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A validation of the two‑high 
threshold eyewitness identification 
model by reanalyzing published 
data
Nicola Marie Menne *, Kristina Winter , Raoul Bell  & Axel Buchner 

The two‑high threshold (2‑HT) eyewitness identification model serves as a new measurement 
tool to measure the latent cognitive processes underlying eyewitness identification performance. 
By simultaneously taking into account correct culprit identifications, false innocent‑suspect 
identifications, false filler identifications in culprit‑present and culprit‑absent lineups as well as 
correct and false lineup rejections, the model capitalizes on the full range of data categories that are 
observed when measuring eyewitness identification performance. Thereby, the model is able to shed 
light on detection‑based and non‑detection‑based processes underlying eyewitness identification 
performance. Specifically, the model incorporates parameters for the detection of culprit presence and 
absence, biased selection of the suspect and guessing‑based selection among the lineup members. 
Here, we provide evidence of the validity of each of the four model parameters by applying the model 
to eight published data sets. The data sets come from studies with experimental manipulations that 
target one of the underlying processes specified by the model. Manipulations of encoding difficulty, 
lineup fairness and pre‑lineup instructions were sensitively reflected in the parameters reflecting 
culprit‑presence detection, biased selection and guessing‑based selection, respectively. Manipulations 
designed to facilitate the rejection of culprit‑absent lineups affected the parameter for culprit‑absence 
detection. The reanalyses of published results thus suggest that the parameters sensitively reflect the 
manipulations of the processes they were designed to measure, providing support of the validity of 
the 2‑HT eyewitness identification model.

The lineup procedure is an essential tool for assessing eyewitness identifications. In a lineup, a suspect is presented 
among fillers (known distractors that are not suspected of having committed the crime) to an eyewitness to test 
the hypothesis that the suspect is the culprit against the hypothesis that the suspect is innocent. Although eyewit-
ness identifications can be a powerful and indispensable form of evidence, the problem of misidentifications has 
been well documented through DNA-based  exonerations1. When the lineup includes the culprit (culprit-present 
lineup), the witness may correctly identify the culprit (correct culprit identification), but there is also the risk of 
an incorrect response in that the witness may identify a filler (false filler identification) or reject the lineup (false 
lineup rejection). When the suspect is innocent (culprit-absent lineup), the witness may either correctly reject the 
lineup (correct lineup rejection) or incorrectly identify the innocent suspect (false innocent-suspect identification) 
or a filler (false filler identification). An important goal of eyewitness identification research is to understand the 
latent cognitive processes underlying these decisions.

When two lineup procedures are compared, the simplest case is that one procedure is clearly superior to the 
other by yielding both a higher rate of correct culprit identifications in culprit-present lineups and a higher rate of 
correct lineup rejections of culprit-absent lineups. From such a data pattern, one may conclude that the superior 
lineup procedure provides better conditions for the process of detecting the culprit’s face in the lineup. However, 
an increase in the correct culprit identifications is often accompanied by an increase in the false identifications 
of innocent  suspects2. This demonstrates that understanding eyewitness identification performance in lineup 
procedures is complex because the selection of a suspect may not only be caused by the detection of the culprit 
but also by the biased selection of a suspect who stands out from the fillers, by guessing-based selection among 
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the lineup members or by any combination of these processes. To disentangle the contributions of these different 
processes to eyewitness identification performance, it is useful to apply a measurement model to the eyewitness 
identification data. Here, we introduce a novel two-high threshold (2-HT) eyewitness identification model for 
measuring the processes involved in eyewitness identification decisions. The aim of the present article is to test 
the validity of this model by reanalyzing published data. In an accompanying validation  study3, we applied the 
model to novel data that we had collected specifically for the purpose of testing the model’s validity. We consider 
these two approaches to model validation as complementary: A model should not only be able to account for 
novel data generated with the model in mind but also for published data of other research groups. To anticipate, 
both approaches support the validity of the model by showing that the model’s parameters sensitively respond to 
manipulations of the processes they were designed to measure, suggesting that the model parameters sensitively 
reflect these processes. Before we describe the 2-HT eyewitness identification model in more detail, we first 
provide a brief overview of the important discussion about the strengths and weaknesses of different methods 
for analyzing lineup data that has informed the development of the new measurement tool.

Measures of eyewitness identification performance in previous research
For some decades, eyewitness identification performance has been measured by using the diagnosticity ratio (or 
other measures of probative value), which is defined as the ratio of the proportion of correct culprit identifica-
tions to the proportion of false innocent-suspect  identifications4. Larger ratios indicate a higher likelihood that 
an identified suspect is  guilty5, which may be interpreted to suggest that a lineup procedure that consistently 
generates a higher diagnosticity ratio should be preferred over one that does not. However, it has been argued 
that this measure is affected not only by the ability to discriminate culprits from innocent suspects but also by 
the witness’s response bias, which reflects the overall conservative or liberal tendency to choose someone from 
the  lineup6–10. More specifically, the diagnosticity ratio has been shown to increase as a function of an increas-
ingly conservative response  bias9,11. This discussion has resulted in the application of signal detection  theory12 
to eyewitness identifications. Specifically, Mickes et al.13 introduced Receiver Operating Characteristic (ROC) 
analyses to the field of eyewitness identification research.

ROC analyses have the advantage of yielding a measure of discriminability which is not confounded by 
response  bias13. In the context of lineups, the term discriminability has been interpreted to refer to a witness’s 
ability to distinguish culprits from innocent  suspects10,14. An ROC curve is created by plotting the hit rate (i.e., 
the proportion of culprit identifications in culprit-present lineups) against the false alarm rate (i.e., the propor-
tion of innocent-suspect identifications in culprit-absent lineups) at different levels of liberal or conservative 
responding, the latter of which is typically inferred from the witnesses’ post-decision confidence judgements. It 
has been argued that the lineup procedure associated with the higher ROC curve—indicating higher hit rates 
and lower false alarm rates—is associated with superior discrimination between the culprit and an innocent 
suspect and should therefore be  preferred13,15.

ROC analyses have been developed to account for simple detection tasks with a 2 (signal present, signal 
absent) × 2 (identification, rejection) data structure (upper half of Table 1). In these tasks, only correct and false 
identifications are needed for measuring performance because the remaining two data categories (correct and 
false rejections) are redundant and provide no further information (false rejection rate = 1− correct identification 
rate; correct rejection rate = 1− false identification rate 12). Lineups differ from these simple detection tasks in 
that they include not only a culprit or an innocent suspect but also fillers. Therefore, in each of the two types of 
lineups (culprit-present, culprit-absent), witnesses can make one of three responses (suspect identification, filler 
identification, lineup rejection), resulting in the 2 × 3 data structure displayed in the lower half of Table 1 14,16. In 
ROC analyses, filler identifications are treated like lineup rejections and the two data categories are combined 
to transform the 2 × 3 data structure of lineups into a 2 × 2 data structure. This is justified by noting that filler 
identifications and lineup rejections have the same legal consequences for the suspect. Irrespective of whether the 
witness identifies a filler or rejects the lineup, the suspect is not further incriminated by the eyewitness procedure. 
Therefore, it has been argued that, for the purpose of deciding which of two lineup procedures is superior, it is suf-
ficient to analyze the rate of correct culprit identifications and the rate of false innocent-suspect  identifications13.

However, if the aim is to understand qualitatively different latent processes underlying eyewitness identifi-
cation decisions, the two data categories that are combined for ROC analyses can yield important information 
when analyzed separately. This is so because the underlying processes may differ between identifying a filler and 

Table 1.  Comparison of the data structures of the standard signal-detection task and the eyewitness 
identification task when confronted with a typical lineup.

2 × 2 data structure of the standard signal-detection task

Identification Rejection

Signal present Correct identification False rejection

Signal absent False identification Correct rejection

2 × 3 data structure of the typical eyewitness identification task

Suspect identification Filler identification Rejection

Culprit present Correct culprit identification False filler identification False lineup rejection

Culprit absent False innocent-suspect identification False filler identification Correct lineup rejection
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rejecting a lineup. This is already obvious from the fact that the identification of a filler in a culprit-absent lineup 
is a false response, while the rejection of a culprit-absent lineup is a correct response. In culprit-absent lineups, 
few correct lineup rejections and many false filler identifications thus indicate poor eyewitness performance, 
whereas many correct lineup rejections and few false filler identifications indicate good eyewitness performance. 
Hence, taking into account suspect and filler identifications separately can yield important information about 
the latent processes underlying eyewitness identification  performance14,16,17.

The 2‑HT eyewitness identification model
Here, we introduce a new measurement model for eyewitness identification performance that capitalizes on the 
full range of the data categories observed in typical lineup procedures within one model. The model belongs to 
the class of multinomial processing tree (MPT) models. Models from this class of formal measurement models 
for categorical data have been successfully applied to different areas within  psychology18,19 such as  memory20–23 
or decision  making24–26. Wagenaar and  Boer27 have already successfully introduced MPT models to the area of 
eyewitness memory research in a study in which they investigated the processes underlying the misinformation 
effect. MPT models are based on the assumption that observed response frequencies in a finite set of response 
categories can arise from combinations of latent processes that can be depicted in a tree-like  structure28. Each 
cognitive process is represented by a model parameter that serves to measure the probability with which the 
process  occurs19,29. Parameter estimation is achieved by employing the expectation-maximization algorithm 
proposed by Hu and  Batchelder30. The algorithm aims to determine a set of parameters that minimize the distance 
between the observed response frequencies and the response frequencies predicted by the model, as measured 
by the log-likelihood ratio goodness-of-fit statistic G230–32. If the deviation between the frequencies predicted by 
the model and the observed response frequencies is not statistically significant, it can be assumed that the model 
fits the  data19,29. A model is called identifiable when a unique set of parameter estimates provides an optimal fit 
for a given set of observed response  frequencies19,29. Under these circumstances, MPT models can be used to 
test hypotheses directly at the level of the model parameters. Hypotheses are tested by imposing theoretically 
motivated restrictions on model parameters. If the restricted model provides a significantly worse fit to the data 
than the model without the restriction (measured by the ∆G2 difference statistic), then the assumption implied 
by the restriction has to be  rejected18,19,29. Thereby, this method provides insights into the latent processes under-
lying observable behavior, which is a major advantage of MPT models given that psychological theories often 
involve hypotheses about cognitive processes. Parameter estimation and statistical tests can be performed with 
freely available computer  programs28,32,33.

The 2-HT eyewitness identification model is illustrated in Fig. 1. The structure of the model is congenial to 
that of MPT models designed to measure the processes underlying performance in other recognition paradigms 
[e.g.,34,35]. The model comprises two trees, one for each of the two possible types of lineups presented to the wit-
nesses (culprit-present and culprit-absent lineups). If the culprit is present (upper tree in Fig. 1), the presence 
of the culprit may be detected with probability dP (for detection of the presence of the culprit), which results in 
the correct identification of the culprit. The detection state is based on the witnesses’ memory of the culprit. If 
witnesses fail to detect the culprit, which occurs with the complementary probability 1 − dP, then two different 
types of non-detection-based processes may still lead to correct culprit identifications. First, the lineup may be 
unfair in that the suspect stands out from the fillers so that it can be inferred who the suspect is without relying 
on memory. One telling example is the case of Marvin Lamont Anderson who served fifteen years in prison for a 
rape that he did not commit. The selection of Anderson’s face in the police lineup was most likely due to the fact 
that the lineup was unfair: The witness was shown a color identification card of Anderson along with six black-
and-white mug shots that served as  fillers36. The false identification of Anderson as the culprit was not based 
on a culprit-detection process but most likely due to the biased selection of the color photo of Anderson that 
stood out from the black-and-white photos of the fillers. The process of biased selection of the suspect in unfair 
lineups is reflected in parameter b. In culprit-present lineups, the biased selection of the suspect yields a correct 
identification of the culprit. Second, if a biased selection of the suspect does not occur (with probability 1 − b), 
then witnesses may still select one of the lineup members based on guessing with probability g (for guessing-based 
selection). Guessing-based selection leads to the identification of the culprit with a probability that is equal to 
1 ÷ lineup size. For instance, in a lineup with six persons, the probability that guessing-based selection will lead 
to the identification of the culprit is 1/6. With the complementary probability (e.g., 5/6 in a six-person lineup), 
the witnesses will identify a filler. Alternatively (with probability 1 − g), the witnesses may abstain from selecting 
a lineup member based on guessing, which leads them to incorrectly reject the culprit-present lineup.

The lower tree illustrates the cognitive processes in response to lineups in which the culprit is absent. Wit-
nesses may correctly detect that the culprit is absent and that no other person in the lineup can possibly be the 
culprit with probability dA (for detection of the absence of the culprit), which results in the correct rejection of 
the lineup. This may occur, for instance, if all persons in the lineup have a birthmark and a witness then remem-
bers that the culprit did not have a birthmark. When the absence of the culprit is not detected (with probability 
1 − dA), the witnesses rely on the same non-detection-based biased and guessing-based processes as in culprit-
present lineups. With probability b, biased selection may occur if the innocent suspect stands out from the fillers 
in an unfair lineup. Biased selection leads to the false identification of the innocent suspect. If no biased selection 
occurs (with probability 1 − b), the witnesses may select one of the lineup members based on guessing with prob-
ability g. The probability with which guessing-based selection leads to the identification of the innocent suspect 
or one of the fillers depends on the lineup size (in a six-person lineup, the probability of identifying the innocent 
suspect is 1/6 and the probability of choosing one of the fillers is 5/6). If the witnesses abstain from selecting a 
lineup member based on guessing (with probability 1 − g), the culprit-absent lineup is correctly rejected.
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The 2-HT eyewitness identification model belongs to the class of 2-HT recognition models [cf.35,37–39]. Param-
eter dP indicates the probability of crossing the threshold for culprit-presence detection, whereas dA indicates the 
probability of crossing the threshold for detecting the absence of the culprit. To make 2-HT models in standard 
recognition tests identifiable, it is often assumed that the probability of detecting the presence of a signal is equal 
to the probability of detecting the absence of the signal [e.g.,37]. Here, we have the advantage that both detection 
parameters (dP and dA) can vary freely due to the increased number of independent observable data categories 
in lineups compared to simple old-new recognition tests [cf.40]. The 2-HT eyewitness identification model can be 
transformed into a one-high threshold model by setting parameter dA to  zero41. The fact that dA does not have to 
be set to a certain value to obtain model identifiability implies that it is possible to empirically test whether wit-
nesses are able to detect the absence of a culprit or not. To anticipate, the results of novel validation  studies3 and 
the present reanalyses of existing data consistently indicate that witnesses do not always spontaneously succeed 
in detecting the absence of the culprit but that there are circumstances in which witnesses can in fact detect the 
absence of the culprit (see the section on the validation of parameter dA below). When no further restrictions 
are employed, then the 2-HT eyewitness identification model has zero degrees of freedom, implying that there 
are as many free parameters as there are independent data categories to fit.

Importantly, the parameters of a novel MPT model need to be  validated19,29. A crucial first step of model 
validation entails testing whether the parameters of the model measure the processes they were designed to meas-
ure. This is achieved by testing, for each model parameter, whether a parameter intended to represent a specific 
cognitive process is affected by experimental manipulations that target this  process18. We decided to take two 
complementary approaches to model validation. In one  approach3, novel data were collected to target the model 
parameters one by one. Here, we test whether the parameters of the 2-HT eyewitness identification model are 
valid given published data from other research groups. We see these approaches as complementary. The follow-
ing criteria were employed to select the data sets for the present reanalyses: First, the data had to be reported in 
sufficient detail, which is not the case for a surprisingly large number of studies. Second, the effect of the experi-
mental manipulation on a model parameter had to be as obvious as possible a priori. In validation experiments, 
manipulations are needed for which there is a straightforward relationship between the factors manipulated and 
the cognitive processes that can be expected to be influenced by those manipulations. Third, the study design 
had to be of minimal complexity to keep the reanalysis as simple as possible. For each of the four parameters of 
the 2-HT eyewitness identification model, the first two studies that fulfilled these requirements were analyzed. 

Figure 1.  Graphical illustration of the 2-HT eyewitness identification model. Rounded rectangles on the left 
represent the two types of lineups presented to the participants (culprit-present and culprit-absent). Rectangles 
on the right represent the observable response categories. The letters attached to the branches represent the 
probabilities of the latent cognitive processes postulated by the model (dP = probability of detecting the presence 
of the culprit; b = probability of biased selection of the suspect; g = probability of guessing-based selection among 
the lineup members; lineup size = the number of persons in the lineup; dA = probability of detecting the absence 
of the culprit).
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First, we validated the culprit-presence detection parameter dP by testing whether the duration of the exposure 
to the culprit’s face and the viewing conditions at encoding affect the participants’ ability to detect the culprit’s 
presence in the lineup. Second, we validated the biased-suspect-selection parameter b by reanalyzing the data 
of two studies in which lineup fairness was manipulated. Third, we tested whether the guessing-based selection 
parameter g differs between one-sided and two-sided pre-lineup instructions. One-sided instructions insinuate 
that the culprit is in the lineup, whereas two-sided instructions emphasize that the culprit might or might not be 
in the lineup. Finally, we completed the model validation by showing that techniques developed to help children 
and older adults to reject culprit-absent lineups selectively affect the culprit-absence detection parameter dA.

Manipulations of culprit‑presence detection: Validation of parameter dP
Our first aim was to validate parameter dP, which represents the probability of detecting the presence of the 
culprit. The probability of detecting the culprit’s face can be expected to increase with the duration of exposure to 
the culprit’s face based on the results of recognition [for a meta-analysis,  see42] and staged-crime  studies43,44 show-
ing better detection performance following longer exposure. Here, we tested whether these effects of exposure 
duration are sensitively reflected in parameter dP by reanalyzing the data of Memon et al.45 who had manipulated 
culprit-exposure duration at encoding. We also applied the 2-HT eyewitness identification model to the data of 
Smith  [46, Experiment 1] who had manipulated the viewing conditions at encoding. When the viewing condi-
tions at encoding are poor, the culprit’s face should provide a weaker match to memory, which should hinder 
culprit-presence detection.

Effects of exposure time on culprit‑presence detection: Reanalysis of Memon et al.45. In the 
study of Memon et al.45, participants viewed a simulated staged-crime video in which they saw the culprit’s face 
for either a long or a short duration. In line with previous  research43,44, Memon et al. found that participants 
were better able to identify the culprit under the long than under the short exposure duration. The model-based 
reanalysis of these data should show that the manipulation of exposure duration affects parameter dP. More 
precisely, parameter dP should be significantly higher for the long compared to the short exposure condition.

Method. Memon et al.45 randomly assigned younger (age: 17 to 25 years, n = 84) and older (age: 59 to 81 years, 
n = 80) participants to one of the four conditions resulting from a 2 (exposure duration: short vs. long) × 2 (cul-
prit presence: present vs. absent) between-subjects design. Participants saw a staged-crime video depicting a 
robbery. The video was long (100 s) or short (67 s). The long video involved a clear exposure to the face of the 
main culprit for 45 s. The short video provided a full-face and profile-view exposure to the face of the main 
culprit for only 12 s. After having completed several filler questionnaires, participants were given standard two-
sided pre-lineup instructions. Specifically, participants were informed that the culprit may or may not be in the 
lineup. Participants were then asked to identify one of the lineup members as the culprit or to indicate that the 
culprit was absent. Half of the participants saw a culprit-present black-and-white photo lineup consisting of 
six faces in a 3 × 2 array. For the remaining half of the participants, the culprit was replaced by another filler to 
construct a culprit-absent lineup. All fillers matched the culprit’s general description. Both the culprit and the 
filler that replaced the culprit were positioned in the top right-hand corner of the array [for more details,  see45].

Results. For all analyses reported in this article, parameter estimates were obtained and likelihood-ratio tests 
were performed using multiTree32. The α level was set to 0.05. The observed response frequencies (see the upper 
half of Table 2) were reconstructed from the data reported in Memon et al.’s45 Table 1 in which the exact number 
of participants for each condition is not provided. We therefore divided the total number of participants in each 

Table 2.  Response frequencies as reconstructed from Table 1 of Memon et al.  [45, p. 345] and from Table 1 of 
Smith  [46, p. 500], see text for details.

Culprit-present lineups Culprit-absent lineups

Culprit 
identifications Filler identifications Lineup rejections

Innocent-suspect 
identifications

Filler 
identifications Lineup rejections

Memon et al.45

Exposure duration

 Younger participants

  Long 20 1 0 2 7 12

  Short 6 9 6 3 16 2

 Older participants

  Long 17 2 1 2 8 10

  Short 7 9 4 3 13 4

Smith46

Viewing conditions

  Clear 79 9 20 9 43 153

  Degraded 17 35 47 18 89 96
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age group by four (the number of conditions in each age group) to estimate the number of participants in each 
condition. Following standard practice [cf.47,48], the number of innocent-suspect identifications was estimated 
by dividing the total number of false identifications in culprit-absent lineups by the number of lineup members 
(in this case, six). Likewise, the number of filler identifications in culprit-absent lineups was estimated by sub-
tracting the number of innocent-suspect identifications from the total number of false identifications. To test 
how the manipulation of exposure duration affects parameter dP, four sets of the processing trees displayed in 
Fig. 1 were needed, one for the long and one for the short exposure duration, for both the younger and the older 
participants, respectively. Parameters dA and b were each set to be equal among the four conditions because 
there was no reason to assume that these parameters should differ as a function of the conditions. To simplify 
the output, we also aggregated the data for younger and older participants by imposing the equality restric-
tions that culprit-presence detection (dP) and guessing-based selection (g) did not differ between the two age 
groups in each exposure condition. These assumptions were based on the results of Memon et al. who had found 
no significant effect of age on lineup performance. The model incorporating these restrictions was used as a 
comparison standard for the subsequent nested likelihood-ratio tests, G2(10) = 8.19, p = 0.610. The estimates of 
parameter dP as a function of exposure duration are shown in the left panel of Fig. 2. Table 3 shows the estimates 
of parameters b, g and dA.

As explicated above, the 2-HT eyewitness identification model is based on the full 2 × 3 structure of lineup 
data. To use the model for the present reanalysis and that of all other data sets without a designated innocent 
suspect, it is thus necessary to make the assumption that the culprit-absent lineups contained an innocent suspect 
and that the lineups were fair, which implies that the innocent suspects were selected with the same probability 
as each of the fillers. Given that the proportion of innocent-suspect identifications is determined from the pro-
portion of filler identifications, one could argue that, technically speaking, experiments without a designated 
innocent suspect have one fewer independent data category than experiments with a designated innocent suspect. 

Figure 2.  Estimates of parameter dP (representing the probability of detecting the presence of the culprit) of 
the 2-HT eyewitness identification model when applied to the data reported by Memon et al.45 and by Smith  [46, 
Experiment 1] as a function of exposure duration (long vs. short; left panel) and viewing conditions at encoding 
(clear vs. degraded; right panel). The error bars represent standard errors.

Table 3.  Estimates of parameters b, g and dA of the 2-HT eyewitness identification model for the data 
reported by Memon et al.45 and by Smith  [46, Experiment 1]. Values in parentheses represent standard errors. 
Within the model used as a comparison standard, parameter g was estimated separately for long and short 
exposure  conditions45 and for clear and degraded viewing conditions  [46

Memon et al.45 Smith46

Exposure duration

Parameter estimates

Viewing conditions

Parameter estimates

b g dA b g dA

Long
.02 (.04)

.48 (.09)
.00 (.12)

Clear
.00 (.01)

.26 (.04)
.00 (.12)

Short .78 (.06) Degraded .51 (.05)
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As noted by a reviewer during the review process, this would result in a loss of degrees of freedom in the model 
used as a comparison standard. However, the same applies to all nested models generated by parameter restric-
tions (see below). Therefore, none of the subsequent likelihood-ratio tests, all of which pertain to the differences 
between the models used as comparison standards and the more restricted, nested models that are central to the 
model validation are affected by this issue.

The culprit-presence detection parameter dP was clearly affected by exposure duration. Participants in 
the long-exposure group were significantly more likely to detect the culprit than those in the short-exposure 
group, ∆G2(1) = 34.33, p < 0.001. Furthermore, the probability of selecting a lineup member based on guessing 
(parameter g) was significantly higher when exposure duration was short than when it was long, ∆G2(1) = 10.24, 
p = 0.001, likely reflecting the well-established phenomenon of compensatory guessing, that is, the phenomenon 
that participants tend to rely more on guessing when memory is  poor23,49–54.

Effects of viewing conditions on culprit‑presence detection: Reanalysis of  Smith46. Smith  [46, 
Experiment 1] manipulated the viewing conditions at encoding by presenting participants with either a clear or a 
degraded version of a simulated-crime video. In line with the results of Smith et al.  [55, Experiment 1], degraded 
viewing conditions decreased culprit detection performance. If the 2-HT eyewitness identification model is 
valid, the manipulation of viewing conditions should affect the culprit-presence detection parameter dP. Specifi-
cally, parameter dP should be significantly higher for the clear compared to the degraded viewing conditions.

Method. Smith  [46, Experiment 1] randomly assigned 615 participants to one of the four experimental con-
ditions resulting from a 2 (viewing conditions: clear vs. degraded) × 2 (culprit presence: present vs. absent) 
between-subjects design. Half of the participants viewed the video of the culprit in high-resolution so that the 
culprit’s facial features were clearly visible. The remaining participants saw a low-resolution, overexposed version 
of the same video in which it was extremely difficult to perceive facial details. In both versions of the 90-s video, 
a scene at an airport was shown in which the culprit switched his suitcase with that of another person. After hav-
ing completed a 4-min anagram task, participants were given standard two-sided pre-lineup instructions and 
were then presented with a simultaneous lineup. The data from the culprit-absent lineups were crucial for testing 
Smith’s hypothesis. Therefore, approximately two-thirds of the participants were presented with the culprit-
absent lineup containing six fillers. About one-third of the participants saw a six-person culprit-present lineup 
that included the culprit together with five of the six fillers who were randomly selected. All fillers matched 
the culprit’s general description. The lineup members were presented in random order [for more details,  see46, 
Experiment 1].

Results. The observed response frequencies (see the lower half of Table 2) of lineup identifications and rejec-
tions were taken from  Table 1 in  Smith46. As in the previous analysis, we estimated the number of innocent-
suspect identifications using the standard procedure of dividing the total number of false identifications in cul-
prit-absent lineups by the numb er of lineup members [cf.47,48]. For the model-based reanalysis, we needed two 
sets of the processing trees depicted in Fig. 1, one for the clear and one for the degraded viewing conditions. As 
in the previous analysis, parameters dA and b were each set to be equal between both conditions because there 
was no reason to assume that these parameters should differ as a function of the viewing conditions. The model 
incorporating these restrictions was used as a comparison standard for the subsequent nested likelihood-ratio 
tests, G2(2) = 1.81, p = 0.405. The estimates of culprit-presence detection parameter dP as a function of viewing 
conditions are shown in the right panel of Fig. 2. Table 3 shows the estimates of parameters b, g and dA.

The model-based reanalysis confirmed that parameter dP sensitively reflected the effect of the viewing con-
ditions at encoding. The probability of correctly detecting the presence of the culprit was significantly higher 
under clear than under degraded viewing conditions, ∆G2(1) = 74.73, p < 0.001. In addition, parameter g was 
significantly higher when viewing conditions were poor, ∆G2(1) = 32.02, p < 0.001, which can be attributed to 
compensatory  guessing23,49–54.

Discussion. In reanalyzing data obtained from the  literature45,46, we first focused on parameter dP of the 
2-HT eyewitness identification model. Parameter dP reflects the detection of the presence of the culprit in a 
lineup. Both exposure duration and viewing conditions can be predicted clearly and unambiguously to affect 
the ability to detect the culprit in culprit-present lineups. Parameter dP sensitively reflected the two different 
manipulations of culprit-presence detection. The results of the first  reanalysis45 confirmed that parameter dP 
was significantly higher under long than short exposure to the culprit at encoding. The results of the second 
reanalysis  [46, Experiment 1] demonstrated that the culprit-presence detection parameter dP was significantly 
higher when viewing conditions at encoding were good than when they were poor. It can thus be concluded that 
parameter dP sensitively reflects manipulations of culprit-presence detection in the predicted directions, which 
is consistent with the theoretical interpretation of the results in the original  studies45,46. This suggests that the 
validation of parameter dP was successful.

In both reanalyses, the guessing-based selection parameter g was also affected by the manipulations of encod-
ing difficulty. Participants were more likely to select one of the lineup members based on guessing when culprit-
presence detection was poor. Ideally, the procedure of model validation entails experimental manipulations 
that only influence the target parameter (dP in this instance) in the expected direction without affecting other 
parameters. However, it is often not possible to find strong manipulations that influence only a single cognitive 
process without side effects on other  processes29. In such a case it is ideal if there is a plausible explanation for 
these side effects. In the present case, the side effect on the guessing-based selection parameter g can be explained 
by compensatory guessing, which refers to the well-established phenomenon that participants rely more on 
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guessing when memory is  poor23,49–54. The effect of compensatory guessing may thus be linked to the fact that 
the differences in memory between the conditions was rather strong in the reanalyzed studies of Memon et al.45 
and of  Smith46.

Manipulations of biased suspect selection: Validation of parameter b
Our second objective was to investigate the validity of parameter b, which serves to measure the probability of 
biased selection of the suspect from a lineup if the suspect stands out from the other lineup members. Thus, the 
estimate of b should primarily be determined by the degree of lineup fairness. Specifically, parameter b should 
be higher for unfair lineups than for fair lineups. If a lineup is perfectly fair, there is no way to tell the suspect 
apart from the other lineup members without memory of the culprit. Under these conditions, biased selection 
of the suspect should not be possible and parameter b should be indistinguishable from zero. Note that this is 
what happened in the reanalyses of Memon et al.45 and  Smith46 in which we followed the standard procedure 
of dividing the total number of false identifications in culprit-absent lineups by the number of lineup members 
[cf.47,48] to obtain an estimate of the innocent-suspect identifications in culprit-absent lineups. However, it is well 
known that real-world lineups are often not perfectly fair and there is strong evidence of a biased selection of 
suspects in unfair lineups [e.g.,56–58]. If the 2-HT eyewitness identification model is valid, then the biased selection 
of suspects in unfair lineups should be sensitively reflected in parameter b. This was tested by reanalyzing data 
from two large studies 48,59 in which lineup fairness was manipulated. Specifically, Wetmore et al.59 observed an 
effect on lineup fairness when manipulating the similarity between the suspect and the fillers. The study of Colloff 
et al.48 provides a complementary approach to manipulating the biased selection of suspects by eliminating, via 
digital photo manipulation, distinctive features that caused the suspect to stand out from the fillers.

Effects of filler‑suspect similarity on biased suspect selection: Reanalysis of Wetmore 
et al.59. Wetmore et  al.59 manipulated the degree of similarity between the lineup fillers and the suspect. 
Good fillers (high similarity to the suspect) were used to create a fair lineup, whereas bad fillers (low similarity 
to the suspect) were used to create an unfair lineup. Wetmore et al. found significantly more suspect identifica-
tions when the lineup was unfair than when it was fair. The theoretical interpretation of this finding was that the 
higher rate of suspect identifications in unfair lineups was due to biased suspect selection. Therefore, Wetmore 
et al.’s lineup fairness manipulation should be reflected in the 2-HT eyewitness identification model’s parameter 
b. Specifically, parameter b should be significantly larger for the unfair lineup than for the fair lineup if the inter-
pretation of parameter b in terms of biased suspect selection is valid.

Method. Wetmore et al.59 randomly assigned 1584 participants to one of the 18 conditions of a 3 (identifica-
tion task: showup vs. fair lineup vs. unfair lineup) × 3 (suspect: guilty vs. Innocent 1 vs. Innocent 2) × 2 (delay: 
immediate vs. delayed) between-subjects design. Participants watched a 105-s video of a man stealing a woman’s 
purse. Participants completed a distractor task that consisted of solving 20 anagrams either immediately or 
48 h after the simulated crime had been shown. Standard two-sided pre-lineup instructions were given before 
the participants proceeded to the identification task. Participants in the lineup condition viewed a six-person 
simultaneous lineup composed of two rows of three photos. The lineups included the culprit (culprit-present 
lineup) or an innocent suspect (culprit-absent lineup) who matched the culprit’s description. Wetmore et al. 
distinguished between two innocent suspects that had been taken from an earlier study by Gronlund et al.60. The 
innocent suspects were intended to be equally good matches to the culprit. For simplicity, we did not distinguish 
between the two innocent suspects. The participants saw either a fair or an unfair lineup. To create unfair lineups 
in which the suspect stood out, five poor fillers were selected who, apart from being white men, shared only one 
characteristic with the culprit. In contrast, fair lineups contained good fillers who, apart from being white men, 
shared five characteristics with the culprit [for more details,  see59].

Results. The observed response frequencies (see the upper half of Table 4) were reconstructed from the propor-
tions presented by Wetmore et al.59 in their Table 2. For simplicity, we limited our reanalysis to the lineup data to 
focus on the most relevant comparison (fair vs. unfair) for testing the validity of parameter b. Thus, four sets of 
the trees shown in Fig. 1 were needed, one for immediate fair, one for immediate unfair, one for delayed fair and 
another for delayed unfair lineups. The dA parameters were set to be equal among the four conditions because 
there was no reason to assume that the detection of culprit absence should differ as a function of the conditions. 
Given that Wetmore et al. had found no effect of delay on identification performance, we reduced the model 
complexity by assuming that biased suspect selection (b), culprit-presence detection (dP) and guessing-based 
selection (g) did not differ between immediate and delayed lineups. The model incorporating these restrictions 
was used as a comparison standard for the subsequent nested likelihood-ratio tests, G2(9) = 14.10, p = 0.119. The 
estimates of the biased-suspect-selection parameter b as a function of lineup fairness are shown in the left panel 
of Fig. 3. Table 5 shows the estimates of parameters dP, g and dA.

The fairness manipulation affected parameter b as predicted under the assumption that this parameter repre-
sents biased suspect selection. The probability of biased suspect selection was significantly higher in the unfair 
than in the fair-lineup condition, ∆G2(1) = 31.84, p < 0.001. In addition, guessing-based selection was more 
prevalent when the fillers matched the description of the culprit than when they did not match the description: 
Parameter g was decreased in the unfair in comparison to the fair-lineup condition, ∆G2(1) = 15.42, p < 0.001. This 
is to be expected because guessing-based selection among the lineup members should have been discouraged in 
the unfair lineup due to the poor match of the fillers to the description of the culprit. Parameter dP, which meas-
ures the ability to detect the presence of the culprit, was not affected by lineup fairness, ∆G2(1) = 0.19, p = 0.665.
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Effects of the elimination of distinctive features of the suspect on biased suspect selection: 
Reanalysis of Colloff et al.48. Colloff et al.48 presented participants with staged-crime videos in which 
the culprits had distinctive facial features. To create fair lineups, Colloff et al. tested three possible techniques to 
prevent distinctive suspects from standing out: blocking, pixelating or replicating the feature on all faces in the 
lineup using digital photo-manipulation technology. Colloff et al. also included an unfair lineup in which only 
the suspect had the distinctive feature. The results showed that if a suspect stood out, identifications shifted from 
the fillers to the suspect. Thus, unfair lineups led to significantly more suspect identifications than fair lineups. 
If the 2-HT eyewitness identification model is valid, the biased-suspect-selection parameter b should be affected 
by the manipulation of fairness. Specifically, parameter b should be higher for the unfair than for the fair lineups.

Method. Colloff et al.48 randomly assigned 8925 participants to one of the eight conditions of a 4 (lineup type: 
block vs. pixelation vs. replication vs. unfair) × 2 (culprit presence: present vs. absent) between-subjects design. 

Table 4.  Response frequencies as reconstructed from Table 2 of Wetmore et al.  [59, p. 11] and from Table 2   of 
Colloff et al.  [48, p. 1235], see text for details.

Culprit-present lineups Culprit-absent lineups

Culprit 
identifications

Filler 
identifications Lineup rejections

Innocent-suspect 
identifications

Filler 
identifications Lineup rejections

Wetmore et al.59

Lineup fairness

 Immediate

  Fair 41 6 13 31 74 54

  Unfair 57 2 11 56 37 58

 Delay

  Fair 59 13 14 22 59 38

  Unfair 54 4 14 48 31 39

Colloff et al.48

Lineup type

  Block 323 390 414 101 503 534

  Pixelation 320 411 414 102 512 510

  Replication 347 382 396 105 523 513

  Unfair 629 206 275 364 219 434

Figure 3.  Estimates of parameter b (representing biased selection of the suspect) of the 2-HT eyewitness 
identification model when applied to the data reported by Wetmore et al.59 and by Colloff et al.48 as a function of 
lineup fairness (fair vs. unfair). The error bars represent standard errors.
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The participants viewed one of four 30-s crime videos (carjacking, graffiti attack, mugging, theft) depicting four 
different culprits, each with a unique and distinctive facial feature (scar on the left cheek, bruising around the 
right eye, nose piercings in the left nostril or facial tattoo on the right cheek). After an 8-min retention interval, 
participants were presented with a simultaneous six-person lineup composed of two rows of three photos. The 
lineup consisted of either one culprit and five fillers (culprit-present lineup) or six fillers (culprit-absent lineup). 
The fillers were randomly drawn from a pool of 40 description-matched fillers created for each culprit. Depend-
ing on the condition, the distinctive feature of the culprit was treated differently. Three treatments were intended 
to produce fair lineups by (a) concealing the distinctive feature with a solid black rectangle on the culprit and 
by covering the equivalent area on each filler (block), (b) pixelating the distinctive feature on the culprit and the 
equivalent area on each filler (pixelation) or (c) digitally adding the distinctive feature to each filler (replication). 
In the unfair condition, participants saw a lineup in which the suspect stood out due to them being the only 
person with a distinctive feature. For unfair culprit-present lineups, Colloff et al. left the distinctive feature on 
the culprit unaltered. For each unfair culprit-absent lineup, a replication filler photo with the culprit’s distinctive 
feature was randomly selected to create an innocent suspect with the culprit’s distinctive feature while the other 
five filler photos remained unedited. For all lineups, the position of the culprit (in culprit-present lineups) and 
innocent suspect (in unfair culprit-absent lineups) was randomly determined. Before viewing the lineup, stand-
ard two-sided pre-lineup instructions were presented [for more details,  see48].

Results. The observed response frequencies (see the lower half of Table 4) were provided by Colloff et  al.48 
in their Table  2 (rounded to the next integer, where applicable). Four sets of the model trees depicted in Fig. 1 
were necessary to reanalyze the data, three for the fair-lineup conditions (block, pixelation, replication) and 
one for the unfair condition. The dA parameters were set to be equal among the four conditions because there 
was no reason to assume that the detection of culprit absence should differ as a function of the conditions. In 
Colloff et al., the three fair-lineup conditions were all associated with similar levels of performance. To keep the 
model as simple as possible, we therefore assumed that biased suspect selection (b), culprit-presence detection 
(dP) and guessing-based selection (g) did not differ among the three fair-lineup conditions. The model incor-
porating these restrictions was used as  a comparison standard for the subsequent nested likelihood-ratio tests, 
G2(9) = 12.92, p = 0.166. The estimates of the biased-suspect-selection parameter b as a function of lineup fairness 
are shown in the right panel of Fig. 3. Table 5 shows the estimates of parameters dP, g and dA.

Parameter b adequately reflected the fairness manipulation. The probability of biased suspect selection was 
significantly higher in the unfair-lineup condition compared to the fair-lineup condition, ∆G2(1) = 418.89, 
p < 0.001. In addition, parameter g, which represents the probability of selecting one of the lineup members 
based on guessing, was significantly decreased in the unfair-lineup condition in comparison to the fair-lineup 
condition, ∆G2(1) = 48.99, p < 0.001. This is to be expected given that guessing-based selection among the lineup 
members was discouraged by the fact that none of the fillers shared the culprit’s distinctive facial feature. This 
is parallel to what was observed in the data of Wetmore et al.59 considered in the previous section. The ability 
to detect the presence of the culprit, captured by parameter dP, was significantly higher in unfair than in fair 
lineups, ∆G2(1) = 8.37, p = 0.004, which can be explained by attention being drawn to faces with the culprit’s 
distinctive facial features.

Discussion. The results support the validity of parameter b representing the process of biased suspect selec-
tion. In the two experiments that were reanalyzed, unfair lineups were created either by using fillers with low 
similarity to the  suspect59 or by using a suspect with an uncovered distinctive facial feature that makes the 
suspect stand out from the  fillers48. Both model-based reanalyses demonstrated parameter b to be significantly 
higher for unfair lineups than for fair lineups. Parameter b thus sensitively reflects manipulations of biased sus-
pect selection.

When applying the 2-HT eyewitness identification model to Colloff et al.’s48 data, the culprit-presence detec-
tion parameter dP was also affected by lineup fairness. Better detection of culprit presence in unfair lineups can be 
easily explained by distinctive facial features drawing attention to the culprit’s face. This finding is in line with the 
well-established principle that the presence of highly similar distractors at test decreases memory performance 
[cf.14,61,62]. In both reanalyses, parameter dP was higher in unfair than in fair lineups, but this difference reached 
significance only in the reanalysis of the Colloff et al. data. Given that sample size was much larger in the study 

Table 5.  Estimates of parameters dP, g and dA of the 2-HT eyewitness identification model for the data 
reported by Wetmore et al.59 and by Colloff et al.48. Values in parentheses represent standard errors. Within 
the model used as a comparison standard, parameters dP and g were estimated separately for fair and unfair 
lineups. Parameter dA was set to be equal between the fair and the unfair-lineup conditions. dP = probability 
of detecting the presence of the culprit; g = probability of guessing-based selection among the lineup members; 
dA = probability of detecting the absence of the culprit.

Wetmore et al.59 Colloff et al.48

Lineup fairness

Parameter estimates

Lineup fairness

Parameter estimates

dP g dA dP g dA

Fair .61 (.05) .61 (.05)
.00 (.07)

Fair .22 (.01) .55 (.01)
.02 (.02)

Unfair .64 (.06) .42 (.05) Unfair .32 (.03) .43 (.02)
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of Colloff et al. than in the study of Wetmore et al.59, this discrepancy is expected if the secondary effect of lineup 
fairness on culprit-presence detection is more subtle than the primary effect of lineup fairness on biased selection 
and can thus only be detected when the sample size provides the statistical power to detect a subtle effect. At first 
glance, better culprit detection in unfair lineups may seem unexpected given that unfair lineups were associated 
with an impaired ability to discriminate between culprits and innocent suspects in the analyses of Colloff et al. 
and Wetmore et al. However, their conclusions relied on ROC analyses and thus only on the correct culprit 
identifications and false innocent-suspect identifications. As Smith et al.62 have already pointed out, the finding 
of increased culprit-presence detection in Colloff et al.’s unfair lineups is already apparent at the surface level 
of the raw response frequencies when considering the full 3 × 2 matrix of lineup data. The effect of the fairness 
manipulation on biased selection is obvious when looking at the false responses: Participants chose the innocent 
suspect in culprit-absent lineups more often than a filler when the lineup was unfair but chose one of the fillers 
more often than the innocent suspect when the lineup was fair. In the 2-HT eyewitness identification model, this 
effect is reflected in the biased-suspect-selection parameter b. However, when looking at the correct responses, it 
is clear that culprit-presence detection was better in unfair lineups than in fair lineups: In culprit-present lineups, 
participants made more correct identifications when the lineups were unfair than when they were fair, while 
the correct rejections in unfair lineups stayed at about the same rate. This aspect of the data is captured in the 
culprit-presence detection parameter dP in the 2-HT eyewitness identification model. Furthermore, the results 
of both  reanalyses48,59 showed a decreased guessing-based selection among the lineup members (parameter g) 
in unfair compared to fair lineups. Even without using a formal model of the processes underlying eyewitness 
performance, the surface-level data already suggest that guessing-based selection among the lineup members 
occurred less frequently when the lineup was unfair than when it was fair: Participants in both studies produced 
fewer filler identifications when lineups were unfair than when they were fair. Guessing-based selection among 
lineup members may have been discouraged in unfair lineups due to the poor match of the fillers to the culprit.

The 2-HT eyewitness identification model is able to capture all of these changes in performance because its 
parameters are based on the full 3 × 2 data structure to distinguish between culprit-presence detection, culprit-
absence detection, biased selection and guessing-based selection so that the model is able to capture changes in 
those data categories that are often ignored when lineup performance is analyzed. Our findings thus suggest that 
fair lineups produce better outcomes than unfair lineups because they decrease biased selection of the suspect 
and not because they improve culprit-presence detection [in line with the conclusions  of14,62].

Manipulations of guessing‑based selection: Validation of parameter g
The next step was to test the validity of parameter g, which reflects the probability of selecting one of the lineup 
members based on guessing, a process that occurs alarmingly frequently not only in the laboratory but also in 
real-world lineups in which selecting a lineup member as the culprit may have serious  consequences63. A straight-
forward and reliable way to manipulate guessing-based selection is to use instructions designed to manipulate 
the participants’ expectations about what they will encounter [e.g.,34]. In the context of lineups, so-called ‘biased’ 
pre-lineup instructions insinuate that the culprit is in the lineup and thus increase participants’ willingness to 
select one of the lineup members based on guessing when they are uncertain about whether or not the culprit is 
in the  lineup64–66. The term ‘biased instructions’ is often used to refer to one-sided instructions that emphasize 
selectively the importance of selecting the culprit. The term ‘unbiased instructions’ is often used to refer to two-
sided instructions that make participants aware of the fact that the culprit may or may not be in the lineup so 
that it is equally important to identify the culprit in culprit-present lineups and to reject culprit-absent lineups. 
Manipulating pre-lineup instructions therefore can be expected to affect the guessing-based selection parameter 
g and not the biased-suspect-selection parameter b. To avoid confusion, we therefore reserve the term ‘bias’ for 
the biased selection of the suspect in unfair lineups. We use the term one-sided instructions for instructions that 
emphasize selectively the need to identify the culprit and the term two-sided instructions for instructions that 
emphasize both the need to identify the culprit in culprit-present lineups and the need to reject culprit-absent 
lineups. One-sided instructions should encourage guessing-based selection, while two-sided instructions should 
discourage guessing-based selection. Here we reanalyzed datasets of Malpass and Devine 67 and of Lampinen 
et al.  [68, Experiment 1] who had used one-sided and two-sided pre-lineup instructions.

Effects of pre‑lineup instructions on guessing‑based selection: Reanalysis of Malpass and 
 Devine67. Malpass and  Devine67 influenced their participants’ guessing behavior by manipulating pre-lineup 
instructions that either insinuated or did not insinuate that the culprit was in the lineup. Malpass and Devine 
found that participants were more likely to choose one of the lineup members when one-sided instructions were 
given than when two-sided instructions were given, reflecting a higher prevalence of guessing-based selection 
after one-sided instructions. If parameter g of the 2-HT eyewitness identification model validly reflects guessing-
based selection, then parameter g should be higher under one-sided than under two-sided instructions.

Method. Malpass and  Devine67 randomly assigned 100 students to one of the four conditions of a 2 (lineup 
instruction: one-sided vs. two-sided) × 2 (culprit presence: present vs. absent) between-subjects design. The stu-
dents witnessed a staged act of vandalism during a biofeedback demonstration at the university. They were 
exposed to a male confederate (visible for 85 s) who damaged the electrical equipment before he fled the room. 
On one of three evenings following the act of vandalism, participants viewed a simultaneous live lineup con-
sisting of five persons who were lined up against the wall of a room. Half of the lineups included the culprit 
and four innocent fillers (culprit-present lineups), while the remaining lineups consisted of five innocent fillers 
(culprit-absent lineups). All fillers matched the appearance of the culprit. The position of each lineup member 
was counterbalanced. Before viewing the lineup, participants read either one-sided or two-sided printed lineup 
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instructions. The one-sided instructions led participants to believe that the culprit was present. The students 
were instructed to choose one of five numbers (one number for each lineup member). There was no obvious 
option for rejecting the lineup. Instead, participants had to ask how to indicate such a response. In contrast, the 
two-sided instructions explicitly stated that the culprit may or may not be present and provided the participants 
with an option (circling number 0) to reject the lineup [for more details,  see67].

Results. The observed response frequencies (see the upper half of Table 6) were reconstructed from the propor-
tions reported by Malpass and  Devine67 in their     Table 1.  Again, the number of innocent-suspect identifica-
tions was estimated by dividing the total number of false identifications in culprit-absent lineups by the number 
of lineup members [cf.47,48]. For the model-base d r e analysis, two sets of the trees shown in Fig. 1 were needed, 
one for the one-sided and one for the two-sided pre-lineup instructions. Parameters dA and b were each set to 
be equal between the conditions because there was no reason to assume that these parameters should differ as 
a function of the pre-lineup instructions. The model incorporating these restrictions was used as a compariso n 
standard for the subsequent nested likelihood-ratio tests, G2( 2) = 3.35, p = 0.187. The estimates of the guessing-
based selection parameter g as a function of pre-lineup instructions are shown in the left panel of Fig. 4. Table 7 
shows the estimates of parameters dP, b and dA.

The guessing-based selection parameter was clearly affected by the manipulation of the pre-lineup instruc-
tions. Parameter g representing the tendency to select, in a state of uncertainty, one of the lineup members 
based on guessing was significantly higher under one-sided than under two-sided instructions, ∆G2(1) = 20.95, 
p < 0.001. By contrast, the culprit-presence detection parameter dP remained unaffected by the instructions, 
∆G2(1) = 0.88, p = 0.347.

Effects of pre‑lineup instructions on guessing‑based selection: Reanalysis of Lampinen 
et al.68. Lampinen et al.  [68, Experiment 1] manipulated participants’ guessing behavior in a similar fashion 
as Malpass and  Devine67. While one-sided pre-lineup instructions were presented to encourage guessing-based 
selection, two versions of two-sided pre-lineup instructions were given to discourage guessing-based selection. 
The findings showed that the two-sided instructions significantly reduced inaccurate  identifications68. Thus, in 
terms of the 2-HT eyewitness identification model, the guessing-based selection parameter g should be higher 
under one-sided instructions than under two-sided instructions.

Method. Lampinen et al.  [68, Experiment 1] randomly assigned 995 students to one of the six experimental 
conditions resulting from a 3 (lineup instruction: one-sided vs. standard two-sided vs. detailed two-sided) × 2 
(culprit presence: present vs. absent) between-subjects design. Participants viewed a 15-s video showing a 
woman stealing a backpack. After completing a 5-min distractor task, participants were given a paper copy of 
one of three types of instructions to read while the experimenter simultaneously read the instructions out loud. 
The one-sided instructions simply required the participants to identify the culprit in the lineup. The standard 
two-sided instructions contained the additional statement that the culprit may or may not be in the lineup. The 
detailed two-sided instructions were formulated according to the recommendations of major United States and 
international law enforcement agencies and were supplemented by statements that (a) it is just as important to 
clear an innocent person as it is to identify the culprit and (b) the police will continue to investigate the crime 
regardless of whether an identification is made or the lineup is  rejected69. Participants were subsequently shown 
a simultaneous lineup consisting of six faces in a 3 × 2 array in which the culprit was either present or absent. 
Lampinen et al. created six versions of the culprit-present lineups by replacing one of the fillers with the culprit. 
All fillers matched the culprit’s description [for more details,  see68, Experiment 1].

Table 6.  Response frequencies as reconstructed from Table 1  of Malpass and Devine  [67, p. 485] and from 
Table 1 of Lampinen et al.  [68, p. 412], see text for details.

Culprit-present lineups Culprit-absent lineups

Culprit 
identifications

Filler 
identifications Lineup rejections

Innocent-suspect 
identifications

Filler 
identifications Lineup rejections

Malpass and Devine67

Pre-lineup instructions

 One-sided 21 7 0 3 14 5

 Two-sided 19 0 4 2 7 18

Lampinen et al.68

Pre-lineup instructions

 One-sided 68 88 10 25 126 15

 Standard two-
sided 60 85 22 19 97 50

 Detailed two-
sided 56 76 32 20 100 46
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Results. The observed response frequencies (see the lower half of Table 6) were calculated from the proportions 
reported by Lampinen et al.68 in their Table 1. Because the exact number of participants for each condition was 
not provided, we assumed that participants were assigned in equal numbers to the conditions and divided the 
total number of participants by six (the number of conditions). The number of innocent-suspect identifications 
was estimated by dividing the total number of false identifications in culprit-absent lineups by the number of 
lineup members [cf.47,48]. Three sets of the trees shown in Fig. 1 were used, one for the one-sided instructions 
condition, one for the standard two-sided instructions condition and one for the detailed two-sided instructions 
condition. Parameters dA and b were each set to be equal among the conditions because there was no reason to 
assume that these parameters should differ as a function of the lineup instructions. For the sake of simplicity, 
the processing trees for the two types of two-sided instructions were combined by additionally assuming that 
guessing-based selection (g) and culprit-presence detection (dP) did not differ between more and less detailed 
two-sided instructions. This assumption was based on the results of Lampinen et al., who had found no differ-
ences in identification performance between the two types of two-sided lineup instructions. The model incor-
porating these restrictions was used as a comparison standard for the subsequent nested likelihood-ratio tests, 
G2(6) = 4.86, p = 0.562. The estimates of the guessing-based selection parameter g as a function of pre-lineup 
instructions are shown in the right panel of Fig. 4. Table 7 shows the estimates of parameters dP, b and dA.

The estimate of parameter g, which represents the probability of selecting, in a state of uncertainty, one of 
the lineup members based on guessing, was higher for one-sided instructions than for two-sided instructions. 
This difference was statistically significant, ∆G2(1) = 36.39, p < 0.001. By contrast, the culprit-presence detection 
parameter dP did not significantly differ between the types of instructions, ∆G2(1) = 0.69, p = 0.406.

Figure 4.  Estimates of parameter g (representing the probability of guessing-based selection among the lineup 
members) of the 2-HT eyewitness identification model when applied to the data reported by Malpass and 
 Devine67 and by Lampinen et al.  [68, Experiment 1] as a function of pre-lineup instructions (one-sided vs. two-
sided). The error bars represent standard errors.

Table 7.  Estimates of parameters dP, b and dA of the 2-HT eyewitness identification model for the data 
reported by Malpass and  Devine67 and by Lampinen et al.  [68, Experiment 1]. Values in parentheses represent 
standard errors. Within the model used as a comparison standard, parameter dP was estimated separately for 
one-sided and two-sided pre-lineup instructions. Parameters b and dA were each set to be equal between the 
one-sided and the two-sided pre-lineup instruction conditions. dP = probability of detecting the presence of 
the culprit; b = probability of biased suspect selection; dA = probability of detecting the absence of the culprit.

Malpass and  Devine67 Lampinen et al.68

Pre-lineup instructions

Parameter estimates

Pre-lineup instructions

Parameter estimates

dP b dA dP b dA

One-sided .68 (.11)
.01 (.06) .21 (.30)

One-sided .30 (.05)
.00 (.02) .04 (.03)

Two-sided .81 (.09) Two-sided .26 (.03)
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Discussion. The model-based results of both  reanalyses67,68 showed that parameter g, representing the prob-
ability of selecting one of the lineup members based on guessing, were consistently higher for one-sided than for 
two-sided pre-lineup instructions. The fact that the guessing-based selection parameter sensitively reflected the 
experimental manipulations of the pre-lineup instructions in both reanalyses further supports the validity of the 
2-HT eyewitness identification model.

Manipulations of culprit‑absence detection: Validation of parameter dA
The final step in the model validation presented here concerns parameter dA, which represents the probability 
of detecting the absence of the culprit. In order to validate this parameter, an experimental manipulation is 
needed that affects the proportion of correct rejections of culprit-absent lineups. To this end, Winter et al.3 con-
structed culprit-absent lineups in which all members had conspicuous birthmarks, which was not the case for 
the culprit. Given that none of the members in the culprit-absent lineups resembled the culprit, it was relatively 
easy to detect the absence of the culprit and thus to reject the culprit-absent lineups. As expected, parameter dA 
was significantly higher when the culprit-absent lineups were easy to reject. The obvious and downright trivial 
manipulation of the detection of culprit absence used by Winter et al. is ideal for the purpose of the model 
validation. However, it seems also interesting to explore whether there are factors that facilitate culprit-absence 
detection in more realistic settings. In fact, it would be highly desirable to find methods that actually improve 
the witnesses’ ability to detect the absence of the culprit and to specifically reject culprit-absent lineups, ideally 
without affecting guessing-based selection. Two such methods are reported below.

The first method is the use of a wildcard, that is, a silhouette with a question mark that represents a ‘mystery 
man’ that can be chosen instead of the suspect or one of the fillers. The wildcard option was introduced to make it 
easier for children to reject culprit-absent lineups by providing an option to reject the lineup that is more equiva-
lent to a positive response when choosing the  suspect70. In the majority of studies available to date, an intriguing 
pattern of results has emerged: A wildcard decreases the rate of false identifications in culprit-absent lineups 
without increasing the rate of false rejections of culprit-present  lineups71–73. This pattern of results suggests that 
the effect of using a wildcard does not affect guessing-based selection—in which case it should have increased 
both correct and false lineup rejections—but may specifically improve the detection of the absence of the culprit.

The second method is the use of a culprit-absent practice  lineup74 that has been introduced to facilitate the 
rejecting of culprit-absent lineups for older adults. Just as the wildcard, the culprit-absent practice lineup has 
led to an increase in correct culprit-absent lineup rejections without affecting the rate of false culprit-present 
lineup rejections, suggesting that the underlying process is a facilitation of the detection of the culprit absence 
and not a decrease in guessing-based selection.

If the 2-HT eyewitness identification model is valid, then the effects of  wildcards70 and culprit-absent practice 
 lineups74 should be reflected in parameter dA, which was designed to measure the detection of the absence of the 
culprit. We tested this assumption by reanalyzing the data obtained by Karageorge and  Zajac70 and by Wilcock 
and Bull  [74, Experiment 2].

Effects of a wildcard on culprit‑absence detection: Reanalysis of Karageorge and  Zajac70. The 
results of a number of studies have shown that children appear to have considerable difficulty rejecting lineups 
even if the culprit is absent [for a review,  see75]. Karageorge and  Zajac70 aimed to enhance children’s ability to 
reject culprit-absent lineups by inserting a wildcard within the lineup that could be chosen instead of one of the 
lineup members. Children were more likely to reject the culprit-absent lineup when a wildcard was provided 
than when no such option was provided. Interestingly, the rate of correct rejections of culprit-absent lineups 
increased, whereas the rate of false rejections of culprit-present lineups did not. If a wildcard would simply affect 
the probability of selecting one of the lineup members based on guessing, it should have affected correct and 
false rejections equally. The selective effect of a wildcard on correct lineup rejections thus can only be caused 
by an increased detection of the absence of the culprit. In the 2-HT eyewitness identification model, a wildcard 
manipulation thus should selectively affect the culprit-absence detection parameter dA. Specifically, parameter 
dA should be higher in the wildcard condition than in the control condition.

Method. Karageorge and  Zajac70 randomly assigned younger (age: 5 to 7 years, n = 101) and older (age: 8 to 
11 years, n = 109) children to one of the eight conditions of a 2 (wildcard condition: wildcard vs. control) × 2 
(culprit presence: present vs. absent) × 2 (delay: 1 to 2 days vs. 2 weeks) between-subjects design. During a visit 
to a fire station, the children were exposed for 30 to 45 s to a male confederate (henceforth referred to as the 
culprit) sliding down a fire pole. Either 1 to 2 days or 2 weeks after the event, all children who stated that they 
remembered the visit to the fire station (n = 204) were presented with a six-person culprit-present or culprit-
absent lineup. The culprit-absent lineup contained the same five fillers as the culprit-present lineup, but the cul-
prit was replaced by an innocent suspect who most resembled the culprit  while the other fillers also shared basic 
characteristics with the culprit. The lineup photos were placed on a table in two rows of three. In the wildcard 
condition, a photo of a silhouette with a superimposed question mark was placed between the two rows. Prior to 
viewing the photos, all children were given standard two-sided pre-lineup instructions. Children in the control 
condition were instructed to point to the photo of the culprit if it was present and to tell the experimenter if it 
was not. Children in the wildcard condition were instructed to point to the photo of the culprit if it was present 
and to the silhouette (denoted as “this special photo”) if it was not [for more details,  see70].

Results. The observed response frequencies (see the upper half of Table 8) were reconstructed from the propor-
tions reported by Karageorge and  Zajac70 in their Table 1  which the data were already collapsed over the delay 
conditions (1 to 2 days vs. 2 weeks). Given that the total number of children in each age group in the final sample 
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was not specified, it was not possible to analyze the data for younger and older children separately. Therefore, 
we collapsed the data across age groups. According to Karageorge and Zajac  [70, p. 168], half of the children 
were presented with the culprit-present lineup, while the remaining children were presented with the culprit-
absent lineup. More specifically, in the control condition, 53 of the 107 children saw the culprit-present lineup 
and 54 children saw the culprit-absent lineup, whereas in the wildcard condition, 48 of the 97 children saw the 
culprit-present lineup and 49 children saw the culprit-absent lineup. For the model-based reanalysis, we needed 
two sets of the model trees depicted in Fig. 1, one for the wildcard condition and one for the control condition. 
The b parameters were set to be equal between the conditions because there was no reason to assume that these 
parameters should differ as a function of the presence or absence of the wildcard. The model incorporating these 
restrictions was used as a comparison standard for the subsequent nested likelihood-ratio tests, G2(1) = 3.58, 
p = 0.059. The estimates of the culprit-absence detection parameter dA as a function of the wildcard condition 
are shown in the left panel of Fig. 5. Table 9 shows the estimates of parameters dP, b and g.

The wildcard manipulation affected the culprit-absence detection parameter dA as expected. The probability 
of detecting the absence of the culprit was significantly higher when a wildcard was presented than when it was 
not, ∆G2(1) = 29.79, p < 0.001. The wildcard manipulation did not affect the probability of detecting the culprit as 
measured by parameter dP, ∆G2(1) = 0.21, p = 0.646. The guessing-based selection parameter g was not affected 
by the wildcard manipulation either, ∆G2(1) = 1.44, p = 0.229.

Effects of a culprit‑absent practice lineup on culprit‑absence detection: Reanalysis of Wil‑
cock and  Bull74. Just like children, older adults are less likely to correctly reject a culprit-absent lineup 
than younger adults [for a meta-analysis,  see76]. Wilcock and Bull  [74, Experiment 2] examined the effect of a 
culprit-absent practice lineup on correct lineup rejections. Participants in the culprit-absent practice lineup 
condition correctly rejected culprit-absent lineups more often than participants in the control condition without 
a culprit-absent practice lineup. Interestingly, the culprit-absent practice lineup did not increase false rejections 
of culprit-present lineups. This pattern of results suggests that guessing-based selection cannot be responsible 
for the effect of the culprit-absent practice lineup because guessing-based selection would have decreased the 
rate of rejections of both culprit-present and culprit-absent lineups. Instead, the culprit-absent practice lineup 
must have improved the detection of the absence of the culprit because only this explanation is consistent with 
a selective increase in correct rejections of culprit-absent lineups. Therefore, it can be predicted that the culprit-
absent practice manipulation should affect the culprit-absence detection parameter dA. Specifically, parameter 
dA should be significantly higher in the culprit-absent practice lineup condition than in the control condition.

Method. Wilcock and Bull  [74, Experiment 2] randomly assigned 100 older participants to one of two groups 
(culprit-absent practice: culprit-absent practice lineup vs. control). Culprit presence (present vs. absent) was a 
within-subjects factor. Participants were shown a 110-s video of two men breaking into a house. After a 30-min 
retention interval, half of the participants were presented with a culprit-absent practice lineup consisting of six 
color pictures of famous women. The participants were asked to identify the Queen of England and were also 
informed that her face may or may not be present (there was no picture of the Queen). All participants correctly 
rejected the lineup. After rejecting the lineup, participants were again warned that not all police lineups include 
the culprit and that even the police can make mistakes. Participants were then given standard two-sided pre-
lineup instructions before viewing the real lineups. Wilcock and Bull constructed a culprit-present and a culprit-
absent lineup for each of the two culprits consisting of six faces in a 3 × 2 array. Participants were shown one 
culprit-present and one culprit-absent lineup (i.e., the first participant saw a culprit-present lineup for culprit 1, 
followed by a culprit-absent lineup for culprit 2, the second participant saw a culprit-absent lineup for culprit 1 
and a culprit-present lineup for culprit 2 and so on). For the sake of simplicity, we did not distinguish between 
the two culprits but aggregated the data. All fillers matched the culprits’ descriptions. In the culprit-absent line-
ups, the culprit was replaced by the filler who was rated as most similar-looking to the culprit. The culprit and the 
culprit replacement were randomly placed across all six lineup positions [for more details,  see74,, Experiment 2].

Table 8.  Response frequencies as reconstructed from Table 1 of Karageorge and Zajac  [70, p. 173] and from 
Table 3 of Wilcock and Bull  [74, p. 730], see text for details.

Culprit-present lineups Culprit-absent lineups

Culprit 
identifications

Filler 
identifications Lineup rejections

Innocent-suspect 
identifications

Filler 
identifications Lineup rejections

Karageorge and  Zajac70

Wildcard condition

 Wildcard 31 10 7 2 6 41

 Control 36 8 9 25 13 16

Wilcock and Bull74

Pre-lineup procedure

 Practice 24 21 5 2 12 36

 Control 20 20 10 7 36 7
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Results. The observed response frequencies (see the lower half of Table 8) were taken from Table 3 of Wilcock 
and  Bull74. As in the previous reanalyses, we estimated the number of innocent-suspect identifications using the 
standard procedure of dividing the total number of false identifications in culprit-absent lineups by the number 
of lineup  members47,48. Two sets of the model trees depicted in Fig. 1 were needed, one for the culprit-absent 
practice lineup condition and one for the control condition. The b parameters were set to be equal between the 
conditions because there was no reason to assume that these parameters should differ as a function of the culprit-
absent practice manipulation. The model incorporating these restrictions was used as a comparison standard for 
the subsequent nested likelihood-ratio tests, G2(1) = 2.92, p = 0.087. The estimates of culprit-absence detection 
parameter dA as a function of the culprit-absent practice manipulation are shown in the right panel of Fig. 5. 
Table 9 shows the estimates of parameters dP, b and g.

The culprit-absence detection parameter dA was significantly higher in the culprit-absent practice lineup 
condition than in the control condition, ∆G2(1) = 23.42, p < 0.001. By contrast, the detection of the culprit pres-
ence reflected in parameter dP remained unaffected by the culprit-absent practice manipulation, ∆G2(1) = 0.58, 
p = 0.444. The same was true for the guessing-based selection parameter g, ∆G2(1) = 0.18, p = 0.673.

Discussion. The two final reanalyses demonstrated that manipulations designed to facilitate culprit-absence 
detection selectively affected parameter dA of the 2-HT eyewitness identification model. Karageorge and  Zajac70 
inserted a wildcard within the lineup. Wilcock and Bull  [74, Experiment 2] presented a culprit-absent practice 

Figure 5.  Estimates of parameter dA (representing the probability of detecting the absence of the culprit) of 
the 2-HT eyewitness identification model when applied to the data reported by Karageorge and  Zajac70 and by 
Wilcock and Bull  [74, Experiment 2] as a function of the wildcard condition (wildcard vs. control; left panel) 
and the pre-lineup procedure (culprit-absent practice vs. control; right panel). The error bars represent standard 
errors.

Table 9.  Estimates of parameters dP, b and g of the 2-HT eyewitness identification model for the data 
reported by Karageorge and  Zajac70 and by Wilcock and Bull  [74, Experiment 2]. Values in parentheses 
represent standard errors. Within the model used as a comparison standard, parameters dP and g were 
estimated separately for the wildcard and the control  conditions70 and for the culprit-absent practice 
and the control conditions  [74, Experiment 2]. Parameter b was set to be equal between the experimental 
conditions. dP = probability of detecting the presence of the culprit; b = probability of biased suspect selection; 
g = probability of guessing-based  selection among the lineup members.

Karageorge and  Zajac70 Wilcock and  Bull74

Wildcard condition

Parameter estimates

Pre-lineup procedure

Parameter estimates

dP b g dP b g

Wildcard .37 (.15)
.37 (.09)

.67 (.10) Practice .40 (.09)
.00 (.05)

.83 (.07)

Control .45 (.14) .51 (.11) Control .31 (.09) .80 (.06)
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lineup. Both procedures selectively increased the rate of correct rejections of culprit-absent lineups but did not 
affect the rate of false rejections of culprit-present lineups, suggesting that introducing these procedures did not 
induce decreased guessing-based selection. The latter conclusion is consistent with the fact that guessing-based 
selection parameter g was not affected by either the wildcard or the culprit-absent practice lineup.

General discussion
Here, we report a validation of the novel 2-HT eyewitness identification model using published data. The model 
simultaneously takes into account all of the data categories that are observed in lineups, that is, correct culprit 
identifications, false innocent-suspect identifications, false filler identifications in culprit-present and culprit-
absent lineups, false rejections of culprit-present lineups and correct rejections of culprit-absent lineups. Based 
on these data, the model yields measures of latent processes that underlie eyewitness identification performance. 
Specifically, the model is designed to distinguish between two types of detection processes—detection of the 
presence of the culprit and detection of the absence of the culprit—as well as two different types of non-detection-
based decision processes—biased selection of a suspect that stands out from the fillers in unfair lineups and 
selecting a lineup member based on guessing. We hope that distinguishing between these qualitatively different 
latent processes helps to improve the clarity of the interpretation of lineup data. A typical approach is to try to 
infer the underlying processes indirectly from surface-level data by comparing the rate of correct culprit iden-
tifications and false innocent-suspect identifications between different conditions, but often the problem arises 
that the same manipulation can simultaneously affect qualitatively different processes such as, for example, both 
culprit-presence detection and guessing-based  selection8,13. The 2-HT eyewitness identification model serves 
to disentangle the effects of manipulations on the processes underlying eyewitness identifications by yielding 
separate measures of these latent processes and by enabling researchers to test hypotheses directly at the level 
of the parameters representing these latent processes. In that way, the model can be used to tackle important 
research questions such as, for example, the question of whether the process of culprit-presence and culprit-
absence detection, biased selection and guessing-based selection differ between simultaneous and sequential 
lineups. However, before a measurement model such as the 2-HT eyewitness identification model can be used 
to tackle new and unresolved empirical questions, it is important to demonstrate that the model parameters 
sensitively reflect the processes they are intended to  measure19,29.

In a separate empirical contribution, Winter et al.3 have reported fresh experiments that were designed with 
the sole purpose of testing whether the parameters of the 2-HT eyewitness identification model sensitively reflect 
specific manipulations that were carefully crafted to affect the latent processes underlying eyewitness identifica-
tions postulated by the model; these tests were successful. The analyses reported here complement the results 
reported by Winter et al. by demonstrating that the model parameters also sensitively reflect manipulations of the 
processes they were designed to measure in published studies obtained with a wide variety of different experimen-
tal manipulations, samples, paradigms and laboratory as well as real-world settings. First, it was demonstrated 
that parameter dP reacts sensitively to manipulations of encoding conditions that can be expected to affect the 
detection of the presence of the culprit. Specifically, the culprit-presence detection parameter dP was higher in 
response to long as opposed to short culprit exposure and under good as opposed to poor viewing conditions at 
encoding. Second, manipulations of lineup fairness affected the estimate of parameter b, designed to reflect the 
process of the biased selection of a suspect who stands out from the fillers. As expected under the assumption 
that this model parameter is valid, parameter b was higher for lineups with low as opposed to high suspect-filler 
similarity and for lineups in which the suspects had unique facial features distinguishing them from the fillers as 
opposed to lineups in which these distinctive features were concealed in all photos or replicated in the photos of 
the fillers. Third, manipulations of pre-lineup instructions had the predicted effects on the parameter represent-
ing the selection of a lineup member based on guessing. Parameter g was consistently higher when one-sided 
than when two-sided instructions were used. One-sided instructions implicate that the culprit is in the lineup, 
whereas two-sided instructions emphasize that the culprit may be present or absent. It should be uncontroversial 
that difficult encoding conditions should affect the process of culprit-presence detection, that biased suspect 
selection should be increased in unfair lineups and that participants can be discouraged to select a lineup member 
based on guessing by two-sided lineup instructions. Selecting manipulations that obviously affect the detection 
of the absence of the culprit is somewhat more difficult. Winter et al. have provided evidence showing that the 
detection of culprit absence is enhanced when all of the lineup members in the culprit-absent lineup can be eas-
ily ruled out based on salient perceptual features. Such a manipulation is unlikely to be found in the literature. 
This is so because such an experiment makes sense only in the context of model validation in which the ideal 
manipulation is obvious and trivial in the sense that there is broad agreement on the manipulation’s effect on 
certain cognitive processes. Therefore, our reanalysis-based test of the validity of the culprit-absence detection 
parameter concentrated on manipulations that were specifically designed to help children and older adults to 
reject culprit-absent  lineups70,74. In previous studies these manipulations led to an increase in correct rejections 
of culprit-absent lineups while the false rejections of culprit-present lineups remained unaffected, suggesting 
that the affected process was the detection of the absence of the culprit and not the selection of a lineup member 
based on guessing. The present reanalysis confirms this conclusion and thereby provides further evidence for 
the process of culprit-absence detection: The use of a wildcard procedure and a culprit-absent practice lineup 
increased the estimates of culprit-absence detection parameter dA compared to standard lineup procedures.

The 2-HT eyewitness identification model distinguishes between two non-detection-based judgements: a 
process of selecting a lineup member based on guessing (parameter g) and a process of biased selection of a 
suspect who stands out from the fillers (parameter b). Traditionally, eyewitness researchers have relied on the 
mock-witness task to determine the degree to which a lineup is unfair. This task involves presenting a lineup 
and a description of a culprit to participants who did not witness the crime—so called mock witnesses—and 
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then asking the mock witnesses to identify the person who best matches the  description77. Based on the answers 
of the mock witnesses, various lineup fairness measures can be calculated, reflecting either the lineup size (i.e., 
how many lineup members have plausibility as the culprit?) or biased selection of the suspect (i.e., to what extent 
does the suspect stand out from other lineup members?78,79). However, some researchers have cautioned that 
these measures may suffer from low validity and reliability and have suggested to consider alternative methods 
for estimating lineup  fairness80. The 2-HT eyewitness identification model offers such an alternative method for 
measuring and testing hypotheses about biased suspect selection. In fact, the 2-HT eyewitness identification 
model measures lineup fairness directly from the witnesses’ identification data—without relying on a separate 
paradigm involving mock witnesses. Based on this direct measurement, one can draw conclusions about the 
cognitive processes that determine the decisions of eyewitnesses that may, to some degree, differ from those of 
mock  witnesses81.

The model also makes it possible to distinguish between two detection processes: the detection of the pres-
ence of the culprit (parameter dP) and the detection of the absence of the culprit (parameter dA). Traditional 
measures of lineup performance often provide only a single accuracy index that simultaneously accounts for the 
witness’s performance in culprit-present and culprit-absent lineups. However, it is possible to argue that detect-
ing the presence of a culprit might be achieved by a different underlying process than detecting the absence of a 
culprit. The first piece of evidence supporting this argument is that the process of detecting the presence of the 
culprit varies as a function of manipulations that leave the process of detecting the absence of the culprit unaf-
fected (see Fig. 2 and Table 3 above) and vice versa (see Fig. 5 and Table 9 above). The second piece of evidence 
is that in most of the data sets presented here, the probability of detecting the presence of the culprit was quite 
high, while the probability of detecting the absence of the culprit was considerably lower (the statistical test of a 
difference between dP and dA results in p < 0.05 for all reanalyses reported in the present article). Interestingly, 
it seems plausible that techniques developed to help children and older adults to reject culprit-absent lineups 
specifically affect the process of culprit-absence detection. However, without the help of a model-based analysis, 
Karageorge and  Zajac70 and Wilcock and  Bull74 had to rely on the observation that a wildcard procedure or a 
culprit-absent lineup practice selectively increased correct rejections of culprit-absent lineups with no effect on 
false rejections of culprit-present lineups, which indirectly suggests that these procedures may help to detect 
culprit absence and do not decrease guessing-based selection. With the 2-HT eyewitness identification model it 
is less indirect and more straightforward to conclude that these procedures enhance the detection of the culprit 
absence (parameter dA) while leaving guessing-based selection (parameter g) unaffected. We hope that by includ-
ing a separate parameter for culprit-absence detection, the 2-HT eyewitness identification model will stimulate 
more research on techniques that specifically improve witnesses’ ability to detect the absence of a culprit, which 
seems highly desirable.

A limitation of the present reanalyses is that many studies in the eyewitness literature used only fillers in 
culprit-absent lineups [e.g.,45,46,67,68,74]. However, the model-based analyses make use of the full 2 × 3 data struc-
ture, which includes innocent-suspect identifications. To be able to perform a model-based analysis of experi-
ments without a designated innocent suspect in culprit-absent lineups, we followed the standard procedure for 
estimating the rate of innocent-suspect identifications from the filler identifications by dividing the total number 
of false identifications in culprit-absent lineups by the number of lineup  members47,48. This method rests on 
the assumption that the culprit-absent lineups contained an innocent suspect that was selected with the same 
probability as each of the fillers, which implies that the lineups were fair. Importantly, this assumption does 
not seem to affect the major conclusions that can be drawn from the data as the present reanalysis is consist-
ent with the experimental validation study by Winter et al.3 in which we used designated innocent suspects in 
culprit-absent lineups. However, to validly measure lineup fairness and to increase the ecological validity of the 
analysis, we encourage researchers to include a designated innocent suspect in culprit-absent lineups in future 
studies. In the real world, the photographs of the suspects whose guilt or innocence is unknown to the police 
are often taken from different sources (e.g., social media) than the photographs of the fillers (e.g., a database). 
Photographs from different sources may differ systematically in certain characteristics. It thus greatly improves 
the ecological validity of the results to have a designated innocent suspect whose photograph deviates from the 
photographs of the fillers in the culprit-absent lineups in the same way as the photograph of the culprit deviates 
from the photographs of the fillers in the culprit-present lineups [cf.3].

Due to their mathematical and conceptual simplicity, the class of MPT models is ideally suited to develop 
simple formal measurement models to assess latent processes involved in specific empirical  paradigms18,19,29. 
However, a more controversial property of MPT models is that they involve a threshold concept, thus assum-
ing that recognition judgements result from discrete memory states rather than continuously distributed signal 
strength (as the SDT assumes). While some researchers argued that the threshold assumption is inconsistent with 
the available empirical  evidence82,83, others have shown that threshold models and SDT-based models can both 
account for recognition memory  performance37,84,85. The theoretical and practical usefulness of both approaches 
in the field of eyewitness identifications has to be further investigated in future research.

Given the well-documented evidence illustrating the fallibility of eyewitness testimonies, it remains an impor-
tant goal to advance our knowledge about the latent processes underlying eyewitness identification decisions. We 
hope to contribute to this advancement by presenting a multinomial model for analyzing lineup performance, 
the 2-HT eyewitness identification model. By incorporating the entire 2 × 3 data structure of responses in lineup 
identification tasks, the model enables inferences about latent cognitive processes that are not accessible when 
standard measures of eyewitness identification accuracy are used. Here, we tested the validity of the model by 
applying it to published data. A series of eight reanalyses provides evidence in support of a successful model 
validation. Validations of culprit-presence detection (dP), biased suspect selection (b), guessing-based selec-
tion among the lineup members (g) and culprit-absence detection (dA) showed that the parameters sensitively 
reflected experimental manipulations of the processes they were designed to measure. We conclude that the 
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2-HT eyewitness identification model is promising and can complement existing tools to analyze eyewitness 
identifications in lineups.

Data availability
The multiTree equations and data files of all reanalyses are available in the OSF repository, https:// osf. io/ pjc5b.
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