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Abstract: Biotic and abiotic stresses severely affect agriculture by affecting crop productivity, soil
fertility, and health. These stresses may have significant financial repercussions, necessitating a
practical, cost-effective, and ecologically friendly approach to lessen their negative impacts on plants.
Several agrochemicals, such as fertilizers, pesticides, and insecticides, are used to improve plant
health and protection; however, these chemical supplements have serious implications for human
health. Plants being sessile cannot move or escape to avoid stress. Therefore, they have evolved
to develop highly beneficial interactions with endophytes. The targeted use of beneficial plant
endophytes and their role in combating biotic and abiotic stresses are gaining attention. Therefore, it
is important to experimentally validate these interactions and determine how they affect plant fitness.
This review highlights research that sheds light on how endophytes help plants tolerate biotic and
abiotic stresses through plant–symbiont and plant–microbiota interactions. There is a great need to
focus research efforts on this vital area to achieve a system-level understanding of plant–microbe
interactions that occur naturally.

Keywords: endophytes; plant defense; drought; salinity; temperature; crop improvement

1. Major Challenges to Plant’s Growth and Production

The world needs more food to feed the growing population. It is a harsh reality
that the world population is increasing rapidly, with an increase of 81 million people
(1.05%) every year [1]. The growth is more severe in the developing world, such as
Pakistan, where the annual increase is 2.0% [2]. The population spiked in 1962–63, when
the world population grew at a rate of 2.2% [3], alerting agronomists and plant scientists
to accommodate the demand. Thanks to science, the development of high-stress-resistant
new varieties and plant breeding-based enhanced production has increased global food
production. According to an estimate by the Food and Agriculture Organization (FAO) [4],
primary crop production increased by almost 50% compared with 2000, whereas vegetable
oil production increased by 108%. However, this increase in food production comes with
a cost. According to the same report, pesticide use went up by one-third between 2000
and 2018, and the use of nitrogen fertilizers increased by 58%. In quantitative terms,
190 million tons of fertilizer were added to the soil during this period [5]. Since then, the
uses of fertilizers and other agrochemicals have increased, as they are known to increase
yield without much effort [6]. According to research, these agrochemicals have severe
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consequences on human health, including immune system disorders, hormonal problems,
kidney disorders, reproductive problems, and cancer [7]. A detailed account of these
agrochemicals and their impact on human health was provided by Srivastav [8].

Therefore, sustainable agriculture is key to coping with increasing food demand, with
less detrimental or no effects on human health. In this context, plant microbiomes play a
vital role in plant growth and maintenance of soil fertility for sustainable agriculture/food
production. Soil microbes are important regulators of global nutrient balance in ecosys-
tems [9]. Plant and microbial associations, such as rhizospheric, epiphytic, and endophytic
associations with growth-promoting properties, are critical for sustainable agriculture.
These microbes, either directly in the form of phytohormones or indirectly, such as nitro-
gen fixation, can promote plant growth and therefore can be a reasonable alternative to
chemical fertilizers. To that end, this review focuses on the core concerns surrounding
the potential for developing innovative microbial-assisted selection of plants, maximizing
rhizosphere/root microbiome beneficial connections, with a special focus on endophytes.

2. Endophytes: Friends or Foes?

Endophytes are microorganisms that inhabit plants. Endophytes are known to pro-
mote the growth of host plants in several ways, including detoxification of toxic compounds,
defense against pathogens, and production of plant growth-promoting hormones [10]. En-
dophytes are also known to produce biotechnologically important metabolites having
anticancer and antimicrobial properties [9]. They also help in the recycling of nutrients and
act as bio transformers of different chemicals [9]. Endophytes are diverse and relatively
less explored; however, new endophytes with diverse functions are being added to the list
with the development of research on plant-microbe interactions.

Colonization and Distribution

Endophytes can be bacterial or fungal. Bacterial endophytes are a class of endosym-
biotic microorganisms that live in intercellular or intracellular compartments, apoplasts,
water-conducting xylem vessels of shoots and roots, intercellular spaces of cell walls,
flowers [11], fruits [12], and seeds [13]. Unlike bacterial phytopathogens, endophytes do
not cause disease or morphological abnormalities in plants [14]. The number of bacterial
endophytes in plants varies across species, and the type of tissue ranges from 100 to 9 × 109

bacteria per gram of plant tissue [15]. Generally, endophyte density is higher in roots and
belowground parts than in aboveground parts [14]. However, this number may vary, as
migration of endophytes from roots to leaves has been demonstrated in rice [15], suggesting
that endophytes enter the host plant through the roots [14]. Although they live inside
plants, the population density and distribution of bacterial endophytes are influenced by
both the biotic and abiotic factors faced by plants, including microbe–microbe interactions,
plant–microbe interactions, and environmental stresses [16].

Over a century of research suggests that in natural ecosystems, most plants are symbi-
otic with mycorrhizal fungi or fungal endophytes [17]. This fungal partner can profoundly
impact plant evolution, fitness, and distribution [18], defining plant communities [19].
Plant and fungal mycorrhizal and endophytic associations date back more than 400 million
years as per fossil records [20,21] and were likely associated at the time of initial footprints
of plants on land, thus playing a key role in the evolution of life on land [22]. Similar
to their bacterial counterparts, fungal endophytes reside entirely within the plant host,
where they may grow within underground or aboveground parts and sporulate during
plant or host tissue senescence [23]. Fungal endophytes are classified into four classes
based on their host range and mode of transmission [22]. Class 1 endophytes represent
Clavicipitaceous fungi, characterized by both vertical and horizontal transmission with
their seeds, and can be found in some grasses in cold habitats, while the remaining three
classes are non-claviciptaceous endophytes. Class 2 endophytes represent endophytes
that grow in both above- and below-ground tissues. These can transmit vertically and
horizontally and can be recovered from asymptomatic tissues of non-vascular plants, ferns,
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conifers, and some angiosperms. Class 3 endophytes generally have a wide host range and
colonize only the upper plant parts, and their mode of transmission is horizontal. Class 4
endophytes colonize roots and are transmitted horizontally.

3. Endophytes Modulate Plant Defense Responses

Plants generally respond to pathogenic infections, either by pathogen-associated
molecular pattern (PAMPs)-triggered immunity (PTI) or effector-triggered immunity (ETI).
A detailed explanation of how plants prioritize resistance responses was given by Jones
and Dangl [24]. The fundamental question is how endophytes overcome/avoid such
resistance responses by plants while infecting their host. To answer this question, we need
to understand the mechanism of inconspicuous entry of endophytes into the host plant and
their management to thrive there through a mutually symbiotic relationship.

Some endophytes are seed-borne, and they are present in germinated plants [25]. In
plants with vegetative propagation, endophyte colonization is relatively easier because they
can transmit their endophytic microbiota to the next generation. In others, it starts with
root exudates, which are rich in biomolecules and chemo-attractants such as flavonoids,
sugars, amino acids, organic acids, and phenolic compounds. Root exudates are also rich
in nutrients and water and therefore attract all types of other microbes [26]. Effective
endophyte colonization entails compatible plant–microbe interactions. Potential points of
entry for endophytes are cracks formed at the emergence of lateral roots or zones of root
elongation. To make an entry, some bacteria must find their way to these apertures for
successful colonization. Dong et al. [27] showed that Klebsiella sp/strain Kp342 colonizes
the lateral root junctions in wheat and alfalfa. Similarly, Herbaspirillum seropedicae and
Gluconacetobacter diazotrophicus dominate colonization at later-root junctions [28]. Some
endophytes enter through infection colonization, where cellulolytic and pectinolytic en-
zymes produced by endophytes come into play [14], such as pectate lyase, which has been
implicated in the colonization of Klebsiella strains [29]. Figure 1 summarizes the potential
entry and colonization of endophytes and their interactions with the host plant tissues.
For entry into the host plant, fungal endophytes produce chitin deacetylase enzymes that
deacetylate chitosan oligomers and are camouflaged by plant pattern recognition receptors
(PRRs) [30]. Similarly, other evidence suggests that some endophytic bacteria release their
microbe-associated molecular patterns (MAMPs), which either leads to misrecognition by
plant PRRs or induces a comparatively weak and transient defense response [31]. Similarly,
cell wall–degrading enzymes such as endoglucanases and polygalacturonase are used by
Burkholderia sp. for infection in Vitis vinifera [11].

Endophytes help in protection against pathogens by being directly involved in the pro-
duction and release of secondary metabolites or compounds with antimicrobial properties,
such as siderophores, antibiotics, and hydrolytic enzymes, which can help in culminating
or reducing the invading pathogens or through indirect mechanisms by competing with
the pathogen for space and available nutrients [32]. Endophytes are known to play a role
in systemic acquired resistance (SAR) against plant pathogens [33]. The phytohormones
salicylic acid (SA) and jasmonic acid (JA) are vital for plant defense responses. Some
endophytes have increased levels of SA and JA, thereby triggering plant defense responses
against pathogens. For example, Waqas et al. [34] reported that the gibberellin-producing
endophytes Penicillium citrinum strain LWL4 and Aspergillus terreus strain LWL5 trigger SAR
against stem rot in sunflowers by inducing the SA and JA pathways. Similarly, Fusarium
solani induces SAR against Septoria lycopersici by inducing pathogenesis-related (PR) gene
expression [35]. Table 1 summarizes a list of some of the endophytes that are reported
to have defensive role against phyto-pathogens. Foliar application of endophytes also
affects plant defense pathways [36–38]. For example, foliar application of the endophytic
fungus Colletotrichum tropicale reduced Phytophthora infection in the Cacao tree (Theobroma
cacao) [39]. The reduction in Phytophthora infection could be attributed to the induction of
defense-related pathways, as inoculation with C. tropicale triggered several components of
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the ethylene (ET) defense pathway and induced several disease-related genes in T. cacao
and Arabidopsis thaliana [40,41].
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Figure 1. Host plant and endophyte crosstalk. The colonization of endophytes and their interaction
with the host plant depends on the type of endophytes. Bacterial endophytes mostly make their entry
through apertures formed either through the emergence of lateral roots or the zones of elongation.
Fungal endophytes can either be transmitted vertically, i.e., transmission from maternal plants to
the progeny seeds, or through their entry as fungal spores through herbivory or insects. Some
endophytes also release cell wall–degrading enzymes to make their entry possible. Since these
endophytes have specific MAMps, they are not recognized by the host plant PRRs. Endophytes
help the plant in stress responses by producing phytohormones and reactive oxygen species (ROS)
detoxification. ACC, aminocyclopropane-1-carboxylic acid; ROS, reactive oxygen species; MAMPs,
microbe-associated molecular patterns; PR, pathogenesi-related; ET, ethylene; SA, salicylic acid; JA,
jasmonic acid; PAMPs, pathogen-associated molecular patterns; PTI, PAMP-triggered immunity;
R-avr, resistance gene a virulence effector.

Endophytic bacteria are well known for producing compounds with antimicrobial
properties, such as lipopeptides. The most studied lipopeptides are those isolated from
Bacillus and Paenibacillus species [42]. Similarly, another endosymbiont, Pseudomonas virid-
iflava, was also reported to produce ecomycins, a lipopeptide containing unique amino
acids, such as β-hydroxy aspartic acid and homoserine [43]. Endophytic Pseudomonas
putida strain BP25 inhibits several phytopathogens, including Pythium myriotylum, Gib-
berella moniliformis, Phytophthora capsica, Thizoctonia solani, Colletotrichum gloeosporioides, and
the plant-parasitic nematode Radopholus similis through the production of several volatile
substances [44]. Similarly, Rhizobium is known for siderophore production and is used as
a biocontrol agent for pathogenic Macrophomina phaseolina, which causes charcoal rot in
several crops [45]. In addition to lipopeptides, several other endophytes have been reported



Cells 2022, 11, 3292 5 of 17

to produce other antimicrobial compounds, such as mycosubtilin, surfactin, lichenysin,
bacillomycin, iturin, fengycin, and plipastaitin [46]. A detailed list of different antimicrobial
compounds produced by various endophytes was reviewed in ref. [47].

Plants also produce some low molecular weight antimicrobial molecules known as phy-
toalexins, including some other groups of secondary metabolites, such as terpenoids [48].
Endophytes can also increase the production of secondary metabolites. Reports have
suggested an increase in terpenoid content by the endophytic fungus Fusarium spp. in
Euphorbia pekinensis [49]. Similarly, plants inhabited by endophytes have been reported
to exhibit increased cellulose content, lamina density, and leaf stiffness, thereby reducing
herbivory rates, particularly against leaf-cutting ants [36,37]. Thus, resistance against phy-
topathogens is achieved by eliciting host responses or producing specific metabolites by
endophytes working in close coordination to cope with pathogenic ingress.

Table 1. List of endophytes associated with defense against various plant pathogens.

Endophyte Host Plant Pathogen Target Pathway Reference

Bacillus spp. Oryza sativa Pyricularia oryzae Induce systemic resistance [50]

Rhizobium etli Phaseolus vulgaris Pseudomonas syringae
pv.phaseolicola

Callose deposition, SA, and
JA-dependent gene induction [50]

Bacillus spp. Nicotiana tabacum Pseudomonas syringae
pv.tobaco Induce systemic resistance [50]

Paenibacillus Triticum aestivum Mycosphaerella
graminicola Defense pathway [51]

Bacillus spp. Oryza sativa Pyricularia oryzae Antioxidant defense activities [52]

Phomopis cassiae Cassia spectabilis Cladosporium
sphaerospermum unknown [53]

Streptomyces strain,
DEF09 Triticum aestivum Fusarium graminearum Chitinase production [54]

Daldinia eschscholtzii
Helianthus tuberosus,

Zingiber officinale,
Stemona tuberosa

Colletotrichum acutatum,
Sclerotium rolfsii

Production of antimicrobial
compounds [55]

Paraburkholderia Beta vulgaris Rhizoctonia solani Systemic acquired resistance [56]
Penicillium citrinum Helianthus annus L Sclerotium rolfsii SA, JA pathway [34]

Fusarium solani Solanum lycopersicum Septoria lycopersici SA-dependent PR gene pathway [35]
Paenibacillus sp. strain

B2 Triticum aestivum Zymoseptoria tritici Induce flavonoid and
phytohormonal pathways [57]

Paraconiothyrium sp. Fraxinus excelsior Hymenoscyphus
fraxineus Unknown [58]

Cladosporium spp. Pinus monticola Cronartium Ribicola Induced resistance [59]

Venturia fraxini Fraxinus excelsior Hymenoscyphus
fraxineus

Production of antifungal
compounds [60]

Flavobacterium Beta vulgaris Rhizoctonia solani
Chitinase, nonribosomal peptide

synthetases (NRPSs), and
polyketide synthases (PKSc)

[61]

Gluconacetobacter
diazotrophicus Arabidopsis thaliana Ralstonia solanacearum Callose deposition [62]

Piriformospora indica A. thaliana Golovinomyces orontii JA-dependent defense pathway [63]
Pseudomonas simiae A. thaliana Mamestra brassicae JA and ET [64]

Bacillus pumilus strain A. thaliana Cucumber mosaic virus Ethylene pathway [65]

Bacillus subtilis A. thaliana P. syringae pv. Tomato
DC3000 SA, ET pathway [66]

Bacillus aryabhattai Nicotiana tabacum, A.
thaliana Botrytus cinerea SA, JA [67]

4. Endophytes and Abiotic Stresses

Abiotic stress is a rising challenge in crop production worldwide. The most common
abiotic stressors include temperature, drought, salinity, and nutrient deficiency (Figure 2).
These stresses may cause alterations in metabolomics and transcriptomics, which change
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the exudates from the roots and leaves and, in turn, influence the microbial community
associated with plants [68]. In the soil ecosystem, plant-associated microbes play a central
role, working as natural partners that facilitate local and systemic mechanisms in plants to
defend against adverse environmental conditions. This section highlights the underlying
mechanisms and how plant–microbe interactions modulate responses under major abiotic
stresses, such as temperature, drought, salinity, and nutrition stress.
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Figure 2. An overview diagram showing major environmental stresses and mechanisms of plant–
microbe interactions that influence plant fitness during these stresses. Tolerance against these
stresses is mainly mediated by enhancement in antioxidant defense enzymes, osmotic adjustment
and production of phytohormones. PGPR: plant growth-promoting rhizobacteria.

4.1. Temperature

Temperature is the most common stress experienced by plants. The average global
temperature and the frequency of extreme weather events have increased considerably over
the past several decades owing to climate change. According to the results of several climate
model simulations, the average temperature of the world is predicted to be between 1.1 and
5.4 ◦C warmer in 2100 than it is today [69]. The main effects of temperature stress include
alterations in plasma membrane activity, transpiration, reduced photosynthesis, enzymatic
dysfunction, cell division, plant growth, and development [70]. Previous studies have
shown that plant response to heat stress may be influenced by microbe interactions [71–73].

Reports suggest that the endophytic bacteria Burkholderia phytofirmans strain PsJN can
alter photosynthesis and the carbohydrate metabolism involved in chilling stress, thereby
enhancing the cold tolerance of grapevine plants [11,74]. Bacterial endophytes induce
adaptation to chilling, resulting in reduced cell damage, increased photosynthesis, and
accumulation of chilling stress-associated metabolites, such as proline, starch, and phenolic
compounds [14].

Some microbes can protect themselves from extreme temperature conditions by en-
hancing the production of heat- and cold-tolerant proteins. Molecular chaperones have
been reported to play essential roles in heat stress tolerance in microbes [75,76]. For ex-
ample, the DnaK gene encoding heat shock protein (Hsp70), a well-known chaperone in
heat stress tolerance, was found to be highly expressed in Alicyclobacillus acidocaldarius
during heat and cold stress [77]. Microbes adapted to low or high temperatures could
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alleviate the negative impacts of extreme temperatures and expand the host plant’s ability
to survive these conditions. Khan et al. reported that thermotolerant Bacillus cereus strain
SA1 alleviated heat stress in soybean plants by enhancing antioxidant defense enzymes and
altering hormonal profiles [78]. Several other studies have reported a similar mechanism
of heat stress tolerance in host plants mediated by thermotolerant endophytes and rhi-
zobacteria, such as Bacillus amyloliquefaciens in rice [79], Pseudomonas putida strain AKMP7
in wheat [80], and Pseudomonas sp. strain AKMP6 in sorghum [81]. In some cases, the
relationship between plants and microbes is important for both partners. The symbiosis
between the fungus Curvularia protuberata and panic grass is interesting, as this relationship
allows both organisms to survive high soil temperatures. However, neither the host plant
nor the fungus can individually tolerate high-temperature conditions [82]. Furthermore,
C. protuberata is required to be infected by Curvularia, a thermal-tolerant virus (CThTV),
to confer heat tolerance to the host plant [82]. Moreover, C. protuberate-mediated heat
tolerance has been observed in tomatoes [83], indicating that the underlying process may
have a wide range of applications to help plants survive at elevated temperatures [84].

4.2. Salinity

Salinity is a global issue that affects agricultural productivity. The regions affected
by salinity are gradually expanding owing to insufficient precipitation, poor irrigation
systems, salt deposition, water pollution, and other environmental factors [85]. Although
the development of salt-tolerant crops has been an important scientific aim, there has
not been much progress in this direction because not many of the key genetic traits that
affect salt tolerance have been identified [86–88]. Introducing salt-tolerant microorganisms
that promote plant growth is a potential alternative to increase crop tolerance to salinity
stress [89].

Plants exhibit a two-stage response to salinity stress. During the first phase, growth
slows drastically, and stomata close in response to decreased water potential. Sodium
ions are built up in the second phase, increasing oxidative stress, which in turn damages
photosynthetic components [87]. In addition to harmful stress by-products, reactive oxygen
species (ROS) may also function as signal molecules to initiate defense mechanisms against
salt and other stressors [90].

Multiple mechanisms have been implicated in endophyte-mediated salinity tolerance.
One approach is to produce large quantities of organic osmolytes such as trehalose, proline,
glycine, and betaine, which offer an adaptive response to salinity stress [85]. Some endo-
phytes help plants tolerate salinity stress by reprogramming the antioxidant defense system
and hormonal profiles. For example, Khan et al. [91] reported that bacterial endophytes
Bacillus cereus, Micrococcus yunnanensis, Enterobacter tabaci, Curtobacterium oceanosedimen-
tum, Curtobacterium luteum, and Enterobacter ludwigii isolated from halotolerant plants
enhanced the salt stress tolerance of rice by altering defense enzymes, indole-3-acetic acid,
abscisic acid (ABA), and gibberellin levels. Similar mechanisms have been observed for
soybean [92], tomato [93], cucumber [94], and maize [95].

Some endophytes enhance the ability of the host plant to alleviate salt stress by
improving key transcripts that are required for salinity tolerance. For example, the bacterial
endophyte Bacillus subtilis has been reported to enhance salinity tolerance in Arabidopsis
by simultaneously downregulating high-affinity K+ transporter 1 (HKT1) expression in
roots and upregulating it in shoots. The induction of HKT1-dependent shoot-to-root
recirculation was likely to result in a 50% reduction in plant-wide Na accumulation [96].
Another study reported that auxins produced by Bacillus amyloliquefaciens alleviate salt
stress by upregulating the expression of ethylene-responsive element binding protein
(EREBP), betaine aldehyde dehydrogenase (BADH), salt overly sensitive 1 (SOS1), and
catalase genes in rice [97]. Another endophytic bacterium, Pseudomonas pseudoalcaligenes,
was shown to enhance salt tolerance in rice by accumulating high concentrations of glycine
betaine-like compounds [98]. Some endophytes secrete exopolysaccharides that bind
cations in the roots (particularly Na+) and inhibit their transport to leaves, thereby reducing
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salt stress [97]. They proposed that roots from inoculated seedlings had a larger proportion
of soil sheaths covering them, which could slow down the passage of apoplastic Na+ into
the stele.

4.3. Drought

Without water, life on Earth is not possible. Too little water (drought) or too much
water (flood) can have a considerable influence on several aspects of plant and microbial
life. A drought is described as a period when there is insufficient water available for an
organism or environment to function at its best [99–101]. Drought stress may occur at any
plant developmental stage and can affect growth and development to varying degrees
based on the onset time, duration, and severity. At the reproductive stage of the plant,
drought stress may directly reduce more than 50% of the yield [79,102]. Plant breeders
have made remarkable progress in creating drought-tolerant crops, but despite this, they
are still unable to satisfy the needs of food security in the face of a rising global population,
climate change, and water scarcity [101]. Traditional breeding, however, requires much
work from the breeder, takes a long time, and may result in the loss of other desirable
features [103,104]. Endophytic microorganisms have been reported to alter plant responses
to drought and can be used as an alternative and rapid way to enhance crop productivity.

Plants alter phytohormone abscisic acid (ABA) production in response to drought
stress. When ABA concentration rises, it sets off a chain reaction that causes the plant to
undergo extensive physiological and transcriptional changes, such as the closing of stomata
to decrease water loss via transpiration [105]. Furthermore, cell size and membrane integrity
are reduced, ROS are produced, and leaf senescence is promoted, all of which contribute to
a reduction in agricultural productivity [106].

Under water-deficient conditions, endophytic microorganisms colonize the rhizo-
sphere and promote plant growth and development through a variety of direct and indirect
mechanisms. Plant endophytes can produce plant hormones that promote plant growth
and development. Mahest et al. reported that the endophytic actinobacteria S. olivaceus
strain DE10 enhanced wheat growth via auxin production under drought conditions [107].
Azospirillum brasilense improves drought tolerance in Arabidopsis thaliana by increasing ABA
levels [108]. Endophyte-facilitated drought tolerance via alteration of hormonal profiles
has been reported in soybean [109], wheat [110], Lavandula dentata [111], cucumber [112],
sugar cane [113], and soybean [114].

Additionally, in certain instances, Rhizophagus irregularis reduced drought stress in
tomatoes and lettuce by colonizing the roots [115]. Interestingly, both drought and colo-
nization by R. irregularis increased the synthesis of the phytohormone strigolactone. Since
strigolactones are known as host identification signals for arbuscular mycorrhiza (AM)
fungi, this implies that they operate as a “call for help” signal and start a positive feedback
loop of R. irregularis colonization that increases host plant tolerance to drought condi-
tions [116]. A similar positive effect of bacterial endophytes has also been reported in
wheat, where endophytes played a key role in metabolite balance and the reduced effects
of drought stress [117].

Some endophytes help the host plant survive drought-induced oxidative stress by
enhancing antioxidant defense enzymes. Moghaddam et al. [118] reported that endo-
phytic fungi Neocamarosporium goegapense, Neocamarosporium chichastianum, and Periconia
macrospinosa isolated from a desert plant alleviated drought stress in wheat and cucumber
by boosting antioxidant defense enzymes. The endophytic bacteria Bacillus safensis and
Ochrobactrum pseudogregnonense increased antioxidant activity and enhanced wheat growth
under drought conditions [119]. Similar mechanisms of endophyte-mediated drought
tolerance have been reported in maize [120,121], wheat [110], Chinese cabbage [122], and
other popular crops [123].

Drought also affects the microbial diversity in the host plant rhizosphere. Xu et al. [124]
showed that drought drastically lowered bacterial diversity in the rhizosphere and root
endosphere, whereas the bacterial community diversity in the surrounding soil remained
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mostly unchanged. Furthermore, the authors reported that drought enhanced the abun-
dance of actinobacteria, which in turn resulted in the enrichment of metabolites required for
drought tolerance. However, it is still unclear how these drought-enhanced metabolites re-
configure the root microbiome makeup to improve plant stress responses. Nonetheless, this
intriguing association raises the possibility that plants, and their associated microbiomes
engage in molecular dialogues during drought to change the root microbiota to better toler-
ate drought stress. Understanding this molecular exchange will help us obtain foundational
information regarding the use of microbiota to improve agricultural productivity under
drought conditions [84].

4.4. Nutrient Deficiency

Nutrient stress, characterized as either suboptimal availability of necessary nutrients
or excessive and toxic amounts of essential and non-essential macronutrients, is considered
a major stress that has significantly affected crop productivity worldwide. Extracting
insoluble nutrients from soils is one of the biggest challenges in the evolution of terrestrial
plants; as a result, they may have formed symbiotic relationships with mobile microbes
and have flagella or hyphae that can extend into the soil to provide plants with nutri-
ents [125]. Many studies have shown that endophytes can assist plants by transforming
and solubilizing nutrients such as N, P, K, and other microminerals, thus making them
conveniently accessible to plants [126,127]. For example, Pseudomonas sp., as described
by Choi et al., mediates phosphate solubilization in rice and wheat by altering gibberel-
lic acid production [128]. Abadi and Sepehri [129] reported that the ability of wheat to
absorb mineral nutrients, particularly zinc, was aided by the presence of the endophytes
Azotobacter chroococcum and Piriformospora indica. The bacterial endophyte Enterobacter sp.
has been reported to help plants adapt to various environmental conditions by improving
nutrient acquisition, including nitrogen fixation [130]. Yamaji et al. [131] reported that
Phialocephala fortinii, Rhizodermea veluwensis, and Rhizoscyphus sp. isolated from mining site
soil enhanced the growth of C. barbinervis seedlings by increasing K uptake in shoots and
reducing the concentrations of Cu, Ni, Zn, Cd, and Pb in roots. This suggests that isolating
and characterizing endophytes from mining sites may help discover novel endophyte
species that can assist in crop improvement under heavy metal stress. Some other examples
in Table 2 represent endophytes, their host sand, and their role in various abiotic stresses.

Table 2. List of endophytes mediating abiotic stress tolerance in plants.

Endophyte Host Plant Stress Mechanism Reference

Mucilaginibacter stain K Arabidopsis thaliana Salinity Increase in anti-oxidative defense machinery [132]
Pantoea agglomerans Zea mays Salinity Upregulation of aquaporins [133]

Arthrobacter
endophyticus,

Nocardiopsis alba
A. thaliana Salinity

Enhancing the expression of genes responsible
for water, potassium ion uptake, carotenoid

biosynthesis, phenylalanine metabolism,
phenylpropanoid biosynthesis, glycerolipid

and nitrogen metabolism

[134]

Penicillium
brevicompactum and P.

chrysogenum

Solanum lycopersicum
Lactuca sativa Salinity Enhanced energy production and Na+

sequestration [135]

Alternaria chlamydospora Triticum aestivum Salinity Inducing the physiological and biochemical
responses [136]

Trichoderma harzianum
TH-56 Oryza sativa Drought Upregulation of aquaporin, dehydrin, and

malonialdehyde genes [137]

Pseudomonas putida Cicer arietinum Drought
miRNAs and their target genes indicated the

involvement in the stress regulatory pathways,
which control/regulate drought stress response

[138]
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Table 2. Cont.

Endophyte Host Plant Stress Mechanism Reference

Bacillus cereus,
Pseudomonas otitidis and

Pseudomonas sp.
Glycine max Drought

Improving plant growth, membrane integrity,
water status, accumulation of compatible

solutes, and osmolytes
[139]

Gluconacetobacter
diazotrophicus Saccharum officinarum Drought IAA and proline production [113]

Paraphoma sp.,
Embellisia chlamydospora,

and Cladosporium
oxysporum

Zea mays Drought Altered root development [140]

Pseudomonas aeruginosa
strain 2CpS1 T. aestivum Heat Reducing heat and drought–induced oxidative

stress [141]

Bacillus
amyloliquefaciens subsp.
plantarum UCMB5113

T. aestivum Heat by molecular modifications in wheat leaf
transcript patterns [142]

Bacillus velezensis T. aestivum Heat

(1) express several proteins related to stress
defense and energy supply

(2) modulate several metabolic pathways of
amino acids

(3) increase the accumulation of GABA in the
leaves

[143]

Burkholderia
phytofirmans PsJN A. thaliana Cold Pigment accumulation and cold response

pathway induction [144]

Bacillus sp. and
Lysinibacillus sp. Argentine screwbean Nutrient

deficiency

Increase in antioxidant defense enzyme,
photosynthetic pigments and low lipid

peroxidation siderophore, and alteration in
IAA, gibberellic acid content

[145]

Bacillus
amyloliquefaciens Oryza sativa Nutrient

deficiency Modulates carbohydrate metabolism [146]

Pseudomonas sp. Pisum sativum Nutrient
deficiency

Gluconic acid used by bacteria to solubilize
phosphate [146]

4.5. Negative Effects of Endophytes: the Other Side of the Picture

Although endophytes promote the host plants’ growth in several ways [10], these
endorsing effects are sensitive to changes in the abiotic environment and may shift from
positive to negative when the tolerance range of either symbiont is compromised [147].
The shift in this unstable symbiotic relationship between endophytes and host plants to
pathogenicity may be due to variations in abiotic environments, such as nutrient shortages
or prolonged extreme weather. We expect this because a fungal species may be endophytic
and beneficial to one host species under certain abiotic limits and become pathogenic
to the same or another host under different environmental conditions [148]. Despite a
good understanding of the behavior and mechanism of endophyte-host plants using high-
throughput techniques, there are still substantial gaps regarding microbial lifestyle and
their function in host plants [32]. It is therefore inferred that endophytic status cannot be
assumed to be certain, as these co-evolved relationships are plastic/dynamic and can be
anticipated to destabilize under severe environmental change scenarios [149].

In addition, one should consider the compatibility of endophytes, especially when
used as a consortium of endophytes in field conditions. Reports suggested that co-
inoculation of chickpea with compatible endophytes such as Mesorhizobium, Serratia marces-
cence, and Serratia spp. have synergetic effects on plant growth in terms of nodule number
and dry weight, the number of pods per plant, etc. [150]. Similar results were reported
by Oliveira et al. [151], where inoculation with a consortium of five diazotrophic bacteria
(Gluconacetobacter diazotrophicus, Herbaspirillum seropedicae, Herbaspirillum rubrisubalbicans,
Azospirillum amazonense, and Paraburkholderia tropica) resulted in higher stem production in
sugarcane as compared to single endophyte inoculated plants. On the contrary, applying
a consortium of incompatible bacteria may have damaging effects on crop growth and
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production. Co-inoculation of nitrogen-fixing bacteria Herbaspirillum seropedicae and H.
rubrisubalbicans with sugarcane did not increase the overall yield of sugarcane [151]. There-
fore, it is highly recommended to do a compatibility test for the endophytes before their
application [152].

5. Conclusions and Future Recommendations

Our understanding of how to plant endophytes can influence plant physiological
responses to biotic and abiotic stresses (see Figure 2). Each year, an increasing number
of articles indicate the critical role of plant–microbe interactions in plant fitness during
extreme environmental conditions. These breakthroughs have provided new insights into
crop protection and disease management. Under unpredictable climates, food crops are
more vulnerable to increased biotic and abiotic stresses, putting them at higher risk and
jeopardizing the security of the world’s food supply.

Despite significant advancements over the past few decades, there is still a knowledge
gap regarding the possibility that environmental stresses can shift plant–microbe interac-
tions from commensal to mutualistic or parasitic relationships. They might compete with
each other for survival under adverse conditions, for example, by competing for crucial
nutrients such as nitrogen and phosphate [153]. Hence, a better understanding of the
factors that determine whether a plant–microbe interaction is harmful or beneficial is re-
quired. Transcriptome analysis of perturbed microbial associations in grasses, in which the
plant–microbe interaction switches from reciprocal to pathogenic, has identified plant and
fungal gene candidates that play a central role [154]. Therefore, we suggest that detailed
transcriptomic and metabolomic analyses can be used to comprehensively understand
the complex interactions between plants and their microbiome in biotic and abiotic en-
vironments. This may provide unprecedented opportunities for enhancing agricultural
productivity in extreme environments. Despite the well-established reports on the plant-
endophytic symbiotic relationship and the effects on improving plant growth and health,
there are no examples of this being used in agriculture. This could be a lack of broadcasting
the information from the scientific community to the farmers, a view worth considering.
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