficulty in
diagnosis, and limitation in clinical cognition.
Thus, limited data sources and single-center
research obstruct the development of a universal
and reliable model for the prognostic model of
IPF. Relatively, the limited data resources derived
various models as mentioned in the tables. Larger,
more diverse datasets across multiple centers to
train and validate Al models are highly needed.

Additionally, concerns related to overfitting arise,
where the model may demonstrate high accuracy
on the training dataset but fail to generalize well
to other datasets, leading to potential limitations
in model robustness and applicability.48:49

The interpretability of the AI model presents a
significant challenge in terms of widespread appli-
cation. In the medical field, there is still a lack of
consensus regarding the definition of interpreta-
bility and standardized evaluation. AI may prior-
itize features based solely on accuracy in prognosis
without considering their medical significance. As
a result, the “black box” problem hinders its full
integration into IPF clinical practice.5°

In machine learning, model training depends on
labels obtained by medical experts. However,
errors or oversights in the labeling or analysis pro-
cess can amplify the mistakes made by AI models.
Additionally, there are still concerns about legal
responsibility and ethical issues. Though the AI
model may make decisions based on a black box
with relatively stable results, we should be cau-
tious about its applications in the real world and
be aware of ethics and algorithm discrimination.
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Prospective of Al algorithms in IPF prognostic
model

Though recent studies have made progress in the
qualification of CT, there is no doubt that the
potentiality of CT in predicting outcomes of IPF
patients needs further exploration (Figure 3).
Multi-modal data, including CT, pulmonary
function, tumor markers, and blood gas analysis,
are increasingly crucial to evaluating IPF patients.
More than including varieties of new clinical fea-
tures, massive information is hidden in CT to be
explored. One potential direction is to introduce
several CT's in a period rather than CT at baseline
to estimate the progression of IPF and improve
the prediction of prognostic models. By analyzing
time-series CT images, models can better evaluate
the progression of IPF, dynamically guide treat-
ment options, and predict patients’ outcomes.
Another direction is to explore new CT patterns
and features through newly developed machine
learning algorithms to predict patients’ outcomes.
Aided by AI, CT analysis extends from visual
designs such as honeycombing and reticular opac-
ity to high-dimensional features.?® Though fea-
tures extracted by Al may be complicated for
human readers to explain, the algorithm can auto-
matically apply these features to mark and calcu-
late lesion area. Besides, this approach can
eliminate the inter-observer variation of CT evalu-
ation and improve the accuracy of prognostic
models. The interpretive approach method for
IPF DL images mainly includes visualization of
the lesion area and semantic case. Interpretable
deep semantic CNNs produced interpretable lung
cancer prediction and obtained significantly better
results than the common 3D CNN method.>! The
success in other fields, such as multi-domain net-
works in pathology,>? attention model,>®> and
Grad-CAM (Gradient-weighted Class Activation
Mapping) model,>* encourages us to apply more
technologies to the IPF field. Insights into high-
lighted regions by Al systems above can be pro-
vided through techniques like activation maps
(the activation values of convolutional layers) and
attention mechanisms (with higher numerical val-
ues indicating greater relevance), thus enabling
clinicians to understand which image areas are
crucial for the model’s decision-making or to
cross-validate their interpretations.

The Al-aided clinical practice in IPF may be
expected. The automatic analysis throughout the
long-term management, the accurate and data-
based prediction, and the full utilization of CT

series may lower the management burden of IPF
patients, and allow clinicians to effectively treat
these patients. The progression of IPF may be
intervened by corresponding measures such as
combined antifibrotic medicines, pulmonary
rehabilitation, and lung transplantation based on
Al assessments.

Conclusion

The applications of CT in the prognostic model
of IPF have significantly improved the model per-
formance. Al optimizes the process of data extrac-
tion, model construction, and performance.
Multi-modal data and AI algorithms will be
applied to the prognosis model of IPF in the
future, leading to an accurate, stable, and generic
prognostic model for the better clinical manage-
ment of IPF patients.
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