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A B S T R A C T   

Background: Diffusion microstructure imaging (DMI) is a fast approach to higher-order diffusion-weighted 
magnetic resonance imaging that allows robust decomposition and characterization of diffusion properties of 
brain tissue into intra-axonal, extra-axonal, and a free water-compartment. We now report the application of this 
technique to acute ischemic stroke and demonstrate its potential applicability to the daily clinical routine. 
Methods: Thirty-eight patients diagnosed with acute ischemic stroke were scanned using an accelerated multi- 
shell diffusion-weighted imaging protocol (median delay between onset and MRI scan of 113 min). DMI met
rics were calculated and the apparent diffusion coefficient (ADC) derived from conventional diffusion-weighted 
imaging was used for comparison. The resulting DMI parameter maps were analysed for their potential to 
improve infarct core delineation, and a receiver-operating characteristic (ROC) analysis was subsequently per
formed for automated infarct segmentation. 
Results: Robust parameter maps for diffusion microstructure properties were obtained in all cases. Within the 
ischemic tissue, an increase in the volume fraction of the intra-axonal compartment was accompanied by a 
volume fraction reduction in the other two compartments. Moreover, diffusivity was reduced in all three com
partments, with intra-axonal diffusivity showing the highest degree of contrast. The intra-axonal diffusion co
efficient maps were subsequently found to perform better than single-shell ADC-derived segmentation in terms of 
automatic segmentation of the infarct core (area under the curve = 0.98 vs 0.92). 
Conclusions: The alterations to the ischemic core detected by DMI are in line with the “beading-model” of non- 
uniform neurite swelling under ischemic conditions. When compared to conventional single-shell diffusion- 
weighted imaging, DMI metrics are associated with improved discriminative power for delineating and char
acterizing ischemic changes. This might allow a more detailed assessment of infarct age, severity of damage, the 
degree of reversibility, and outcome.   

1. Introduction 

Cerebral imaging in the form of computed tomography (CT) or 
magnetic resonance imaging (MRI) is critical in acute stroke, given that 
it forms the basis for further clinical management. In particular, 
diffusion-weighted imaging (DWI) can detect ischemia-induced changes 
within minutes of cell death and thus represents one of the most striking 
and sensitive means of identifying pathologically induced changes 
(Hjort et al., 2005). Accordingly, a Cochrane review estimated that DWI 

has a sensitivity of 0.99 (95 % CI, 0.23–1.00), whereas the sensitivity of 
CT imaging was only found to be 0.39 (95 % CI, 0.16 to 0.69; (Brazzelli 
et al., 2009)). Although changes in DWI are potentially reversible (Inoue 
et al., 2014; Labeyrie et al., 2012; Luby et al., 2014; Olivot et al., 2009; 
Soize et al., 2015), brain tissue with a DWI-derived apparent diffusion 
coefficient (ADC) of less than approximately 0.620 µm2/ms is consid
ered to display the so-called ischemic core. Therefore, even though the 
use of CT is standard in a clinical setting due to practical and economical 
reasons, DWI serves both as the ground truth and benchmark for 
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calibration and threshold definition for CT methods (Cereda et al., 
2016). 

However, the power of diffusion MRI has not yet been fully exploi
ted, as conventional single-shell DWI protocols yield ADC values for a 
single compartment model only, allowing only a rough approximation of 
an otherwise complex cerebral microstructure. To overcome this limi
tation, protocols with multiple b-values based on standard pulsed-field 
gradients (PFGs) enable the estimation of higher-order terms, such as 
kurtosis, or the application of multi-compartment models. In fact, 
diffusional kurtosis has been shown to substantially improve the char
acterization of tissue microstructure after ischemic stroke in both ro
dents and humans (Hui et al., 2012; Wang et al., 2019; Weber et al., 
2015). Nonetheless, it should be noted that local fiber orientation is an 
important confounding factor in all modeling approaches that are based 
on single PFGs. The application of alternative gradient weightings, such 
as isotropic weightings, double PFG sequences, or q-vector magic angle 
spinning, allow the underlying microscopic anisotropy to be probed 
more directly, while also being less dependent on macroscopic fiber 
organization. Although these alternative techniques seem promising, 
their practical realisation is hampered by hardware limitations and non- 
standardized sequences. 

To address these limitations, we employed diffusion microstructure 
imaging (DMI) as a novel multi-compartment analysis technique that 
uses a Bayesian approach from ordinary single PFG data to disentangle 
the relative effects on micro-versus macrostructure (Reisert et al., 2017). 
To date, DMI has been successfully applied to various conditions 
including idiopathic normal pressure hydrocephalus (Rau et al., 2021), 
atypical parkinsonism (Rau et al., 2022), peritumoral edema (Würtem
berger et al., 2022) and white matter changes in patients in the subacute 
stage of a SARS-CoV-2 infection (Rau et al., 2022). In general, DMI is 
based on a variant of the “standard model” of white matter (Jespersen 
et al., 2007; Novikov et al., 2018; Reisert et al., 2017; Zhang et al., 
2012), a three-compartment model comprising an intra-axonal, an 

extra-axonal and a free-water fraction. Model parameters such as 
compartmental volume diffusivity are estimated based on signal features 
that are sensitive to microstructural effects only. In addition, this esti
mation technique has low measurement requirements and short 
computation times, and is therefore applicable to an acute stroke sce
nario. The purpose of this proof-of-concept study is to evaluate the 
applicability of the DMI approach to an acute stroke setting. 

2. Methods 

2.1. Patient cohort 

Thirty-eight acute ischemic stroke patients (26 female, mean age 
73.3 ± 13.6 years) who received MRI as part of a routine work-up be
tween June 2015 and March 2016 were included in the study (detailed 
characteristics are presented in Table 1). Patients who were eligible for 
mechanical thrombectomy according to current guidelines (e.g. no large 
vessel occlusion (LVO), or the combination of an LVO and a DWI AS
PECTS score of 0–4) were excluded from the study to avoid any delay in 
therapy due to additional sequence acquisition. In 15 patients, i.v. 
thrombolysis was indicated and initiated during the course of the MRI 
scan. This study was approved by the local ethics committee (Appl. No. 
20–1047), informed written consent was waived. 

2.2. MRI acquisition 

MRI was performed in 24 cases with a 3-Tesla MAGNETOM Tim Trio 
and in 14 cases with a 3-Tesla MAGNETOM Prisma (Siemens Healthi
neers, Erlangen, Germany). The diffusion MRI parameters on the Trio- 
system were as follows: in-plane resolution, 1.5 mm × 1.5 mm; slice 
thickness, 5 mm; echo time, 102 ms; repetition time, 3400 ms; partial 
Fourier 6/8. Two b-shells were acquired with b-values of 1000 s/mm2 

and 2000 s/mm2. After every 6th weighting, a b = 0 s/mm2 image was 
inserted. Parameters on the Prisma-system were: in-plane resolution, 1 
mm × 1 mm; slice thickness, 5 mm; echo time, 84 ms; repetition time, 
3900 ms; partial Fourier 6/8. The diffusion-weighting scheme follows 
the one recently proposed by the current research group (Reisert et al., 
2017) and consists of 28 diffusion weightings hexagonally distributed 
within a q-ball of radius 2000 s/mm2. Total acquisition time was 2:06 
min. 

2.3. Diffusion analysis 

Data processing and segmentation were carried out using a local 
version of the medical imaging platform NORA (https://www.nora-im 
aging.org). The first pre-processing step comprised denoising (Veraart 
et al., 2016) and Gibbs-ringing artifact removal (Kellner et al., 2016). 

Table 1 
Demographics of the considered cohort. (NIHSS - National Institutes of Health 
Stroke Scale; mRS - modified Rankin Scale).  

Patients (n = 38) Median IQR Min Max 

Age (years) 76 18.5 44 94 
Sex (female/male) 26 / 12 
Symptom onset − MRI delay (min) 113 30 30 345 
NIHSS (max. 32 points) 6 10 0 24 
mRS (0–6) 4 1 0 5 
Localisation n = 36 Middle cerebral artery 

n = 2 Anterior choroidal artery 
Laterality (r/l) 18 / 20    
Lesion size (mL) 4.8 8.3 0.1 148 
Thrombolytic treatment (none/ intravenous) 23 / 15  

Fig. 1. The DMI method is based on a 3-compartment model, where brain tissue is modeled on (A) an intra-axonal compartment, (B) the surrounding extra-axonal 
compartment and (C) a free-fluid compartment in which water can move freely. The relevant parameters are the volume fractions V of each compartment (adding up 
to 1), and the relative diffusivity inside the compartments. It is assumed that water can only move along the axonal fibers when it is inside the axons. In the extra- 
axonal space, there is additional – albeit slight – water movement perpendicular to the fiber orientation, while in the free-fluid compartment, diffusion is isotropic. 
The diffusion signal is formed by a sum of these compartments, and the parameters are estimated using the Bayesian approach described in Reisert et al. (2017). 
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DMI metrics were calculated using a recently introduced Bayesian 
approach (Reisert et al., 2017), which relies on the “standard model” of 
white matter (Jespersen et al., 2007; Novikov et al., 2018; Reisert et al., 
2017; Zhang et al., 2012). The key assumptions behind the standard 
model are non-exchanging compartments (permeabilities are low) and 
long diffusion times such that diffusion time dependence can be 

neglected. 
The approach in (Reisert et al., 2017) uses derived features of the 

signal rather than the raw signal itself. These signal features are 
invariant with respect to rotation and macroscopic structure and depend 
exclusively on microstructural tissue properties. In this work, due to the 
rather fast and low-quality acquisition protocol, we restricted to features 

Fig. 2. Conventional DWI (left) and DMI maps (right) shown in 3 exemplary cases. Similar qualitative DMI changes were observed within infarct lesions. Diffusivities 
were decreased in all compartments, with Daxintra showing the strongest effects. Regarding the volume fractions, the increase in V-intra is contrary to the decrease in 
V-extra and V-CSF, indicating net swelling within the intra-axonal compartment. Multi-parametric DMI maps appear to provide a more differentiated, pronounced 
picture of tissue alterations in stroke compared to that elicited by conventional DWI. 

Fig. 3. ROC analysis for infarct core segmentation based on DMI and ADC. Manual expert segmentation based on both DWI-derived ADC and DMI-derived Daxintra, 
their union or their intersection were used as the ground truth and compared to full threshold-based infarct core segmentation with various thresholds. The resulting 
curves indicate that DMI-derived Daxintra has a higher discriminative power for infarct core segmentation. The dots correspond to thresholds derived from the 
Youdens’ index. 

Table 2 
ROC measures for DMI and conventional ADC (AUC: area under the curve; Jmax: maximum of Youdens’ index; Threshold: optimal threshold at max of Youdens’ 
index; Sens/Spec: sensitivity/specificity). For all ground-truth variants, DMI-based Daxintra showed the best performance (also see ROC curves in Fig. 3). Units for 
Daxintra and ADC thresholds are µm2/ms.  

Ground truth Daxintra ADC  
AUC Jmax Threshold Sens/Spec AUC Jmax Threshold Sens/Spec 

Segmentation with Daxintra  0.97  0.82  2.02 0.89/0.93  0.88  0.64  0.689 0.75/0.89 
Segmentation with ADC  0.96  0.81  2.00 0.88/0.93  0.90  0.67  0.683 0.78/0.90 
Union  0.95  0.78  2.02 0.86/0.92  0.87  0.61  0.697 0.73/0.88 
Intersection  0.98  0.87  1.99 0.93/0.94  0.92  0.73  0.678 0.82/0.90  
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of spherical harmonic order 2, which leads to three independent signal 
features. In comparison, the number of biophysical parameters of the 
standard model is actually-five. Therefore, we will expect spurious 
correlations in the DMI parameter maps, because there is simply not 
enough data to solve the problem exactly. In addition, instead of 
applying a classical mathematical fit to the maximum a-posteriori esti
mator (MAP), a supervised machine-learning approach was employed in 
which the microstructural tissue properties were learned based on a 
simulated training data set. Thus, the parameters can be calculated for a 
given measurement in a straightforward manner, given the signal fea
tures with a Bayesian estimator. Here, we used a polynomial regressor of 
order 3 as an estimator. The framework is generally suitable for a large 
range of microscopic models and dMRI acquisition schemes. The model 
parameters used to generate the training set for the estimator are uni
versal and were not adapted to the typical parameters of stroke lesions. 
All parameters were chosen from their possible biophysical range. The 
only constraint is that Daxintra > (Daxextra + 2*Dradextra), which is 
necessary due to ambiguities in the standard model for simple single 
PFG measurements (Novikov et al., 2018; Reisert et al., 2019, 2017). 

The standard model comprises three compartments: an intra-axonal 
(V-intra), an extra-axonal (V-extra) and a “free-fluid” space (V-CSF), the 
latter of which accounts for cerebrospinal fluid and perivascular spaces 
(Fig. 1). The model is based on the assumption that in the intra-axonal 
compartment, water can diffuse along axons only, in the extra-axonal 
compartment it can diffuse both along, and radially to, the orientation 
of the axons, and in the free-fluid compartment, it can diffuse unre
strictedly in all directions. The diffusivity (Dcsf) of the free-fluid 
compartment is fixed to 3 μm2/ms. This leads to a model with six 

parameters: The 3 compartmental volume fractions (V-intra, V-extra, V- 
CSF) and the 3 compartmental diffusivity parameters (Daxintra, Daxextra 
and Dradextra). The mathematical details of the model are described in 
(Reisert et al., 2017). The ADC for conventional single-shell DWI was 
calculated using b = 0 and b = 1000 s/mm2 scans yielded by the DMI 
protocol. 

2.4. Manual segmentation 

We sought to compare the performance of conventional DWI versus 
DMI for threshold-based infarct core delineation. To control for bias, 
ground-truth segmentation was manually created based on visual in
spection of both conventional DWI and DMI. 

For DWI-based segmentation, a threshold of ADC < 0.620 µm2/ms 
(Purushotham et al., 2015) has been used in several studies and served 
as a guide also here. 

For DMI segmentation, the major focus was on Daxintra mapping, 
which showed the strongest level of contrast in the infarct core upon 
visual inspection and is most closely related to conventional ADC (see 
Fig. 2). To exclude false positives, special care was taken to identify 
motion artifacts and speckle noise during manual segmentation. Puta
tive diffusion abnormalities in the basal ganglia, usually caused by a low 
signal, were intentionally disregarded. To assure that all lesion voxels 
were included, interpolation of the selected voxels was performed 
whenever appropriate, to ensure that at least several voxels per slice 
were segmented. 

Fig. 4. Comparison of DMI segmentation with ADC-based segmentation of the infarct core in a 77 year-old female patient 145 min after symptom onset. The DMI- 
derived intra-axonal diffusivity (Daxintra) generally has a sharper, more discriminative contrast than the ADC map (note the more distinct gray/white matter 
junction). ROC analysis was performed by comparing the ground-truth segmentations for both contrast techniques (middle column) as well as their union and 
intersection (not shown) with various thresholds (example in right column). Daxintra-based thresholding is clearly more discriminative and has less noise (i.e. false 
positives) than ADC-based thresholding. Note the increased diffusivities in several white matter regions due to the severe leukencephalopathy of the patient. 
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2.5. Statistical analysis 

Segmentation performance in the infarct core was evaluated using 
receiver-operating characteristics (ROC), which compares sensitivity 
and specificity for a range of different thresholds. Voxels from all sub
jects were pooled together to generate the ROC curve. Due to the lack of 
ground truth available for the infarct cores, comparison was performed 
in a pair-wise fashion with four different settings used as ground truth: 
A. manual DWI-based segmentation, B. DMI-based segmentation, C. the 
intersection of the DWI- and DMI-based infarct core or D. the union of 
the DWI- and DMI-based infarct core, where settings C. and D. act as two 
additional ‘consensus’ ground truths. Prior to thresholding, the images 
were brain-stripped using a mask generated with the tool FSL-BET 

(Jenkinson et al., 2012) to exclude noise from non-brain-voxels. ROC 
curves were generated, and the area under the curve (AUC), the 
maximum of Youden’s statistics (J = sensitivity + specificity − 1), and 
the optimal threshold where J is maximized were calculated. 

Additionally, we report descriptive statistics of all parameters of the 
DMI model within the lesion and a corresponding area on the contra
lateral side. Therefore, we used the intersection (C) lesion mask and used 
SPM12 to mirror (co-registration with a x-flipped version of the b0- 
image) the lesion to the contralateral side. We also used a brain mask 
to clip all CSF-voxels from the flipped lesion mask. 

Fig. 5. A 78-year-old woman presented with fluctuating paresis of the left arm and dysarthria due to high-grade stenosis of the right middle cerebral artery since 11 
h. FLAIR showed no signal alterations, ADC revealed subtle ischemic changes in the deep border zone between perforating MCA branches and deep medullary 
arteries. A DWI (averaged over b ≥ 1800) shows already clear signal alterations, and DMI reveals a clear reduction in intra-axonal diffusivity (Daxintra), an increase in 
V-intra and concurrent reduction in the volume of V-extra. Following clinical deterioration after the MRI scan, the patient was treated with angioplasty. Note that the 
extent of ischemic changes on FLAIR follow-up is more consistent with the axial intraaxonal diffusivity map than ADC is. 
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3. Results 

Both conventional DWI and DMI parameters were successfully 
calculated in all 38 patients. Fig. 2 shows representative examples of the 
DMI-derived quantitative parameter maps alongside a conventional 
single-shell, DWI-derived mean image and apparent-diffusion- 
coefficient (ADC). Application of the DMI method revealed an increase 
in the volume fraction of V-intra, in contrast to a volume fraction 
reduction in the remaining 2 compartments (V-extra, V-CSF). Reduced 
diffusivities were observed within all compartments. Upon visual eval
uation, the Daxintra map showed the strongest degree of contrast be
tween the infarct core and the preserved tissue. Therefore, we compared 
Daxintra-based automated segmentation of the infarct core to a con
ventional ADC-based approach. Here, ROC analysis revealed that DMI 
had a better performance level compared to that of conventional DWI, 
(Fig. 3 and Table 2) whereby the maximum sensitivity and specificity at 
an optimal threshold of Daxintra (0.93/0.94, AUC = 0.98) was higher 
than in conventional ADC (0.82/0.90, AUC = 0.92). The optimal 
threshold for Daxintra hits 2 µm2/ms almost perfectly. For ADC the 
threshold is slightly below 0.7 µm2/ms. Fig. 4 shows a representative 
example of the superiority of automatic Daxintra-based segmentation of 

the infarct core. Fig. 5 depicts the case of a 77-year-old woman who 
presented with fluctuating left-sided arm paresis and dysarthria due to 
high-grade, right-sided middle cerebral artery stenosis. She was treated 
with angioplasty after she clinically deteriorated 1 h after the MRI scan. 
Acute Daxintra predicted the extent and configuration of the delimited 
FLAIR-lesion yielded by a follow-up MRI much better than that of acute 
DWI or ADC maps. 

Fig. 6 depicts descriptive statistics of all DMI parameters of the ipsi- 
and contralateral lesion mask. 

4. Discussion 

We report the successful application of DMI in 38 patients with acute 
ischemic stroke. Based on our results, DMI (especially Daxintra) provides 
a contrast between ischemic and preserved tissue that is superior to that 
of conventional DWI, leading to the higher accuracy of automatic 
threshold-based segmentation of the estimated infarct core. This 
approach may further allow more accurate predictions of final stroke 
volume and configuration. Due to our ultra-fast protocol (2:06 min), this 
technique is highly applicable to the daily clinical routine, even with 
respect to the time-critical nature of acute stroke imaging. 

Fig. 6. Statistics over the whole group of subjects of all model parameters within the lesion mask. For comparison of mean values of the mirrored lesion mask 
(contra) on the healthy hemisphere is also shown. Errorbars indicate the lower 5%-percentile and the upper 95%-percentile. 
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The potential of advanced dMRI techniques to characterize ischemic 
tissue has already been explored in other studies. In line with our 
findings, increases in both the sensitivity and specificity of higher-order 
diffusion metrics have been demonstrated in both animals and humans 
using diffusion kurtosis imaging (DiBella et al., 2022; Hui et al., 2012; 
Liu et al., 2019; Spampinato et al., 2017; Umesh Rudrapatna et al., 
2014). In contrast to DKI, the Bayesian approach in DMI allows for a 
highly robust estimation of parameters, even with just a few diffusion 
directions. Most importantly, however, DMI can directly yield not only 
the physical parameters of the model, but also the volume fractions and 
diffusivities of each compartment. Moreover, our results are in line with 
a study that used NODDI metrics to estimate microstructure properties 
in ischemic tissue (Wang et al., 2019) which showed significantly larger 
absolute percentage changes than those derived from DTI and DKI. 

However, the NODDI approach was originally developed for healthy 
tissue and requires stabilization by strict a priori constraints, hence 
making it less applicable to pathologically altered brain tissue. 

There are several limitations associated with the interpretation of 
our data. The cross-sectional character of our dataset (except for the 
single patient described in Fig. 5) particularly needs to be taken into 
account, since the FLAIR-delimited ischemic infarct could not be used as 
ground truth and secondary growth of the final infarct core could not be 
ruled out. To overcome this problem, we performed crosswise validation 
using both conventional ADC and DMI. The baseline ADC threshold used 
in this study is just ‘one’ of the thresholds appearing in literature. We 
used 0.620 µm2/ms, because it is one of the most common choices 
(Albers et al., 2016; Purushotham et al., 2015), and it is used by several 
automatic processing tools. However, the optimal ADC threshold for the 
present study (~0.680 µm2/ms) was somewhat higher. The lack of a 
follow-up investigation for the definition of an appropriate ground truth 
likely explains this deviation. Finally, another limitation of our study is 
that the considered cohort is not fully representative of an acute 
ischemic stroke population, because patients which underwent throm
bectomy were excluded. 

Interestingly, a volume shift to the intra-axonal compartment 
accompanied by reduced diffusivity was observed within the infarct core 
(see Fig. 2). This pattern fits well with the concept of a non-uniform, 
focal enlargement of axons due to osmotic imbalance, which has been 
defined as axonal beading based on mathematical models and sciatic 
nerve preparations (Budde and Frank, 2010). In this setting, axons are 
thought to undergo a form of net swelling (increased V-intra) that has a 
non-uniform, bead-like configuration, which changes the overall axon 
morphology to periodically, reoccurring barriers along the length of the 
axon. These barriers lead to a reduction in intra-axonal diffusivity. In the 
context of conventional single-shell DWI, these changes are summarised 
into the ADC map as a single averaged parameter. Although the model of 
axonal beading primarily covers the white matter, the intra-axonal 
compartment has been also adopted for dendritic neurites within the 
gray matter (Genç et al., 2018). Whether DMI parameters are differen
tially changed within ischemic white vs gray matter needs to be inves
tigated in future studies. As a further remark in this context, the dMRI 
standard model used by DMI has been developed for white matter, as it 
implies no exchange between the one-dimensional compartment (V- 
intra) and the extra-axonal (V-extra) and CSF space. While this 
assumption is well justified by the myelin-sheaths in white matter, it 
might not be valid in gray matter. In fact, recent studies have been 
pointing at a non-negligible exchange between dendrites and extracel
lular space, on the scale of 20–60 ms (Jelescu et al., 2022), or even <10 
ms (Olesen et al., 2021). Here, we can not sharply distinguish between V 
and intra (neurites) and V-extra (cells and extracellular matrix). A final 
remark can be made on the signal features, where we restricted the 
model to information up to second order spherical harmonics, which 
was, due to the quality of the data, necessary. 
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