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Abstract
The formation of a heterogeneous set of advanced glycation end products (AGEs) is the final outcome of a non-enzymatic 
process that occurs in vivo on long-life biomolecules. This process, known as glycation, starts with the reaction between 
reducing sugars, or their autoxidation products, with the amino groups of proteins, DNA, or lipids, thus gaining relevance 
under hyperglycemic conditions. Once AGEs are formed, they might affect the biological function of the biomacromolecule 
and, therefore, induce the development of pathophysiological events. In fact, the accumulation of AGEs has been pointed 
as a triggering factor of obesity, diabetes-related diseases, coronary artery disease, neurological disorders, or chronic renal 
failure, among others. Given the deleterious consequences of glycation, evolution has designed endogenous mechanisms to 
undo glycation or to prevent it. In addition, many exogenous molecules have also emerged as powerful glycation inhibitors. 
This review aims to provide an overview on what glycation is. It starts by explaining the similarities and differences between 
glycation and glycosylation. Then, it describes in detail the molecular mechanism underlying glycation reactions, and the 
bio-molecular targets with higher propensity to be glycated. Next, it discusses the precise effects of glycation on protein 
structure, function, and aggregation, and how computational chemistry has provided insights on these aspects. Finally, 
it reports the most prevalent diseases induced by glycation, and the endogenous mechanisms and the current therapeutic 
interventions against it.

Keywords  Glycation · Protein structure · Protein function · Protein aggregation · Diabetic-related diseases · Glycation 
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Introduction

In 1912, Louis-Camille Maillard first described the forma-
tion of a set of brownish products as a result of the reaction 
between sugars and amino acids (Maillard 1912). At that 
moment, Maillard chemistry was born, which tries to under-
stand the complex network of reactions occurring when 
mixing amino acids or proteins with hydroxyaldehydes or 
their oxidation by-products (mainly α-oxo-aldehydes). From 
1912 to ~ 1970, most of the scientists working in Maillard’s 
field focused their efforts on trying to understand how these 
reactions were able to give flavor and taste to foods and 
drinks, as their comprehension could help to improve their 

organoleptic features. Simultaneously, it was also discov-
ered that the Maillard reaction occurred in most industrial 
processes that involve heating, such as those used within the 
textile (Trézl et al. 1997; Ohe and Yoshimura, 2014), cos-
metic (Fusaro and Rice 2010), or biopharmaceutical indus-
tries (Zhang et al. 2008), among others. During this period, 
it was not even appreciated that Maillard reactions could 
also occur in living organisms, despite the fact that they also 
contain proteins/amino acids and sugars. However, in 1968, 
Samuel Rahbar reported a fast-moving hemoglobin electro-
phoretic band that was particularly evident in blood samples 
obtained from diabetic people (Rahbar 1968). He had dis-
covered glucose-modified hemoglobin (Hb1A), which nowa-
days is widely used as glycemic control in diabetic people, 
and consequently, that the Maillard reaction could also occur 
in vivo. Although at that moment Dr. Rahbar was not aware 
of it, his discovery was an incredible breakthrough, as it con-
stituted the foundational proof that Maillard reaction does 
occur in vivo, and it is associated with the development of 
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most of the diabetic-related diseases (Thorpe and Baynes 
1996).

Decades of investigation have proved that, in the body, 
glucose and its oxidation by-products irreversibly react with 
the amino groups of intra- and extracellular long-life pro-
teins, DNA, and lipids. When this set of Maillard reactions 
takes place in vivo, they are known as non-enzymatic glyco-
sylation or simply glycation, and they lead to the formation 
of a heterogeneous set of compounds known as advanced 
glycation end-products (AGEs). Usually, the formation of 
these AGEs modifies the chemical nature of protein residues 
(i.e., Lys and Arg), amino phospholipids (i.e., phosphatidyl-
serine and phosphatidylethanolamine), or deoxyribonucleic 
acids (mainly guanosine (Jaramillo et al. 2017; Dutta et al. 
2006)) on which they are formed. Consequently, this might 
have dramatic consequences on the intra- and/or intermo-
lecular interaction pattern of the biomacromolecule, and it 
might lead to macromolecular misfolding, to aggregation, 
and, as appreciated recently, to the development of glyca-
tion-related diseases (mainly diabetes-related diseases).

Although it has been recently suggested that low level 
of glycation could have a crucial role to cell survival and 
homeostasis (Trujillo and Galligan 2023), there are not 
experimental evidences supporting this idea. Consequently, 
in this review, we aim at giving to the reader an overall view 
of what is currently known about glycation and its patho-
logical role. We first explain the similarities and differences 
between glycation and glycosylation before going on to bet-
ter explain the molecular mechanisms underlying glycation 
reactions. We then describe the most harmful glycating 
species and their intra- and extracellular bio-molecular tar-
gets. Afterwards, we clarify the precise effect of AGEs on 
protein structure and function, and then explain how com-
putational chemistry can help to get meaningful insights on 
these effects. We next discuss whether glycation stimulates 
or inhibits protein aggregation and deposition, and how evo-
lution has designed molecular mechanisms to protect cells 
against glycation. Finally, we comment on the most preva-
lent diseases related to glycation and the current therapeutic 
interventions against it.

Protein glycation versus protein glycosylation

Most protein scientists are perfectly aware of what protein 
glycosylation is. Nevertheless, we have noticed that very few 
of them know the chemistry behind protein glycation and the 
pathophysiological consequences of this process. The only 
similarity between glycosylation and glycation is that both 
describe processes through which carbohydrates modify pro-
teins. Yet, their molecular mechanisms and their functions 
in physiology and pathology are very different.

Glycosylation is a well-controlled process that is part 
of the protein biosynthesis machinery (Ohtsubo and Marth 

2006). It encompasses all the post-translational modifi-
cations mediated by glycosyltransferases, the enzymes 
which catalyze the formation of glycosidic bonds between 
a target protein and specific polysaccharides, thus assem-
bling glycoproteins. Glycosylation mainly occurs in the 
endoplasmic reticulum and Golgi apparatus of the secre-
tory pathway (Hang et al., 2015). The specific types of 
glycosylation are named according to the last sugar of 
the polysaccharide chain. Hence, we can find sialylation, 
fucosylation, galactosylation, multibranching of glycans 
(bi-, tri-, tetra-, penta-antennary), etc. (Blomme et  al. 
2009). In fact, the number of glycan determinants com-
prising the human glycome is not exactly known, but it 
has been estimated to exceed more than 3000 (Cummings 
2009). Numerous enzymes, molecular chaperones, and cell 
transport proteins are involved in the biosynthesis of these 
polysaccharides and in the formation of specific glycosidic 
bonds with target proteins. Altogether, these different pro-
teins constitute the cellular glycosylation machinery. The 
glycans attached to proteins via enzymatic glycosylation 
can be classified into two types: (i) the N-glycans, which 
are those attached to the amide side chain of Asn residues; 
and (ii) the O-glycans, encompassing those attached to 
the hydroxyl group of side chains of Ser or Thr residues 
(Kobata 1992).

The core structure of N-linked polysaccharides consists 
of a complex pentasaccharide composed of two N-acetyl-
glucosamines (GlcNAc) and one branched mannose (α-1,3 
and α-1,6), which is bound to two additional mannose units. 
After these two, various types of sugars can incorporate var-
ying numbers of additional molecules (i.e., fucose, mannose, 
GlcNAc, sialic acid, etc.), although they tend to adopt one 
of three different patterns: (i) high mannose type (all the 
following units are mannose); (ii) complex type (a hetero-
geneous set of carbohydrate moieties); and (iii) hybrid type 
(one mannose is bound to a polymannose chain and the other 
is bound to a heterogeneous set of carbohydrate moieties). 
N-Glycosylation plays a crucial role in protein biogenesis 
and function (Fig. 1). Besides its potential involvement in 
regulating brain development and function (Handa-Narumi 
et al. 2018), N-glycosylation exerts its important effects by 
influencing protein folding, cellular localization, stability, 
and solubility.

In contrast, the only common feature of the O-linked pol-
ysaccharides is that a GlcNAc is attached to the hydroxyl 
group of Ser or Thr (Halim et al. 2011). After this, sugar fol-
lows a series of core structures capable of forming extended 
linear or branched polysaccharide backbones (Fig.  1). 
O-Glycosylation occurs in any protein that follows the secre-
tory pathway (Bennett et al. 2012) and it is highly abundant 
in mucins (Steentoft et al. 2013). This type of glycosylation 
plays a crucial role in numerous biological and pathological 
processes, including tumor growth and tumor progression.
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In any case, once a protein is N- or O-glycosylated, the 
polysaccharide moiety modifies its structure, function, and 
aggregation propensity, thus having a remarkable impact on 
its biological activity. Given their biological relevance for 
the correct cellular function, alterations in protein glycosyla-
tion are associated with the pathogenesis of many diseases 
such as cancer, infections, or autoimmune disorders (Spiro 
2002).

While polysaccharides are the species that enzymatic 
glycosylation binds to proteins, monomeric glucose is 
responsible for triggering, directly (in the extracellular 
space) or indirectly (in the intracellular space), the random 
and aberrant glycation process (Shin et al. 2023). Glucose 
is the main source of energy for mammals. It is absorbed 
through the thin intestine, via a trans-epithelial transport sys-
tem (SGLT-1 and SGLT-2), and is then directed to the liver 
where it is converted either into glycogen (glycogenesis) or 
into lipids (lipogenesis) (Han et al. 2016). Plasma glucose 
is taken up by cells through an active mechanism, which is 
activated by insulin when needed (Petersen and Shulman 
2018). Once in the cytoplasm, glycolysis starts to produce 
ATP (Guo et al. 2012). There are several pathological condi-
tions that cause a decrease in glycolysis and an increase in 
plasma glucose. The most important one is diabetes mellitus 
(DM), an endocrine disorder characterized by the absence of 
insulin (type 1 DM; DM1) or the inability of cells to respond 
to it (type 2 DM; DM2). The latter raises the normal fast-
ing glucose levels (≤ 99 mg/dL) up to values ≥ 126 mg/dL 
(Janghorbani et al. 2007; Sakran et al. 2022).

In solution, glucose displays equilibria between a tiny 
proportion of lineal aldehydic form (0.002%) and different 

cyclic hemiacetal isomeric forms (Dworkin and Miller 
2000). Albeit the percentage of the lineal form is almost 
negligible under physiological conditions, its remarkable 
electrophilicity makes it capable of aberrantly reacting with 
the nucleophilic groups of long-lived biomacromolecules, 
such as the amino phospholipids of the outer leaflet of cell 
membranes, or the Arg and the Lys side chains of both 
plasma proteins and transmembrane proteins (Semba et al. 
2010). This is how glucose triggers extracellular glycation, a 
complex cascade of oxidative reactions that end with the for-
mation of AGEs, which can impact the structure of targeted 
biomacromolecules and, thereby, alter biological function 
and promote pathological problems (Fig. 1). The glycating 
effect of glucose is not limited to the extracellular space. 
During intracellular glycolysis, a set of highly reactive car-
bonyl compounds is produced with the most important one 
being methylglyoxal (MG), an α-oxoaldehyde, whose cel-
lular concentration is approximately 300 μM (Thornalley 
1996; Chaplen et al. 1998). Due to its high nucleophilicity 
and toxicity, evolution has designed enzymatic mechanisms 
to regulate the levels of intracellular MG, such as the gly-
oxalase system (Glo-1 and Glo-2). However, both enzymes 
are downregulated under DM (Aragonès et al. 2021), and 
therefore, the levels of MG in people suffering from DM 
are two to five times higher than those in healthy people. 
Consequently, these intracellular upregulated MG levels 
promote glycation reactions on the long-life cytoplasmatic 
proteins, on the inner leaflet of cell membranes, on the outer 
leaflet of cell organelles, and on DNA (Allaman et al. 2015; 
Schalkwijk and Stehouwer 2020). All this indicates that 
glycation is a random and harmful process (stimulated by 

Fig. 1   Protein glycosylation (left) and protein glycation (right). In 
the protein glycosylation, the carbohydrates can be attached either to 
an Asn (N-glycosylation) or to a Ser/Thr (O-glycosylation) residue. 
N-Glycosylation can be of three different patterns: (i) high mannose 
type; (ii) hybrid type; and (iii) complex type. In the O-glycosylation, 
the first carbohydrate bound to a Ser/Thr residue is a GlcNAc and 

after it, there is not a clear pattern, as many different types of carbo-
hydrates have been found. Protein glycation starts with the reaction of 
a reducing sugar (mainly glucose) or an α-hydroxyaldehyde (which 
might come from glucose autoxidation) with the Lys/Arg side chains 
of long-life proteins. These reactions yield the formation of a hetero-
geneous set of compounds named as AGEs
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hyperglycemia and aging) that occurs in the intra- and in the 
extracellular space, which yields the accumulation of AGEs 
that are involved in the development of most of DM-related 
diseases and some aging-related diseases.

Molecular mechanisms underlying protein glycation

The molecular mechanism underlying the extracellular gly-
cation process starts with the reaction between a primary 
amino group of a protein (i.e., the N-terminal α-amino group 
or the ε-amino group of Lys residues), and the carbonyl 
group of glucose. This leads to the formation of a Schiff 
base (Fig. 2) (Cho et al. 2007), which displays equilibria 
between a minor open-chain aldimine and a major and more 
stable glycosylamine ring (Irvine and Campbell 1922). This 
aldimine is highly unstable and, thus, it rapidly undergoes 
an Amadori rearrangement to form a stable ketoamine, 
known as an Amadori product (Cho et al. 2007; Yaylayan 
and Huyghues-Despointes 1994). The Amadori rearrange-
ment normally involves an acid-catalyzed ring opening of 
glycosylamine to give an iminium ion, which then undergoes 
deprotonation to form a 1,2-enaminol in equilibrium with 
the Amadori product (Cho et al. 2007). The formation of a 
Schiff base is relatively fast and highly reversible, whereas 
the formation of an Amadori product is slower, although 
thermodynamically more favored (kformation 14.2 × 10−6 s−1, 
kdissociation 1.7 × 10−6 s−1), so they tend to accumulate (Yay-
layan and Huyghues-Despointes 1994). However, with time 
and under appropriate conditions, Amadori products can 
undergo different reactions (through the Hodge pathway) to 
irreversibly produce a heterogeneous set of AGEs (Fig. 3) 
(Yaylayan and Huyghues-Despointes 1994).

The formation of Schiff bases, Amadori compounds, and 
their final evolution to AGEs constitutes the backbone of the 
extracellular glycation process. However, all this becomes 
much more complex as sugar moieties can undergo multi-
ple fragmentation reactions (i.e., dehydration or oxidation), 
which might occur prior to their attachment to proteins, or 
alternatively once the Schiff base or the Amadori product is 
formed. These parallel reactions, which constitute the Wolff 
and Namiki pathways, produce highly reactive carbonyl spe-
cies (RCS), such as 3-deoxyglucosone (3-DG) (Anet 1960), 
MG, or glyoxal (GO) (Thornalley et al. 1999) (Fig. 3). These 
RCS can further modify Lys and Cys side chains (Zeng and 
Davies 2005), although their main targets are Arg (Lo et al. 
1994), whose reaction mainly yields hydroimidazolone-like 
AGEs (MG-Hs) (Ahmed et al. 2003). Consequently, these 
RCS increase the diversity of the AGEs, and propagate the 
damage initiated by glucose (Nass et al. 2007). In fact, more 
than 20 different AGEs have been identified in human blood, 
tissues, and food (Perrone et al. 2020), and depending on their 
origin, structures, and properties, they can be categorized into 
several groups (Table 1) (Twarda-Clapa et al. 2022).

Since glucose rapidly undergoes glycolysis in the cyto-
plasm, the main glycating compounds in the intracellular 
space are the upregulated RCS produced as side products 
of glycolysis (Takeuchi et al. 2021). Although GO and 
3-DG display a high glycation potential, the main glycat-
ing activity in the cytoplasm is attributed to MG as a result 
of its high concentration and its high reactivity (20 × 103 
times higher than that of glucose (Thornalley 2005)). 
When MG reacts with Lys, it forms Nε-(1-carboxyethyl)
lysine (CEL) (Ahmed et al. 1997) and 1,3-di(Nε-lysino)-
4-methyl-imidazolium (MOLD), which is a crosslinking 
AGE (Brinkmann et al. 1998). When it reacts with Arg, 

Fig. 2   Molecular mechanism 
corresponding to the formation 
of a Schiff base from the reac-
tion between the primary amine 
of a protein (P) and the carbonyl 
group of glucose (top). Once 
the Schiff base is formed, it 
rearranges to form an Amadori 
product (bottom)
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it forms ​Nδ​-(​4-c​arb​oxy​-4,​6-d​ime​thy​l-5​,6-​di-​hyd​rox​y-1​
,4,​5,6​-te​tra​-hy​dro​pyr​imidine-2-yl)ornithine (THP) (Oya 
et al. 2000) and argpyrimidine (Shipanova et al. 1997), but 
the major adducts found in vivo are the MG-Hs (Ahmed 
et al. 2003). They are formed as three structural isomers: 
Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine 
(MG-H1), 2-amino-5-(2-amino-5-hydro-5-methyl-4-imi-
dazolon-1-yl)pentanoic acid (MG-H2), and 2-amino-5-(2-
amino-4-hydro-4-methyl-5-imidazolon-1-yl)pentanoic 
acid (MG-H3) (Fig. 4).

Although we have explained the basic constituents 
involved in the glycation mechanism, its reaction pathway 
shows a high dependence on environmental conditions, such 
as the reactivity and the concentration of the glycating agent, 
the reactivity of the glycating target, the presence of cata-
lysts (i.e., metals, oxygen, or buffer ions), the temperature, 
or the pH, among others (Johansen et al. 2006).

Among the entire set of glycating agents, RCS are the 
most harmful ones. The presence of an α-oxo-aldehyde 
group in their structure confers to them a high reactivity, 

Fig. 3   Scheme of different pathways of AGE formation. The reaction 
between the ε-amino group of Lys and the carbonyl group of glucose 
forms a Schiff base, which rearranges to form an Amadori product. 
Some Amadori products are converted to AGEs by the Hodge path-

way, and others are oxidized and cleaved to form RCS. These RCS 
are also generated by the Wolff and Namiki pathways from glucose 
and Schiff base, respectively. These RCS can further react with pro-
teins to generate AGEs

Table 1   Criteria for 
classification of the different 
AGEs according to source, 
precursor, and ability to emit 
fluorescence)

CLASSIFICATION OF AGEs Source Endogenous
Exogenous

Precursor Glucose-derived AGE
GLA-derived AGE
MG-derived AGE
GO-derived AGE
3-DG-derived AGE

Chemical structure and ability 
to emit fluorescence

Crosslinked and fluorescent
Crosslinked and non-fluorescent
Non-crosslinked and fluorescent
Non-crosslinked and non-fluorescent
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with the unsaturated ones showing more reactivity than their 
saturated counterparts. In total, more than 20 different RCS 
have been found in living organisms (Fig. 5) (Niki 2009). 
Endogenous RCS come from amino acid oxidation, lipid 
peroxidation, glycolysis, or glycation, whereas exogenous 
RCS come from pollutants, cigarette smoke, food addi-
tives, or browned food (Semchyshyn 2014). In any case, 
their high reactivity makes them responsible for ~ 65% of 
the total cellular glycation events, and their chemical nature 
determines the type of AGEs formed on the targeted bio-
molecule, and therefore, the consequences that they have 
on their structure and function. However, they are only toxic 
when there is a dysregulation of the mechanisms designed to 
control their production and/or elimination, an event known 
as carbonyl stress. However, when RCS are found in low 

steady-state concentrations, they play important roles in 
immune response, as regulators of gene expression and as 
messengers of cellular signaling (Uchida 2000; Forman et al. 
2008; Niki 2009).

In addition to RCS, reducing sugars can induce glycation 
(mainly in the extracellular space), although not all of them 
display the same reactivity. The larger the percentage of the 
open-chain form, the more reactive is the sugar (Monnier 
1990), with the population extent of the open chain being 
inversely proportional to the number of carbon atoms in the 
molecule. Aldoses react more rapidly than ketoses (Bunn 
and Higgins 1981), because of the greatest electrophilic 
character of their carbonyl groups. Charged sugars, such as 
phosphorylated ones, are more reactive than their uncharged 
counterparts due to the presence of electrostatic interactions 

Fig. 4   Chemical structure of the more relevant characterized 
AGEs: Nδ-(5-methyl-4-imidazolon-2-yl)-l-ornithine (MG-H1), 
2-amino-5-(2-amino-5-hydro-5-methyl-4-imidazolon-1-yl)penta-
noic acid (MG-H2), 2-amino-5-(2-amino-4-hydro-4-methyl-5-im-
idazolon-1-yl)pentanoic acid (MG-H3), Nε-carboxyethyl-lysine 
(CEL), N,N(-di(Nε-lysino))-4-methyl-imidazolium (MOLD), 

Nε-carboxymethyl-lysine (CML), pyrraline, pentosidine, argpy-
rimidine, and N.δ-(4-carboxy-4,6-dimethyl-5,6-dihydroxy-1,4,5,6-
tetrahydropyrimidine-2-yl)-l-ornithine (THP), glucosepane, and 
N(6)-(2-((4-ammonio-5-oxido-5-oxopentyl)amino)-5-(2,3,4-
trihydroxybutyl)3,5-dihydro-4H-imidazol-4-ylidene)lysinate (DOG-
DIC)



195Biophysical Reviews (2024) 16:189–218	

(Bunn and Higgins 1981). Accordingly, the glycating abil-
ity of reducing sugars increases as d-glucose < d-man-
nose < d-galactose < d-fructose < d-arabinose < d-ribose 
(Monnier 1990).

With regard to proteins, the ε-amino group of Lys and 
the guanidinium group of Arg are the main protein glyca-
tion targets in vivo. Additionally, RCS can also modify the 
thiol group of Cys residues. However, this only occurs under 
reducing environments, such as the cytoplasm (Thorpe and 
Baynes 2003). Besides the amino acid type, there are other 
factors that affect the glycation propensity of each residue 
(i.e., neighbor side chains, salt-bridge interactions, or steric 
disposition) (Johansen et al. 2006). The rate of Schiff base 
formation is affected by both the pKas of the amino groups 
and their accessibility to the glycating agent. Meanwhile, 
the rate of Amadori rearrangement is accelerated by local 
acid–base catalysis driven by carboxyl groups of acidic resi-
dues, ε-amino groups of Lys residues, and His imidazole 
rings (Johansen et al. 2006; Takahashi 2015).

The extent of protein glycation is also strongly depend-
ent on the environmental conditions (i.e., the presence of 
catalysts, the temperature, or the pH) and on the half-life of 
the target protein. The formation of Schiff bases is favored 
by the presence of biological buffers such as phosphate or 
bicarbonate (Johansen et al. 2006), which can act either as 
acid–base catalysts or as promotors of the reaction, as they 
can stabilize the reactive open-chain form of glucose (Burton 
and McWeeny 1963). Changes in pH and/or temperature can 
also influence the extent of Schiff base formation since the 
proportion of sugars in their reactive open-chain form is pH-
dependent, as it does the protonation state of target residues 
(mainly Lys), which must be deprotonated to start the glyca-
tion process (Martins and van Boekel 2005). On the other 

hand, the amount of Amadori product correlates with glu-
cose concentration, but also with the half-life of the modified 
protein. Hence, the Amadori content in proteins depends on 
whether the survival time of the target protein is longer than 
the time required to reach the equilibrium (~ 28 days) (Bucala 
et al. 1991).

Othermolecular targets of glycation

In addition to proteins, glycation can also occur on 
nucleic acids and amino phospholipids, as both pos-
sess free amino groups. Nucleic acids can be modified 
by reducing sugars and RCS to form DNA-AGEs, which 
impact DNA structure and functionality (Ahmad et  al. 
2011; Ashraf et al. 2016; Bagherzadeh-Yazdi et al. 2020). 
N2-Carboxyethyl-2′-deoxyguanosine is the most common 
AGE found in DNA and it has been described as a potential 
biomarker of chronic hyperglycemia (Jaramillo et al. 2017). 
Glycation of nucleic acids can lead to mutations, strand 
breakage, and reduced gene expression (Pischetsrieder et al. 
1999; Wuenschell et al. 2010; Ashraf et al. 2012). Addi-
tionally, glycation of DNA contributes to aging and to the 
pathogenesis of diseases such as DM, cancer, inflammation, 
and neurodegeneration (Voulgaridou et al. 2011; Rehman 
et al 2022).

Amino phospholipids, such as phosphatidylethanolamine 
and phosphatidylserine, both present in mammal cell mem-
branes, have been found to become abnormally glycated 
under hyperglycemic conditions (Nakagawa et al. 2005). 
This may lead to the impairment of the integrity and func-
tionality of cells (Oak et al. 2003). Hence, the formation and 
accumulation of glycated amino phospholipids have been 
associated to the pathogenesis of hyperglycemia in diabetic 

Fig. 5   Chemical structure of the 
most common biological reac-
tive carbonyl species
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complications such as angiogenesis, atherosclerosis, or 
inflammation (Oak et al. 2003; Basta et al. 2004; Miyazawa 
et al. 2012) and age-related dysfunctions of different tissues 
(Fournet et al. 2018; Uceda et al. 2024).

Effect of glycation on protein structure: a field full 
of fog

As previously mentioned, the glycation of biomolecules 
seems to be one of the major factors behind the development 
of DM-related diseases. However, it is not entirely clear how 
this occurs at molecular level. In proteins, AGEs are mostly 
formed on Lys and Arg side chains, two basic amino acids 
holding a positively charged side chain at physiological pH. 
In most cases, the formation of these AGEs on Lys and/
or Arg implies the depletion of their positive charges, thus 
turning these residues into neutral, zwitterionic, or even ani-
onic residues. Therefore, it was thought that if a long-life 
protein has a considerable number of basic amino acids in 
its sequence, their glycation might have a dramatic impact 
on (i) its electrostatic potential pattern, (ii) its folding, (iii) 
its aggregation tendency, and (iv) its function.

For a long time, it was assumed that glycation had a direct 
chaotropic effect on the protein structure, which resulted 
in hydrophobic exposure (Wei et al. 2009; Roy et al. 2010; 
Fazili and Naeem 2013; Bakhti et al. 2007; Bathaie et al. 
2011). However, this assertion was always made from the 
data obtained using low-resolution techniques, such as cir-
cular dichroism (CD), UV–Vis, and fluorescence spectros-
copies. The fluorescence red shift and/or the reduction in the 
protein-Trp quantum yield during glycation have typically 
been ascribed to protein unfolding events. Such observa-
tions have suggested that glycation of lysozyme (Ghosh et al. 
2013), cystatin (Mustafa and Bano 2016), ribonuclease A 
(Dinda et al. 2015), and albumin (Sadowska-Bartosz et al. 
2014) by glucose, fructose, or ribose affects their tertiary 
structure. MG was suggested to unfold myoglobin (Banerjee 
et al 2016), as does GO with hemoglobin (Iram et al. 2013) 
or ribose on albumin (Wei et al. 2009), on glucose oxidase 
(Khan et al. 2012), or on phytocystatin (Ahmed et al. 2017). 
Fluorescent data has suggest that glucose has a chaotropic 
effect on albumin (Sattarahmady et al. 2007) and on immu-
noglobulin G (Ahmad et al. 2012), while reduction in the 
Trp quantum yield of α- and γ-crystallin associated to their 
incubation with fructose allowed to conclude that this carbo-
hydrate is able to structurally modify both proteins (Lüthra 
and Balasubramanian 1993).

The possible effect of glycation on protein structure 
was additionally assessed using extrinsic fluorescent dyes. 
8-Anilino-1-naphthalenesulfonic acid (ANS) (λexc ~ 380 nm; 
λem ~ 400–600 nm) is a highly sensitive dye with respect 
to polarity since it displays a blue shift of its fluorescence 
emission maximum and an increase of quantum yield upon 

binding to protein hydrophobic pockets (Stryer 1965). ANS 
was used to suggest that glycation induces molten globule 
(partially folded species) formation in phytocystatin glycated 
with ribose (Ahmed et al. 2017) and during the glycation of 
hemoglobin with GO (Iram et al. 2013).

Although such results clearly point towards a glycation-
induced unfolding effect, these findings require bolstering 
with further studies based on medium- or high-resolution 
techniques. As glycation is a non-enzymatic process, when 
it randomly occurs on a protein, it generates a heterogene-
ous set of molecules with different glycation degrees and 
different types of AGEs formed at the same “hot-spot.” 
Such heterogeneity has generally precluded the widespread 
use of crystallography for the study of glycated proteins. 
However, in the Protein Data Bank (PDB), there is a sin-
gle crystal structure on a glycated protein, corresponding 
to hemoglobin glycated with fructose (PDB: 3B75), which 
was deposited in 2007. Its structure overlaps fairly well with 
that corresponding to native hemoglobin, thus proving that 
glycation-mediated fructose does not necessarily induce pro-
tein unfolding nor the formation of molten globules.

To clarify the exact effect of glycation on protein struc-
ture, NMR spectroscopy has been used to provide structural 
information at residue level. NMR was applied to study how 
glycation mediated by ribose and glycolaldehyde (GLA) 
affected the structure of hen egg white lysozyme (HEWL), 
a well-studied model of protein folding (Mariño et al. 2017; 
Adrover et al. 2014). Although it was clear that ribose and 
GLA were able to form AGEs on HEWL, NMR unequivo-
cally proved that their formation was not sufficient to modify 
the native tertiary structure of HEWL. The maintenance of 
the native-like structure of a protein upon glycation was 
not only recorded for HEWL, as it was also observed for 
cytochrome C (Oliveira et al. 2013) and insulin (Oliveira 
et al. 2011). Whether or not glycation was able to impact the 
α-helical conformation of a 15-residue model peptide hold-
ing a Lys at the middle of its sequence has also been studied 
using a combination of NMR, CD, and molecular dynamics 
(MD) simulations. This combined approach indicated that 
neither ribose nor MG were able to disrupt the secondary 
structure of the peptide (Mariño et al. 2019). In summary, 
all of the experimental data obtained from the use of NMR 
and X-ray diffraction prove that glycation is not able to alter 
the secondary nor the tertiary structure of a glycated protein.

In principle, logical reasoning should expect these 
results, since Lys and Arg are usually solvent-exposed resi-
dues located at the protein surface and normally, lacking 
of important long-range contacts defining protein tertiary 
structure. Consequently, and unless Lys/Arg participate in 
long-range salt bride interactions, we may assume that gly-
cation should not affect the protein intramolecular interac-
tion pattern assembling the protein structure. These results 
beg the question, where do the discrepancies between the 
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interpretation of the data obtained by fluorescence spec-
troscopy and those obtained from NMR spectroscopy and 
X-ray diffraction originate? In an attempt to answer this 
question, our group studied the possible quenching effect of 
AGEs formed on isolated Lys and Arg amino acids on the 
protein intrinsic fluorescence and on the ANS fluorescence 
(Adrover et al. 2014). AGEs formed on both amino acids, 
when using ribose or GLA, were able to quench the intrinsic 
fluorescence of HEWL, as well as the fluorescence emis-
sion of ANS. We found that the formation of AGEs on a 
protein exerts a quenching effect on its intrinsic fluorescence 
(Adrover et al. 2014). Unfortunately, the literature is full of 
manuscripts misinterpreting fluorescence data derived from 
the study of glycated proteins, just because they do not take 
into account this plausible quenching effect, thus provid-
ing wrong data interpretation and confusing results. Conse-
quently, we suggest that fluorescence data alone should not 
be used to derive structural considerations when studying 
glycation reactions or glycated proteins.

Effect of glycation on protein function

Independent of any potential chaotropic effect that glycation 
could have on the protein structure, it is highly likely that 
AGE formation disrupts protein function. The replacement 
of cationic residues by AGEs possessing a different chemi-
cal nature (i.e., anionic, neutral, zwitterionic, hydrophobic 
or those involving intramolecular covalent crosslinking; 
(Fig. 4)) could (i) generate new surface hydrophobic patches 
that stimulate aggregation (Adrover et al. 2014); (ii) modify 
the equilibria between the folded species and any partially 
folded/unfolded counterparts; (iii) weaken or strengthen pro-
tein interactions with its biological counterparts/binding part-
ners; or (iv) change the enzymatic activity decreasing the kcat 
and/or increasing the KM. As a result, it has been reported that 
the glycation of human and bovine serum albumin result in an 
altering of their protein function and cytotoxicity (Anguizola 
et al. 2013; Baraka-Vidot et al. 2013; Byun et al. 2012; Shak-
lai et al. 1984). Glycation turns cytochrome c into an inducer 
of apoptosis (Sharma et al. 2019) and can also impair the 
enzymatic functions of high-density lipoprotein paraoxonase 
(Hedrick et al. 2000) and hemoglobin peroxidase activities 
(Bose et al. 2013; Ghoshmoulick et al. 2007). In contrast, 
myoglobin glycated with glucose seems to enhance hemo-
globin peroxidase activity (Roy et al., 2010) yet induce an 
antioxidative activity upon glycation with fructose (Bhattach-
erjee and Chakraborti 2011). In addition, it seems that MG 
enhances the chaperone activity of proteins like α-crystallin 
and Hsp27, but the opposite effect occurs when α-crystallin 
is incubated with fructose, glucose, or ascorbate (Kumar et al. 
2004; Mukherjee et al. 2023; Nagaraj et al. 2003). The gly-
cation of HEWL with ribose or GLA was shown to result 
in a reduction of its enzymatic activity (Mariño et al. 2017; 

Adrover et al. 2014), with this general effect also seen for 
alkaline phosphatase (McCarthy et al. 1998) as well as for 
many other enzymes. Additionally, protein function can also 
be altered by impaired protein–ligand interactions resulting 
from AGE formation, protein charge modification, or confor-
mational changes. For example, glycation of human erythro-
cyte glutathione peroxidase has been shown to alter its sta-
bility and heat resistance, thus resulting in a reduction of its 
affinity for the substrate (Suravajjala et al. 2013).

Furthermore, glycation has been proved to contribute to 
oxidative stress, as AGEs are known to generate reactive oxy-
gen species (ROS). Consequently, under hyperglycemic and 
oxidative stress conditions, proteins can be damaged. This 
can lead to cellular dysfunction and inflammation and also 
to protein dysfunction (Bansal et al. 2012; Mercado-Uribe 
et al. 2020; Nowotny et al. 2015; Wang et al. 2015). Moreover, 
glycation is also able to hamper the antioxidant capacity of 
certain long-lived proteins, thus affecting the cellular antioxi-
dant machinery. For instance, AGE formation on α-synuclein 
has been proved to deplete its ability to prevent the formation 
of ROS (Martínez-Orozco et al. 2019).

In summary, the effects of glycation on protein function 
are complex and can vary depending on the specific protein, 
the extent of glycation, and the cellular environment.

Computational chemistry: a promising tool 
to unravel the precise effect of glycation on protein 
structure and biological function

Most of what we currently know about the effect of gly-
cation on protein structure and function has been achieved 
using experimental methodology. Although computational 
chemistry methods allow for the acquisition of information 
from molecular systems with atomic resolution, there are not 
many standalone computational studies dedicated to under-
standing different aspects of glycation.

One of the earliest works was dedicated to understand the 
effects of glycation on human hemoglobin. Through adsorp-
tion isotherms, it was found that glycated hemoglobin exhib-
its a higher affinity for oxygen than the native form, although 
having a lower affinity for 2,3-diphosphoglycerate (DPG) 
(De Rosa et al. 1998). These MD simulations revealed that 
the carbohydrate moiety of the glycated form occupies the 
DPG binding site, thus preventing it from adopting one of 
the two possible binding conformations.

Collagen is a protein that has been extensively studied 
using computational methods to understand the effect of 
glycation. In 2014, a collagen model was created to identify 
potential Lys-Arg cross-linking sites for the formation of 
glucosepane (the most common AGE found in type I col-
lagen) (Gautieri et al. 2014). MD simulations were used 
to measure which Lys and Arg remain close to each other 
enough time to form glucosepane and, hence, to identify the 
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most probable cross-linking sites. Similarly, Collier et al. 
analyzed the distances between Lys-Arg pairs to identify 
potential sites for the formation of DOGDIC. Structurally, 
the formation of DOGDIC did not change the backbone con-
formation. MD simulations provided the enthalpic variation 
due to DOGDIC formation and estimated its thermodynamic 
plausibility. In any case, the sites prone to be targets for 
glucosepane and DOGDIC (Fig. 4), although they were not 
the same, were identified as interaction sites between colla-
gen and other proteins such as integrins, proteoglycans, and 
collagenase, thus providing an explanation for the observed 
reduced affinity upon glycation (Collier et al. 2015, 2016).

Elastin is another protein of structural importance whose 
mechanics were found to be altered upon glycation. MD 
simulations were carried out on tropoelastin under hyper-
glycemia. Under this condition, three binding sites remain 
occupied by glucose throughout the simulation, although 
they were not close to the glycation targets. This binding 
leads to a local increase in coil conformation and a reduction 
in the beta-sheet content. Although this study only consid-
ered glucose in a cyclic form, the authors hypothesize that 
an effect of hyperglycaemia is that cyclic glucose exposes 
glycation targets, thus giving them a higher propensity to be 
glycated (Yang et al. 2023).

Jeevanandam et al. used MD simulations to study changes 
in the structure and dynamics of insulin due to glycation. 
Glycation of R22 to form MG-derived hydroimidazolone 
(MG-H1) (Fig. 4) caused insulin to adopt a closed and 
highly stable conformation that reduced the exposure to the 
solvent of the hydrophobic core. It also decreased the β-sheet 
content of the monomer and increased the coil content, pos-
sibly due to a reduced accessibility to the open conforma-
tion. Insulin must undergo a conformational change in the 
central region of chain-B from open to wide open to bind to 
the insulin receptor. Therefore, glycation on R22 may pre-
vent insulin from binding to its receptor (Jeevanandam et al. 
2023a, b).

The effect of glycation on human serum albumin was also 
studied using MD simulations (conducted by Sittiwanichai 
et al. 2023) to examine two different models of glycation. 
The first contained a Schiff base formed on K195, and in 
the second one, K195 was modified by an Amadori prod-
uct. The covalent attachment of both carbohydrate moieties 
induced a subtle loss in helicity (~ 10%) and an alteration 
in protein dynamics of the domains I and III. In addition, 
W84 interacted less with C34, thus becoming less shielded 
and more reactive. Additionally, the environment of W214 
also changed due to glycation. As a result, both Sudlow’s 
sites I and II, along with fatty acid binding sites, are clearly 
decreased in size, suggesting a decrease in the transport 
capacity of albumin due to glycation (Sittiwanichai et al. 
2023). In addition, Jeevandam et al. also investigated the 
effect of MG-H1 formation on R114, R186, R218, R410, 

and R428, both individually and collectively. MD simula-
tions revealed alterations in the dynamics and accessibil-
ity to the Sudlow’s binding sites. In the native state, and in 
the R410-MG-H1 and R4238-MG-H1 variants, dynamics 
increased the space between domains I and III, favoring the 
exposure of Sudlow I. In the R186-MG-H1, R218-MG-
H1, and fully glycated forms, the opposite occurred. Only 
R114-MG-H1 showed alteration in both behaviors. Gly-
cation of R218 and R428 did not modify the interaction 
between W84 and C34. However, the glycation of R114, 
R186, and R410, and as well as the total glycation, broke 
the H-bond between W84 and C34, thus suggesting a gly-
cation-induced increase in the reactivity of C34. Regarding 
the binding sites, Sudlow I is only partially altered by the 
glycation of R114 and R410, resulting in a partial open-
ing of the site. For Sudlow II, the modification of different 
Arg residues strengthened or weakened some interactions 
between residues that form it, with total glycation causing 
weakening and complete opening. In summary, although 
the overall effect on global structure is small, glycation was 
shown to have significant consequences for the protein’s 
transport capacity (Jeevanandam et al. 2023a, b). Moreo-
ver, Pongprayoon et al. studied the binding of glucose to 
albumin. They observed that pyranose forms of glucose do 
not frequently interact with the glycation targets K195 or 
K199. However, the open form interacts with K199 by form-
ing stable hydrogen bonds, thus supporting the notion that 
glycation occurs through the open forms of carbohydrates 
(Pongprayoon and Mori 2018).

Bansode et al. used MD simulations to investigate the 
structural effects of the binding of tolbutamide—an anti-
diabetic drug that promotes conformational changes—to 
bovine serum albumin. The binding caused an increase in 
the solvent-exposed surface, indicating greater vulnerability 
to glycation. This was confirmed through in vitro experi-
ments, since an increase in the fluorescence signal linked 
to AGE formation was observed after tolbutamide binding 
(Bansode et al. 2015).

REST2 MD simulations were also used to investigate 
the effect of CEL (Fig. 4) on the structure and dynamics 
of α-synuclein. CEL formation on all Lys of α-synuclein 
extended the protein and enhanced its conformational 
diversity. This enlargement was attributed to the loss of the 
electrostatic interactions between the N- and C-terminal 
domains (Ramis et al. 2019). Additionally, it was experi-
mentally proven that CEL inhibited the formation of amyloid 
fibrils as it stabilized the oligomeric species. In this context, 
steered MD simulations were conducted on fibril models of 
the native and glycated α-synuclein, and the average force 
required to extract the terminal monomer was lower when 
Lys were modified by CEL (Mariño et al. 2020).

Other computational works on the α-synuclein protein 
investigated how glycation affected its interaction with 
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other proteins. Semenyuk et al. performed MD simulations 
to study the interaction of α-synuclein with glyceraldehyde-
3-phosphate dehydrogenase (GAPDH). Two models of 
α-synuclein were created with different degrees of glycation: 
(i) one exhibited two glycated residues that in vivo undergo 
SUMOylation; and (ii) the other nine residues were gly-
cated, which, in vivo, undergo ubiquitination. Simulations 
of GAPDH with the native and glycated α-synuclein variants 
demonstrated that glycation allows binding outside the anion 
binding groove. In the native form, the interaction primar-
ily occurred along the C-terminal region of α-synuclein, 
whereas glycation altered the electrostatics of the N-terminal 
region and also allowed its binding. Specifically, the model 
with nine glycated Lys showed many more binding sites 
on GAPDH, doubling the number of H-bond contacts, salt 
bridges, and hydrophobic interactions. Indeed, experimental 
observations indicate that glycation strengthened the interac-
tion of α-synuclein with GAPDH, and caused up to a 40% 
inactivation of its activity, compared to the 20% inactivation 
caused by native α-synuclein (Semenyuk et al. 2019).

Subsequently, Sofronova et al. expanded these findings 
by also considering that glycation can occur on GAPDH 
and studied its effect on its binding to α-synuclein and RNA. 
They conducted MD simulations and created two models 
of glycated GAPDH: (i) one where only the residues in the 
anion binding groove were glycated; and another in which 
(ii) glycation was uniform across the entire surface. Gly-
cation significantly hindered the binding to α-synuclein, 
as the number of H-bonds, electrostatic, and hydrophobic 
interactions markedly decreased. While in the native form 
GAPDH interacted with positive residues and α-synuclein 
through its negatively charged region, the uniformly glycated 
GAPDH interacted through negatively charged residues, and 
α-synuclein through positive residues. When the only gly-
cated residues were those in the binding site, the number 
of electrostatic interactions was reduced to 30% of those 
observed in the native state. In both glycation models, the 
binding occurred in different regions of GAPDH, and no 
preferential binding zone can be concluded. RNA binds to 
native GAPDH through a positive groove, but also there is 
a secondary binding site outside the groove. When the posi-
tive groove is glycated, RNA binding was only observed in 
the secondary binding zone. In simulations with uniformly 
glycated GAPDH, no RNA binding was observed in any case 
(Sofronova et al. 2021).

Sartore et al. also studied the impact of glycation on 
the interaction between angiotensin-converting enzyme-2 
(ACE2) and the SARS-CoV-2 spike protein. They found a 
significant loss of interactions between the protein surfaces 
when Lys were glycated. The number of both polar interac-
tions (H-bonds, salt bridges) and non-polar interactions was 
reduced by roughly half upon glycation. Consistently, the 
average interaction distances between proteins increase with 

the glycation of Lys. These results negate the hypothesis 
that the interaction between these two proteins is the cause 
of a higher risk of consequences in diabetic patients due to 
SARS-CoV-2 (Sartore et al. 2021).

Finally, we would like to mention that computational 
chemistry has also been employed to study the effect of gua-
nine glycation mediated by GO in DNA models. It was found 
that as the degree of glycation was increased, the modified 
nitrogenous bases tend to exit the double helix structure and 
remain in that altered conformation during the simulations. 
This supports the hypothesis that they may be unstacked 
long enough to react with other nucleobases from the oppo-
site strand and form cross-links (Vilanova et  al. 2017). 
Additionally, computational chemistry has also been used 
to study the glycation of amino phospholipids in membrane 
models. More precisely, it was found that (i) there was a high 
likelihood of formation of a Schiff base between phosphati-
dylethanolamine and acetaldehyde (Solís-Calero et al. 2010, 
2012); (ii) the Amadori rearrangement proceeded to a signif-
icant extent (Solís-Calero et al. 2013); and (iii) the formation 
of carboxymethylphosphatidylethanolamine (Solís-Calero 
et al. 2015), all lead to the destabilization of the ordered lipid 
membranes, which suggests that glycation is likely to have a 
harmful effect of the integrity of the biological membranes.

On the interplay between glycation 
and aggregation

Besides its effect on the protein structure and function, gly-
cation might also have a dramatic effect on its aggregation 
propensity. In fact, glycation has been suggested as a poten-
tial triggering factor of highly prevalent neurodegenera-
tive diseases, such as Alzheimer’s or Parkinson’s diseases 
(Miranda and Outeiro 2010; Sirangelo and Iannuzzi 2021; 
Taghavi et al., 2017). The hallmark of these disorders is the 
accumulation of amyloid plaques, which are composed of 
protein aggregates (Chiti and Dobson 2017). As life expec-
tancy rises and diabetes rates increase, the number of peo-
ple diagnosed with these neurodegenerative diseases has 
increased (Deuschl et al. 2020). Hence, it is imperative to 
understand the role of glycation in fostering amyloid aggre-
gation and cytotoxicity to better understand the molecular 
mechanisms underlying these processes.

Glycation was initially identified as a factor enhancing 
aggregation propensity, mainly as a result of its chaotropic 
effect. Numerous studies have provided evidence to support 
this hypothesis by investigating the effect of glycation on 
the aggregation of HEWL (Fazili and Naeem 2013; Ghosh 
et al. 2013), β-amyloid peptide (Chen et al. 2006; Jana et al. 
2016), hemoglobin (Iram et al. 2013), albumin (Bouma 
et al. 2003; Sattarahmady et al. 2007), α-crystallin (Kumar 
et al. 2004), β2-microglobulin (Kong et al. 2011), human 
islet amyloid polypeptide (IAPP) (Kapurniotu 2001), or 
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α-synuclein (Chen et al. 2010), among others. Furthermore, 
other studies have shown that glycation-induced aggregation 
does not necessarily imply protein unfolding (Adrover et al. 
2014; Chen et al. 2009).

Recent investigations have challenged the assumption of 
an amyloid aggregation tendency enhancement due to glyca-
tion. In fact, it seems that glycation reduces the propensity of 
amyloid fibril formation. For instance, glycation of insulin 
with MG or d-ribose inhibits amyloid formation but pro-
motes the formation of cytotoxic oligomers (Iannuzzi et al. 
2016; Oliveira et al. 2011). However, insulin glycation medi-
ated by glucose either accelerates or strongly inhibits amy-
loid aggregation, depending on the environmental conditions 
(Alavi et al. 2013). Similarly, when cytochrome c is modified 
by MG, it triggers the formation of native-like aggregates 
without promoting the formation of amyloid fibrils (Oliveira 
et al. 2013). Glycation of β2-microglobulin (Hashimoto 
et al. 1999) or superoxide dismutase I (SOD1) (Sirangelo 
et al. 2016) with glucose inhibits its amyloid fibrillation, 
and albumin glycated with ribose stabilizes highly cytotoxic 
oligomeric species instead of promoting amyloid fibril for-
mation (Wei et al. 2009). Ribose also promotes the forma-
tion of highly toxic aggregates from α-synuclein, Tau, and 
β2-microglobulin (Chen et al. 2009, 2010; Kong et al. 2011). 
Furthermore, cross-linking AGEs might covalently bind 
monomeric proteins, and this can disrupt their normal fold-
ing and, consequently, promote aggregation. For instance, 
GLA induces the formation of intermolecular crosslinking 
AGEs on HEWL, which triggers a polymerization cas-
cade that yields the formation of insoluble spherical-like 
aggregates (Mariño et al. 2017). In addition, changes in the 
aggregation tendency of a protein can also occur without 
modifying the protein structure, but changing the overall 
protein charge or by forming new hydrophobic patches due 
to its glycation. One example is the glycation of HEWL with 
ribose, which triggers its native-like aggregation by modi-
fying its surface hydrophobic profile (Adrover et al. 2014). 
Similarly, Tau glycated with ribose also seems to form cyto-
toxic globular aggregates without involving rearrangements 
in the secondary or tertiary structure of the protein (Chen 
et al. 2009).

The aggregation behavior of amyloid-forming proteins 
depends on the chemical nature of the glycating agent. While 
glucose-glycated and CML-modified IAPP promote the for-
mation of amyloid aggregates, glycation of IAPP with MG 
seems to slow down the aggregation process and alter the 
aggregate morphology (Hsu et al. 2019; Kapurniotu et al. 
1998; Milordini et al. 2020). Moreover, modifications of 
α-synuclein with MG, GO, or ribose significantly reduce its 
fibrillization propensity, but stabilize its oligomers and pro-
mote the formation of molten globule-like aggregates (Chen 
et al. 2010; Lee et al. 2009; Padmaraju et al. 2011; Miranda 
et al. 2017). Nevertheless, the formation of CEL moieties 

on the 15 Lys of α-synuclein completely inhibits the forma-
tion of both amyloid fibrils and soluble oligomeric species 
(Mariño et al. 2020). Additionally, the formation of CEL on 
Aβ-peptide, as well as MG glycation, reduce the formation 
of amyloid fibrils producing stable oligomers (Emendato 
et al. 2018; Ng et al. 2019).

Nevertheless, the effect of glycation as a promoter of 
aggregation could go well beyond its effect on the protein 
itself. Once Lys become glycated, the cellular clearance 
mechanism mediated by the ubiquitin–proteasome system 
becomes impaired, because Lys ubiquitination cannot occur, 
and glycated proteins cannot be degraded by the proteasome. 
Thus, this process favors the aggregation and the accumula-
tion of protein inclusions (Uceda et al. 2020).

The cytotoxicity of these proteinaceous species appears 
to depend on the conformational state of the constituent pro-
teins. Regardless of the specific protein involved, all amyloid 
fibrils share a common archetypal all-β tertiary structure 
(Fitzpatrick and Saibil 2019). In contrast, oligomers are 
formed by completely or partially disordered monomers, 
which then rapidly evolve to form insoluble protofibrils (Liu 
and Luo 2023). Nevertheless, native folded globular pro-
teins may exhibit some tendency to form aggregated species 
without undergoing unfolding, simply by populating native-
like conformations (Chiti and Dobson 2017). Although 
both species are accepted to be pathogenic, insoluble fibril-
lar aggregates are associated to disease progression, while 
soluble oligomers generally correlate with cellular toxicity 
(Chiti and Dobson 2017; Kayed and Lasagna-Reeves 2013). 
Soluble oligomers have been proved to be more toxic than 
amyloid fibrils in the case of Aβ-peptide (De et al. 2019; 
Shea et al. 2019), α-synuclein (Guerrero et al., 2013; Win-
ner et al. 2011), apomyoglobin (Iannuzzi et al. 2015) SOD1 
(Sirangelo et al. 2016), and insulin (Iannuzzi et al. 2016), 
among others.

These findings underscore the intricate and multifaceted 
nature of the impact of glycation on protein behavior, which 
seems to be strongly dependent on the structural modifica-
tion induced by the glycating agents. Consequently, protein 
glycation can exert both promoting and inhibitory effects 
on the formation of amyloid fibrils and other intermediate 
species, with varying levels of cytotoxicity depending on the 
conformation of the constituent protein.

A direct involvement of glycation 
in the development of age‑ and diabetic‑related 
diseases

Inevitably, the final consequences of the glycation of long-
lived proteins (e.g., collagen, crystallin, or hemoglobin) 
are their loss of function and the development of glyca-
tion-related diseases, whose prevalence notably increases 
under hyperglycemic conditions. For instance, the direct 



201Biophysical Reviews (2024) 16:189–218	

involvement of glycation in the pathogenesis of diabetic 
complications, such as neuropathy, cardiomyopathy, 
nephropathy, or retinopathy, is well established (e.g., Singh 
et al. 2001). Additionally, it has also been demonstrated that 
glycation contributes to the pathology of other disorders 
such as neurodegenerative diseases, vascular stiffening, ath-
erosclerosis, inflammatory arthritis, and osteoarthritis (Jahan 
and Choudhary 2015). There are two mechanisms through 
which AGEs are believed to contribute to aging and to diabe-
tes-related diseases: (i) by binding specific pro-oxidant and 
pro-inflammatory receptors on cell membrane, mainly the 
receptor for advanced glycation end products (RAGE), and 
(ii) through the alteration of protein structure, properties, 
and function (Sirangelo and Iannuzzi 2021).

RAGEs are the most common receptors to which AGEs 
bind. They are multi-ligand protein receptors that belong to 
the immunoglobulin superfamily, and they are present at low 
levels on the surface of several cell types such as neurons, 
microglia, brain endothelial cells, or astrocytes (Neeper et al. 
1992; Brett et al. 1993). RAGEs contain an extracellular 
V-type domain that recognizes and binds AGEs, which is 
followed by two C-type domains, a transmembrane helix, 
and a C-terminal cytosolic domain that carries out the signal 
transduction (Xie et al. 2013; Basta et al. 2004). The V-type 
domain is able to recognize different types of AGEs via 
their interaction with different regions within the domain. 
However, all of them are located in the positively charged 
areas of the domain and they display a significant flexibil-
ity, thus able to accommodate ligands of different chemical 
nature (Xie et al. 2008; Xue et al. 2011; Koch et al. 2010). 
The AGE-RAGE binding triggers the activation of several 
intracellular signaling cascades, which leads to the rapid 
generation of ROS and the production of inflammatory 
cytokines (Rouhiainen et al. 2013). While limited inflamma-
tory responses can play a role in health, increased glycation 
might lead to aberrant activation of RAGEs, thus exacer-
bating the oxidative stress typical of the abovementioned 
degenerative disorders and contributing to sustained inflam-
mation, potentially leading to cell death.

In any case, protein glycation and the AGE-induced acti-
vation of RAGEs induce the development of a broad set of 
complications that become much more prevalent under DM.

Cataract formation is one of the DM-related diseases 
showing a relatively early presentation. This is because the 
glucose diffusion into the lens is not insulin-dependent, thus 
the eye lens is one of body’s organs with a higher propensity 
to be affected by hyperglycaemia. Diabetic patients have 2–5 
times higher risk of developing cataracts than non-diabetic 
patients, and the disease occurs at an earlier age (Javadi 
and Zarei-Ghanavati 2008). The accumulation of AGEs, 
the accelerated polyol pathway, the activation of protein 
kinase C, and oxidative stress have all been suggested as 
contributors to diabetic cataracts (Obrosova et al. 2010). 

In fact, Duhaiman found higher levels of AGEs in cataract 
of diabetic patients than in that of non-diabetic patients 
(Duhaiman 1995), thus suggesting that glycation has a clear 
role in the development of this disease. The accumulation of 
AGEs can also activate RAGEs in the cells of the eye, thus 
contributing to the development not only of cataracts, but 
also age-related macular degeneration and diabetic retinopa-
thy (Kandarakis et al. 2014).

Diabetic vascular complications are the main cause of 
diabetes-related mortality for both DM1 and DM2 subjects 
(Einarson et al. 2018), and in them, it seems that MG plays 
a major role (Stratmann 2022). In these diseases, most of 
the arteries experience damage and medial calcification 
and, therefore, loss of elasticity and stiffening (Stary 1989). 
These processes have been correlated with the serum level 
of pentosidine, which also correlates with arterial thickness 
in DM2 patients (Yoshida et al. 2005). Collagen, fibronectin, 
laminin, or elastin, all of them long-life proteins located in 
the sub-endothelial extracellular matrix, induce tissue rigid-
ity when glycated, thus causing high blood pressure that 
might result into atherosclerosis and thrombosis (Forbes 
et al. 2004). The formation of cross-linked AGEs on colla-
gen promotes the loss of elasticity and stiffening of the wall 
vessel (Birukov et al. 2021). In contrast, the Lys content in 
elastin is notably poor; thus, it is not affected by glycation, 
although its functionality can be affected due to its binding 
to CML (Sell and Monnier 2012). In fact, there is a clear 
correlation between plasma AGE levels and aortic stiffness 
(McNulty et al. 2007). The diastolic left ventricular dys-
function is also observed in DM, which stimulates the heart 
failure. This occurs due to myocardial fibrosis, the deposi-
tion of AGEs in the myocardium, and the related hypophos-
phorylation of the N2B of titin isoform (Falcão-Pires et al. 
2011). In addition, glycated proteins also trap nitric oxide, 
which promotes vasodilation and inhibits various mecha-
nisms involved in the development of atherosclerosis (Xu 
et al. 2003). Moreover, RAGE-AGE interactions reduce the 
activity of endothelial nitric oxide synthase, the enzyme 
that produces nitric oxide (Xu et al. 2003). The synthesis 
of prostacyclin, a vasodilator, is also slowed by the pres-
ence of AGEs, which at the same time increase the syn-
thesis of endothelin-1, a vasoconstrictor (Yamagishi et al., 
1998; Quehenberger et al. 2000). Stimulation of RAGEs also 
triggers a pro-coagulant state due to the reduced activity of 
thrombomodulin (Esposito et al. 1989), which can turn into 
thrombosis.

Around 40% of DM1 and DM2 patients are affected by 
nephropathy, which is characterized by a progressive dys-
function of glomerular filtration (Chiarelli et al. 2000). There 
are several risk factors for diabetes-induced kidney failure, 
but it seems that renal accumulation of AGEs (mainly CML 
and pentosidine) is responsible for the development of dia-
betic nephropathy (Vlassara et al. 1994). Glycation of renal 
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proteins induces the accumulation of proteolysis-resistant 
species, which build up in the glomerular basement mem-
brane (Forbes et al. 2003). However, this process is also 
stimulated by AGE-RAGE interactions, which trigger the 
synthesis of collagens (type I, III, and IV) and fibronectin by 
renal cells (Pastino et al. 2017). In addition, the expression 
of the anti-fibrotic agent, bone morphogenetic protein-7, 
decreases in the kidneys of DM patients. Hence, the accu-
mulation of AGEs becomes toxic for the kidneys, as they 
gradually induce a reduction in their filtration capacity. As 
a consequence, AGEs cannot be eliminated and accumulate 
in the body (Makita et al. 1991).

Another diabetic-related pathology where glycation 
seems to play a crucial role is in the development of neurop-
athy (Thornalley 2022). The different types of neuropathies 
are characterized by either a loss of sensitivity, paraesthesia 
(the sensation of tingling), and dysesthesia (abnormal con-
tact sensations), which can be accompanied by burning pain. 
All these conditions lead to a loss of nociception and to the 
appearance of injuries as a result of the patient’s decreased 
perception, whose appearance is linked to a healing defi-
cit and to the appearance of a pathologic condition known 
as “diabetic foot,” which often ends with amputation (Said 
2013; Duran-Jimenez et al. 2009). All this appears because 
the capillaries that perfuse nerves are affected by AGEs 
(Sugimoto et al. 2008). Extracellular glycation thickens the 
basement membrane and increases parietal permeability 
by changing its electrical charge. In addition, endothelial 
RAGEs are activated in perineurial and endoneurial blood 
vessels, which leads to vascular malfunction. All of these 
processes lead to circulatory issues in the capillaries and the 
onset of hypoxia, which affects nervous tissue. Glycation has 
also a direct effect on the immune system, which enhances 
the possibility of skin wounds and infections (Barwick et al. 
2016).

The mass and function of skeletal muscles are also 
affected by the accumulation of AGEs. It seems that myosin 
structure and the interaction between actin and myosin can 
be modified as a result of the formation of AGEs on them 
(Snow et al. 2007). The increase in the crossed-linked col-
lagen and pentosidine was found to be inversely proportional 
to the muscle wet weight (Haus et al. 2007).

Glycation also affects the rate of skin aging, yet the mech-
anisms involved in this process have not been identified. 
The accumulation rate of glycated collagen is estimated to 
be about 3.7% per year, although lifestyle, exposure to UV 
light, and diet affect this percentage (Danby 2010). With 
aging, the skin tends to be less elastic, thin, and dry. These 
processes tend to be accelerated by exposure to UV irra-
diation, tobacco, pollution (Gkogkolou and Böhm 2012), 
and an enhanced glycation process. Pentosidine causes skin 
inflammation (Ichihashi et al. 2011) and glycation of keratin 
changes its transparency (Yonei et al. 2015) due to AGE 

accumulation in the dermis. Prolonged exposure to sunlight 
could speed up the formation and accumulation of CML, 
thus causing an abnormal elastin accumulation in the dermis 
(Mizutari et al. 1997).

AGE accumulation has also been associated with a higher 
propensity to develop neurodegenerative diseases. One of 
them is Alzheimer’s disease (AD), the most common type 
of dementia, which has a large incidence in people of age 
over 65 (Ferri et al. 2005). Several risk factors have been 
associated with AD including genetics, age, head trauma, 
hypertension, diabetes, and high cholesterol (Burns and 
Iliffe 2009). AD has also been correlated with glycation. 
Several evidences demonstrate that AGEs accumulate in 
senile plaques and neurofibrillary tangles isolated from AD 
brains with AGEs were found in the Tau and Aβ aggregates 
(Sasaki et al., 1998; Lüth et al. 2005).

Parkinson’s disease (PD) is another very common neuro-
degenerative disease that seems to be stimulated by glyca-
tion. In fact, diabetic people have a ~ 38% higher propensity 
to develop PD than non-diabetic people (Yue et al. 2016). 
PD is characterized by resting tremors, rigidity, slow move-
ments, and postural instability. PD starts with the degenera-
tion of dopaminergic neurons in the substantia nigra of the 
midbrain, where dopamine is mainly produced (Guerrero 
et al., 2013). AGE formation was reported in the Lewy bod-
ies (LBs) isolated from substantia nigra (Miranda and Out-
eiro 2010). In addition, AGEs were found in cerebral cortex 
and amygdala, regions that also overexpress RAGEs. AGEs 
were mainly co-localized on aggregated α-synuclein, the 
main component of LBs, so it was thought that they stimu-
late its aggregation (Padmaraju et al. 2011). α-Synuclein has 
15 Lys residues able to be glycated. This is highly impor-
tant in a pathological context, since α-synuclein oligom-
ers are highly toxic (Guerrero et al., 2013), as they disrupt 
cellular membrane and alter their permeability. Moreover, 
monomeric and oligomeric glycated α-synuclein generate 
reactive oxidative species, thus increasing oxidative stress. 
Finally, glycated oligomers are resistant to proteolysis, thus 
causing proteasome dysfunction (Miranda et al. 2017). The 
cells with proteasome dysfunction proceed to autophagy 
and are eliminated. Glycated α-synuclein activates micro-
glia and causes neuroinflammation, but also interacts with 
RAGEs triggering the release of NF-kB. Since NF-kB also 
regulates RAGE expression, its overexpression causes more 
AGE binding and, therefore, it forms a feedback loop that 
activates the inflammatory pathway and the neuronal death 
(Guerrero et al., 2013). In addition, the work of our group 
has shown that the formation of CEL on α-synuclein inhibits 
one of its most important biological functions, i.e., its ability 
to bind and cluster synaptic vesicles carrying dopamine, thus 
hampering correct neurotransmission (Uceda et al. 2022).

Prion diseases are another type of fatal neurodegenerative 
disease that starts with the misfolding of the cellular prion 
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protein (PrPC)—normally involved in signal transduction 
(Didonna 2013)—which in the disease state instead aggre-
gates and accumulates. The process of aggregation is accom-
panied by neuronal loss and spongiform alterations, which 
are the characteristics features of Creutzfeldt-Jakob disease 
(CJD) (Knight and Will 2004), a disease that is both spo-
radic, genetic, and transmissible in nature (Prusiner 1998). 
The “protein only” hypothesis states that CJD is caused by 
the conversion of natively folded PrPC into non-native state, 
which is resistant to degradation by proteinase K (PrPres) 
(Asher and Gregori 2018). Use of anti-AGEs and anti-RAGE 
antibodies has allowed for the direct observation of AGEs 
and RAGEs in the development of CJD (Sasaki et al. 2002). 
These studies revealed a co-localization of PrP-positive 
granule AGEs and RAGE. Glycation of PrPC was observed 
to occur on K23, K24, K27, and R37 (Choi et al. 2004), 
which results into a PrPC resistant to protease degradation, 
thus being a powerful inductor of oxidative stress. Thus, 
glycation might play a key role in the pathogenesis of prion 
diseases since it would protect PrP against degradation.

DNA glycation has been shown to promote mutagen-
esis and stimulate the development of cancer. This occurs 
because AGEs stimulate RAGEs, thus activating several 
molecular signaling pathways such as the PI3K/AKT, JAK/
STAT, NF-κB, Ras/MAPK, Rac1/cdc42, p44/p42, p38, 
or the SAP/JNK/MAPK pathways (Palanissami and Paul 
2018). These inflammatory processes also induce epige-
netic changes in pre-malignant lesions and silence tumor 
suppressor genes (Palanissami and Paul 2018). In addi-
tion, AGEs-RAGE interactions also activate NADPH oxi-
dases, thus causing increased intracellular oxidative stress. 
The expression of RAGEs is usually upregulated in most 
types of cancers, such as colorectal (Azizian-Farsani et al. 
2020), pancreatic (Swami et al. 2020), prostate (Akkus et al. 
2021), lung (Chen et al. 2020), or breast (Zhang et al. 2020) 
cancers.

More recently, it has been shown that accumulation of 
AGEs could be a potential risk factor for increased COVID-
19-linked fatalities in elderly patients (Sellegounder et al. 
2021). RAGEs expressed by DM2 epithelial cells in the 
alveolar sac have been reported to be associated with lung 
inflammation caused by COVID-19 (Wang et al. 2020).

Endogenous mechanisms of detoxification 
against glycation

Given the pathological effects that glycation has on the nor-
mal function of the body, evolution has designed specific 
mechanisms to reduce glycation events and also to eliminate 
and deglycate biomacromolecules (Fig. 6). One of the most 
studied mechanisms is the glyoxalase system that consists 
of two cooperating enzymes, i.e., Glo-1 and Glo-2, that rap-
idly degrade free MG, GO, and 3-DG before they can react 

with biomolecules (Aragonès et al. 2021; Kold-Christensen 
and Johannsen 2020). This detoxifying mechanism has a 
high specificity for MG (Thornalley 1990), which rapidly 
reacts with glutathione to form the corresponding hemithio-
acetal, that is the specific substrate of Glo-1. Subsequently, 
Glo-1 converts it into S-d-lactoylglutathione, that is then 
hydrolyzed into d-lactate by Glo-2 (Fig. 6A) (Aragonès et al. 
2021; Shinohara et al. 1998). This system is thought to be a 
key component in the maintenance of the intracellular lev-
els of reactive dicarbonyls (Nigro et al. 2017; Thornalley 
2003a).

There are alternative routes to the glyoxalase system 
for the detoxification of dicarbonyl compounds (Fig. 6A) 
(Aragonès et al. 2021; Kold-Christensen and Johannsen 
2020). These systems assist the glyoxalase pathway to 
detoxify AGEs, but their physiological relevance remains 
unclear. One of these secondary mechanisms is carried out 
by the DJ-1 protein, which converts MG into lactate in the 
absence of glutathione (Matsuda et al. 2017). In addition, it 
has been suggested that DJ-1 can also repair MG-modified 
nucleotides and proteins at the early glycation stages (Lee 
et al. 2012; Richarme et al. 2015), although other works sug-
gest the opposite (Mazza et al. 2022). Another mechanism is 
carried by aldo–keto reductases, a set of enzymes that reduce 
ketones and aldehydes into primary and secondary alcohols 
(Baba et al. 2009; Vander Jagt et al. 2001). Aldo–keto reduc-
tases tend to protect against MG damage (Li and Ellis 2014) 
since their inhibition increases the MG levels (Baba et al. 
2009). Moreover, aldehyde dehydrogenases, whose expres-
sion is boosted by MG (Morgenstern et al., 2020), are also 
able to oxidize MG to pyruvate (Vander Jagt and Hunsaker 
2003). In addition, aldehyde dehydrogenase activities are 
increased as a result of Glo-1 knockout to compensate for 
the lack of the glyoxalase system (Lodd et al. 2019). In any 
case, it seems that some of these alternative routes are highly 
tissue-dependent (Schumacher et al. 2018), and they might 
produce harmful compounds like γ-diketones, which have 
been linked with different health problems (Spencer and 
Chen 2021).

In addition to all these detoxifying mechanisms, cells 
also have proteolytic systems responsible for breaking down 
glycated proteins. The ubiquitin–proteasome system (UPS) 
plays essential roles in degrading misfolded or glycated 
proteins, thus preventing the accumulation of AGEs and 
reducing their harmful consequences (Goldberg 2003; Tay-
lor 2012; Uchiki et al. 2012). In the UPS system, ubiquitin 
molecules are attached to target proteins, marking them for 
degradation by the proteasome (Fig. 6B) (Goldberg 2003). 
However, glycation of Lys residues impairs the covalent 
binding of ubiquitin to these residues; thus, glycated pro-
teins tend to become resistant to proteasomal degradation 
and start to aggregate. These large aggregates turn out to be 
inaccessible to proteasomal proteases, so they are stored in 
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the aggresome and are then degraded via macroautophagy 
(Fig. 6C) (Takahashi et al. 2017). This process involves the 
sequestration and degradation of cellular components in 
a double-membrane structure called the autophagosome, 
which fuses with lysosomes leading to the degradation of 
the aggregates (Takahashi et al. 2017; Zientara-Rytter and 
Subramani 2019). Additionally, microautophagy and chap-
erone-mediated autophagy also promote degradation of 
cytoplasmic components in the lysosome, such are glycated 
proteins (Gómez et al. 2021) (Fig. 6C). Aging and excessive 
glycation levels have been shown to negatively impact UPS 
due to direct glycation of their components (Aragonès et al. 
2020; Queisser et al. 2010).

Other enzymes such as fructosamine 3-kinase, fruc-
toselysine oxidase, or fructoselysine 6-kinase have also 
been proved to deglycate proteins (Delpierre et al. 2000; 
Szwergold et  al. 2001; Takahashi et  al. 1997; Wiame 
et al. 2002). The mechanisms of action of some of these 
enzymes have been investigated using theoretical calcu-
lations and computer simulations, such as in the studies 
published by Rigoldi et al. who investigated the interaction 
of five different fructosyl amino acid oxidases (amadoriase 

I, amadoriase II, FPOX-E, N1-1-FAOD, and PnFPOX) 
with fructosyl-lysine (f-Lys) and fructosyl-valine (f-Val) 
to understand the specificity of these enzymes (Rigoldi 
et al. 2016). The structures of the five enzymes are very 
similar, and their main differences are in the loops defin-
ing the entrance to the active site tunnel. They analyzed 
the sizes of cavities and access tunnels to the active site, 
as well as the polarity of residues along the tunnel, to 
investigate the affinity of the active site for f-Lys or f-Val. 
The simulations suggested that amadoriase I, amadoriase 
II, and FPOX-E possess a better environment to stabilize 
f-Lys (Rigoldi et al. 2016).

In addition to these cytoplasmatic processes, other detoxi-
fication processes also occur simultaneously in other cellular 
locations. Heat-shock proteins (Hsps), which are molecular 
chaperones that facilitate the folding of proteins or target 
misfolded proteins for clearance, also help to maintain cel-
lular health and function (Sudnitsyna and Gusev 2015). 
Therefore, increased levels of Hsp27 suppressed the detri-
mental effects induced by MG on α-synuclein, also reduc-
ing MG-induced α-synuclein aggregation in cells (Miranda 
et al. 2020).

Fig. 6   Main endogenous mechanisms of detoxification against gly-
cation. The glyoxalase system (A) plays a crucial role in degrading 
reactive dicarbonyl compounds, which serve as glycating agents. In 
addition, complementary alternative mechanisms (right) further con-

tribute to the elimination of these harmful compounds. The protea-
somal system (B) and autophagy (C) are mechanisms responsible for 
breaking down glycated proteins with compromised functionality or 
structure
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Types and effectiveness of glycation inhibitors: 
current state of pharmaceutical treatment

Although the body has developed systems to protect against 
glycation and its pathogenic consequences, in some situa-
tions, such as DM, their action is not sufficient to prevent 
diabetes-induced diseases. Hence, the pharmaceutical indus-
try has developed a set of drugs whose mechanism of action 
is to prevent the glycation process or revert its consequences. 
In the recent years, an important number of review articles 
covering various aspects of glycation inhibition have been 
published, and interested readers are encouraged to consult 
the following references for a deeper insight (Abbas et al. 
2016; Anwar et al. 2021; Jahan and Choudhary 2015; Jud 
and Sourij 2019; Nenna et al. 2015; Peng et al. 2011; Pey-
roux and Sternberg 2006; Rahbar and Figarola 2002; Salazar 
et al. 2021; Sarmah and Roy 2022; Song et al. 2021; Sour-
ris et al. 2009; Yamagishi et al. 2008; Younus and Anwar 
2016). Among these articles, Yamagishi et al. (2008), Sour-
ris et al. (2009), and Nenna et al. (2015) emphasize how 
glycation inhibitors can prevent diabetic-induced cardiovas-
cular complications. The articles by Nenna et al. (2015), Jud 
and Sourij (2019), and Salazar et al. (2021) provide data 
from various clinical studies conducted with different AGE 
inhibitors. Jahan and Choudhary (2015) also compile patents 
registered up to 2014 related to AGE inhibitors. Among the 
more recent articles, a distinction is made between synthetic 
and naturally derived inhibitors, highlighting that the latter 
may be interesting for treatment, since they generally exhibit 
lower toxicity and are more economical (Abbas et al. 2016; 
Anwar et al. 2021; Jahan and Choudhary 2015; Peng et al. 
2011; Sarmah and Roy 2022; Song et al. 2021; Younus and 
Anwar 2016).

Given the diversity of possible reaction pathways involved 
the formation of AGEs, glycation inhibitors usually exhibit 
several mechanisms of action. According to Khalifa et al.’s 
(1999) original classification, there are six types of inhibi-
tors (Rahbar and Figarola 2002) with these being as follows:

A.	 Molecules that compete with carbohydrates to react 
with free amino groups of biomolecules. In practice, 
this does not present a viable therapeutic strategy since it 
is not feasible to block all amino groups in the organism. 
Examples include pyridoxal-5′-phosphate or aspirin.

B.	 Molecules that react with aldoses and ketoses, prevent-
ing them from undergoing protein glycation. These 
inhibitors can also interact with species containing car-
bonyl groups generated in later stages of glycation, such 
as Amadori products. These inhibitors pose the risk of 
deactivating species with important carbonyl groups 
for the organism, such as pyridoxal-5′-phosphate. Ami-
noguanidine and pyridoxamine are examples of these 
inhibitors.

C.	 Molecules that interfere on side reactions along the 
glycation process. These are metal chelators and anti-
oxidants. Both types of inhibitors eliminate species that 
directly or indirectly participate, promote, or acceler-
ate oxidation reactions that generate ROS and AGEs. 
Examples of metal chelators include pyridoxamine and 
phytate, and antioxidants include vitamins C and E.

D.	 Molecules capable of trapping highly reactive dicarbo-
nyls like GO or GLA. Diabetic patients may exhibit high 
concentrations of these species due to metabolic imbal-
ances (Khalifah et al. 1999). Aminoguanidine also falls 
into this category.

E.	 Species capable of blocking Amadori products and pre-
venting their conversion into AGEs. Aminoguanidine 
(Khalifah et al. 1999) and pyridoxamine (Voziyan et al. 
2002) can act in this manner.

F.	 Molecules acting as AGE breakers, which can revert 
crosslinking AGEs but do not prevent their formation. 
ALT-711 has been suggested to act as an AGE breaker 
since it seems able to reverse diabetes-induced increase 
of artery stiffness (Wolffenbuttel et al. 1998) and has a 
renoprotective effect (Coughlan et al. 2007)

Next, we highlight key chemical features of inhibitors of 
glycation.

Aminoguanidine acts as a carbonyl scavenger (Fig. 7), 
mainly dicarbonyl species, thus preventing the formation 
of the initial glycation products, hindering the evolution of 
Amadori compound into AGEs, and averting the formation 
of crosslinking AGEs (Thornalley 2003b). Aminoguanidine 
may delay complications arising from diabetic neuropathy, 
nephropathy, and retinopathy (Jud and Sourij 2019; Peyroux 
and Sternberg 2006; Rahbar and Figarola 2002). Two phase 
III clinical trials were conducted with aminoguanidine. One 
included DM1 patients, for which a slower progression of 
retinopathy was observed. The second study included DM2 
patients, but it was stopped due to apparent lack of results 
and adverse side effects on liver function (Freedman et al. 
1999; Jud and Sourij 2019; Nenna et al. 2015; Sourris et al. 
2009).

Pyridoxamine is one form of vitamin B6 that is able to 
inhibit glycation (Fig. 7). Its main mechanism of action 
involves the chelation of metals with redox capacity to oxi-
dize the Amadori product (Voziyan et al. 2003), but it is also 
able to scavenge reactive carbonyl intermediates (Voziyan 
et al. 2002). Toxicity studies indicated that pyridoxamine is 
safe (Voziyan and Hudson 2005).

Carnosine is the β-alanine-histidine dipeptide and it is a 
natural molecule present in all organisms (Fig. 7). It exhib-
its various mechanisms of inhibition. It can react with sug-
ars to prevent the formation of AGEs, and it can react with 
proteins that had been previously modified by MG through 
its reaction on the second carbonyl group, thus preventing 
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the formation of crosslinking AGEs (Alhamdani et al. 
2007; Hipkiss 2000). Carnosine can chelate metal ions 
(Price et al. 2001) and it can scavenge ROS (Klebanov 
et al. 1998). Additionally, the AGEs with which carno-
sine reacts, cease to be recognized by RAGEs (Hipkiss 
2000). Carnosine was reported to have a protective effect 
in nephropathy models (Janssen et al. 2005).

Benfotiamine is a derivative of thiamine (vitamin B1; 
Fig. 7) that acts as a potent activator of transketolase with 
the ability to reduce the levels of AGEs. However, the 
results in clinical trials were moderately successful. One 
did not show improvement in peripheral nerve function 
(Fraser et al. 2012), whereas the other caused a decrease 
in the albuminuria (Rabbani et al. 2009), although such an 
effect was not observed in another study with a larger sam-
ple of patients (Alkhalaf et al. 2010). Another clinical trial 
indicated that dietary supplementation with benfotiamine 

reduced AGE levels in DM2 patients with a high AGE diet 
(Stirban et al. 2006).

Another way to inhibit the glycation involves avoiding the 
RAGE cascade that increases oxidative stress and, thereby, 
promotes the formation of more AGEs. This can be achieved 
by eliminating free AGEs, blocking the interaction of AGEs 
with the RAGE receptor, and blocking the RAGE activation 
cascade (Kim et al. 2005; Peyroux and Sternberg 2006).

Summary and perspectives

Protein glycosylation and glycation are distinct processes 
involving carbohydrate modification of proteins. Glyco-
sylation, mediated by enzymes, attaches polysaccharides 
to proteins during biosynthesis, influencing protein folding 
and function. In contrast, glycation involves non-enzymatic 
attachment of glucose to proteins, and this occurs randomly 

Fig. 7   Chemical structures of the most relevant inhibitors of 
glycation. The compounds labeled with a red circle (●) are 
those that can inhibit glycation through the protection of the 
amino groups that are prompt to be glycated. The compounds 
labeled with a blue circle (●) are those that can inhibit gly-
cation via scavenging carbonyl compounds. The compounds 

labeled with a green circle (●) are those that can inhibit glyca-
tion via chelating metal cations that promote it. The compounds 
labeled with a purple circle ( ) are those that can inhibit glyca-
tion via the neutralization of ROS. The compounds labeled with 
a yellow circle ( ) are those that can act as AGE breakers
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in the intra- and extracellular spaces. This ends with the 
formation of AGEs, which are implicated in DM-related 
diseases, as well as in other aging-related pathologies. The 
intracellular glycolysis produces MG, which further con-
tribute the AGE formation and cell damage. Dysregulated 
glycation, exacerbated in conditions like DM, leads to AGE 
accumulation, affecting cellular structures and functions.

Protein glycation initiates with the reaction between pro-
tein amino groups and glucose, forming Schiff bases that 
rearrange into Amadori products. These products can further 
evolve into AGEs. Concurrently, sugar moieties can undergo 
fragmentation reactions, producing 3-DG and MG. These 
RCS contribute significantly to glycation, forming diverse 
AGEs. Glycation propensity varies among different sugars, 
being glucose and ribose those with higher glycation rel-
evance in vivo. Glycation primarily targets Lys and Arg, 
but RCS also modify Cys in reducing environments. Envi-
ronmental factors such as pH, temperature, and buffer ions 
influence glycation extent. Additionally, the protein’s half-
life affects glycation, with longer-lived proteins accumulat-
ing more AGEs. Dysregulation of RCS production leads to 
carbonyl stress, impacting cellular function. Understanding 
these mechanisms is crucial for mitigating glycation-related 
damage. Glycation affects nucleic acids, leading to muta-
tions, and disease like diabetes and cancer. Amino phos-
pholipids, found in cell membranes, become also glycated 
under hyperglycemic conditions, impacting cell integrity 
and contributing to diabetic complications and age-related 
dysfunctions.

For a long time, it was thought that glycation induced 
structural chaotropic effects and protein unfolding. These 
assumptions were mainly based on the data obtained using 
low-resolution techniques. However, high-resolution tech-
niques such as NMR and X-ray diffraction have consistently 
shown no significant alterations in the secondary or tertiary 
structure of glycated proteins. This discrepancy led to inves-
tigations into the quenching effect of AGEs on protein fluo-
rescence, revealing that AGEs can indeed quench intrinsic 
fluorescence. Misinterpretations of fluorescence data in the 
study of glycated proteins have been found, emphasizing the 
need for caution and the integration of multiple techniques to 
accurately assess the effect of glycation on protein structure. 
The limited effect hat glycation has on protein structure can 
be rationalized by the solvent-exposed nature of Lys and Arg 
residues, which typically lack crucial long-range contacts 
defining protein tertiary structure, unless involved in salt 
bridge interactions.

Glycation disrupts protein function independently of 
any chaotropic effect on protein structure. AGEs alter pro-
tein residues, potentially creating hydrophobic patches that 
induce aggregation, modifying equilibria between folded 
and unfolded states, and altering interactions with binding 
partners or enzymatic activities. Various proteins, including 

serum albumin, cytochrome c, and myoglobin, exhibit 
modified functions upon glycation, influencing cytotoxic-
ity, apoptosis induction, or enzymatic activity. Additionally, 
glycation contributes to oxidative stress, generating ROS 
and impairing antioxidant capacity. The effects of glycation 
on protein function are multifaceted and dependent on the 
specific protein, extent of glycation, and cellular environ-
ment, highlighting its complexity and importance in disease 
pathogenesis.

Computational chemistry has emerged as a powerful tool 
to better understand the impact of glycation on protein struc-
ture and function. MD simulations have been carried out to 
elucidate glycation effects on proteins like hemoglobin, col-
lagen, and insulin. These simulations reveal altered binding 
sites, structural changes, and disrupted interactions, shed-
ding light on disease mechanisms. For instance, glycation 
hinders insulin binding to its receptor and weakens pro-
tein–protein interactions, such as between α-synuclein and 
GAPDH. Additionally, computational chemistry has been 
used to study the effect of glycation on protein–ligand inter-
actions, as seen BSA-tolbutamide binding. Computational 
chemistry also extends to studying DNA and lipid glycation, 
providing insights into cellular dysfunction and membrane 
destabilization. Overall, computational approaches offer 
valuable insights into glycation’s molecular mechanisms, 
aiding in understanding its implications in disease and cel-
lular processes.

Protein glycation might profoundly influence the protein 
aggregation propensity. While initially thought to enhance 
aggregation via chaotropic effects, recent studies reveal a 
nuanced relationship. Glycation can inhibit fibril formation 
but promote cytotoxic oligomer generation, with outcomes 
varying by glycating agent and protein type. Additionally, 
glycation can disrupt protein clearance mechanisms, favor-
ing aggregation and inclusion formation. The cytotoxicity 
of resulting proteinaceous species depends on their confor-
mational state, with soluble oligomers generally correlat-
ing with cellular toxicity. Insoluble fibrillar aggregates are 
associated with disease progression. Overall, the impact of 
glycation on protein aggregation is complex and it depends 
on structural modifications induced by glycating agents, 
exerting both promoting and inhibitory effects on amyloid 
fibril formation and cytotoxicity.

The effect of glycation on the protein function, structure, 
and aggregation might end with the development of patho-
logical events. For instance, glycation of long-lived proteins 
like collagen or hemoglobin leads to loss of function and 
contributes significantly to the development of glycation-
related diseases, which become more prevalent in diabetic 
people. AGEs interact with RAGEs triggering oxidative 
stress, inflammation, and tissue damage. This process is 
implicated in various complications of diabetes, including 
neuropathy, cardiomyopathy, nephropathy, and retinopathy. 
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Additionally, glycation plays a crucial role in the patho-
genesis of other diabetes-induced disorders like cataracts, 
vascular stiffening, atherosclerosis, inflammatory arthritis, 
osteoarthritis, and neurodegenerative diseases such as Alz-
heimer’s and Parkinson’s. Moreover, glycation contributes 
to muscle dysfunction, skin aging, and cancer development 
by promoting mutagenesis and activating inflammatory 
pathways.

As a result of the harmful effects of glycation, the evo-
lution that has developed several endogenous mechanisms 
to counteract the detrimental effects of glycation. The gly-
oxalase system efficiently degrades RCS like MG. Alter-
native pathways involving DJ-1, aldo–keto reductases, or 
aldehyde dehydrogenases also contribute to detoxifying 
RCS. Additionally, proteolytic systems like the UPS degrade 
glycated proteins to prevent their accumulation. However, 
glycation of Lys impairs ubiquitin binding, leading to pro-
tein aggregation. These aggregates are then degraded via 
macroautophagy, microautophagy, and chaperone-mediated 
autophagy. Aging and excessive glycation levels can com-
promise the efficiency of these detoxification mechanisms. 
Hsps further aid in maintaining cellular health by facilitat-
ing protein folding and clearing misfolded proteins, thereby 
mitigating the harmful effects of glycation on cellular func-
tion and integrity.

Pharmaceutical interventions targeting glycation aim to 
mitigate the pathological consequences associated with con-
ditions like DM. Various classes of glycation inhibitors have 
been developed, including those that compete with carbo-
hydrates for amino groups, react with aldoses and ketoses, 
interfere with side reactions, trap RCS, or act as AGE break-
ers. Examples of such inhibitors include aminoguanidine, 
pyridoxamine, carnosine, and benfotiamine, each exhibit-
ing distinct mechanisms of action and potential therapeutic 
benefits. Clinical trials have demonstrated varying degrees 
of success, with some inhibitors showing promise in delay-
ing or ameliorating diabetic complications like neuropathy 
and nephropathy. Additionally, targeting the RAGE cascade 
offers another approach to inhibit glycation-mediated pathol-
ogy by blocking AGE-RAGE interactions and downstream 
signaling pathways associated with oxidative stress and 
inflammation.

Despite all what we have reported here, there are still 
many key questions that remain unanswered to fully compre-
hend the effect of glycation on the development of diabetes-
induced disease. Some of them are as follows:

A.	 The role of specific glycation products: While AGEs are 
implicated in various diseases, the specific contributions 
of individual glycation products to disease pathogen-
esis are not fully elucidated. Understanding the rela-
tive importance of different AGEs in driving specific 

pathological processes could inform targeted therapeutic 
strategies.

B.	 Clarify the precise impact of glycation on protein func-
tion: Although it is known that glycation could impair 
protein structure and function, the precise molecular 
mechanisms underlying these effects remain unclear. 
Further investigation is needed to determine how glyca-
tion-induced modifications alter protein activity, stabil-
ity, and interactions with other molecules.

C.	 Tissue-specific effects of glycation: Glycation can occur 
in different tissues and organs throughout the body, but 
the impact of glycation on tissue-specific pathologies is 
not well-defined. Investigating how glycation contrib-
utes to disease development in specific tissues could 
reveal novel therapeutic targets and diagnostic markers.

D.	 Interplay between glycation and other post-translational 
modifications: Proteins undergo a variety of post-transla-
tional modifications, including glycation, phosphoryla-
tion, acetylation, and methylation. Understanding how 
these modifications interact and influence the protein 
function and cellular signaling pathways is an unex-
plored area of research.

E.	 Development of glycation inhibitors: While several gly-
cation inhibitors have been identified and investigated, 
their clinical efficacy and safety profiles are not fully 
established. Further research is needed to optimize the 
design and development of glycation inhibitors for thera-
peutic use in diseases associated with protein glycation.

F.	 Impact of glycation on aging: Glycation has been impli-
cated in the aging process and age-related diseases, but 
the underlying mechanisms linking glycation to aging 
phenotypes are not fully understood. Elucidating the 
molecular pathways through which glycation contrib-
utes to aging could provide insights into strategies for 
promoting healthy aging and preventing age-related dis-
eases.

Only addressing these (but not only) open questions 
will advance the understanding of the role of protein gly-
cation in health and disease, paving the way for the devel-
opment of novel therapeutic interventions and diagnostic 
approaches.
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