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Abstract

Developmental lateralization of brain function is imperative for behavioral specializa-

tion, yet few studies have investigated differences between hemispheres in structural

connectivity patterns, especially over the course of development. The present study

compares the lateralization of structural connectivity patterns, or topology, across

children, adolescents, and young adults. We applied a graph theory approach to quan-

tify key topological metrics in each hemisphere including efficiency of information

transfer between regions (global efficiency), clustering of connections between

regions (clustering coefficient [CC]), presence of hub-nodes (betweenness centrality

[BC]), and connectivity between nodes of high and low complexity (hierarchical com-

plexity [HC]) and investigated changes in these metrics during development. Further,

we investigated BC and CC in seven functionally defined networks. Our cross-

sectional study consisted of 211 participants between the ages of 6 and 21 years

with 93% being right-handed and 51% female. Global efficiency, HC, and CC demon-

strated a leftward lateralization, compared to a rightward lateralization of BC. The

sensorimotor, default mode, salience, and language networks showed a leftward
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asymmetry of CC. BC was only lateralized in the salience (right lateralized) and dorsal

attention (left lateralized) networks. Only a small number of metrics were associated

with age, suggesting that topological organization may stay relatively constant

throughout school-age development, despite known underlying changes in white

matter properties. Unlike many other imaging biomarkers of brain development, our

study suggests topological lateralization is consistent across age, highlighting poten-

tial nonlinear mechanisms underlying developmental specialization.
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1 | INTRODUCTION

The lateralization of brain functions has been of interest since Broca's

seminal finding that speech production is largely isolated to the left

hemisphere (Broca, 1861). Numerous functions have subsequently

been shown to be strongly lateralized, such as spatial awareness,

where right posterior parietal cortex lesions may lead to hemispatial

neglect (Stone et al., 1991; Wernicke, 1874). Although macrostructure

appears similar in both hemispheres, we now know that cellular and

functional mechanisms differ between the left and right hemispheres

and in turn play different roles in neurological function (Toga &

Thompson, 2003). Therefore, an understanding of how the brain's lat-

eralization of function develops in a typically developing population

may be informative for discerning different trajectories in those with

atypical neurological outcomes.

There are numerous ways to investigate brain laterality and

development. However, over the last few decades, neuroimaging has

become the gold-standard of assessing brain laterality and develop-

ment. Such techniques have revealed macro-level structural changes

in brain lateralization across development showing asymmetries in

gray matter (Zhou et al., 2013) and white matter. More advanced neu-

roimaging techniques, such as diffusion magnetic resonance imaging

(MRI), use various algorithms to reconstruct key white matter tracts

within the brain and have revealed the presence of lateralized tracts

throughout development suggesting hemispheric specialization

(Basser & Jones, 2002; Gong, Jiang, Zhu, Zang, He, et al., 2005; Gong,

Jiang, Zhu, Zang, Wang, et al., 2005; Lebel & Beaulieu, 2009;

Schmithorst et al., 2007; Thiebaut de Schotten et al., 2011).

Modern studies of neurological disorders are increasingly focus-

ing on white matter connectomics—structural connections throughout

the entire brain—to identify signatures of pathology (Fornito

et al., 2015). In structural connectomics studies, the brain's white mat-

ter tracts are reconstructed using diffusion MRI and combined with an

atlas to estimate structural connectivity patterns between different

regions of interest (ROI). Multiple algorithms have been used to

reconstruct these tracts, such as diffusion tensor models, more com-

plex spherical deconvolution (CSD) models, and others, all having dif-

ferent strengths (Tournier et al., 2011). Specifically, the CSD model

has been shown to be effective at resolving crossing fibers in areas

with more than one fiber population (Farquharson et al., 2013;

Jeurissen et al., 2010) a challenge that is ubiquitous across the brain

(Jeurissen et al., 2013). Using graph theory, structural connectivity of

reconstructed tracts can be quantified across the entire brain or indi-

vidual hemisphere, producing useful metrics characterizing complex

network organization patterns (Fornito et al., 2015).

Graph theory is a mathematical interpretation of topology, or the

way regions are connected, that was originally used in the planning of

roadways in major cities (Biggs et al., 1986). Since the inception of

graph theory in the late 1700s, the model has since been adapted to

various applications, including understanding connectivity patterns in

the brain. Such patterns may reveal how efficient certain neurological

regions are by inferring connections that are directly connected to

each other provide a more efficient means of communication com-

pared to projecting through other additional regions (i.e., global effi-

ciency) (Rubinov & Sporns, 2010). Further, one can infer that a region

is important if many other regions are connected to that region

(i.e., clustering coefficient [CC]), or if paths from other regions must

project through a certain region to communicate with another part of

the brain (i.e., betweenness centrality [BC]) (Rubinov & Sporns, 2010).

Studies examining structural connectivity patterns in childhood

and adolescence have often suggested an increase during develop-

ment in global efficiency, a metric that describes the average shortest

path length to traverse from one region to another (Baum et al., 2017;

Chen et al., 2013; Dennis et al., 2013; Dennis & Thompson, 2013;

Hagmann et al., 2010; Hagmann et al., 2012; Huang et al., 2015;

Khundrakpam et al., 2013; Tymofiyeva et al., 2014; Wierenga

et al., 2016; Yap et al., 2011; Zhao et al., 2015). Further, an increase in

network integration and concurrent decrease in network segregation

is consistent with preclinical studies that show an evolution from local

to global connections (Dennis et al., 2013; Hagmann et al., 2010; Yap

et al., 2011). However, few studies have explicitly investigated hemi-

spheric asymmetries in network properties in children and adoles-

cents, and their results are slightly contradictory (Dennis et al., 2013;

Zhong et al., 2017). Specifically, multiple studies investigating brain

networks in adolescents and adults have shown hemispheric asymme-

tries in connectivity patterns, where the left hemisphere is more effi-

cient than the right hemisphere (Caeyenberghs & Leemans, 2014;

Dennis et al., 2013), however, others have shown the opposite (Zhong
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et al., 2017). Contrasting hemispheric asymmetry results are also seen in

the adult literature (Caeyenberghs & Leemans, 2014; Iturria-Medina

et al., 2011). Since white matter properties are developing throughout

childhood and adolescence, a more refined description of hemispheric

trends is imperative to improve understanding of functional specialization

and the impact of neurological diseases in pediatric populations. Also of

interest, though less common in the literature, are network characteris-

tics of more specific, functionally-based subnetworks as these may give

additional insight into differing developmental trajectories that have

implications for network analysis in various neurological diseases.

The current study used a single-site database of typically devel-

oping children who underwent MRI suitable for connectomic analyses.

We characterized structural topological differences between the left

and right hemispheres from childhood to young adulthood using

established graph theory metrics (Rubinov & Sporns, 2010). Further,

we investigated topological lateralization of various functionally-

defined networks. We hypothesized that the left hemisphere would

have higher global efficiency and hierarchical complexity

(HC) compared to the right hemisphere, and that efficiency for both

hemispheres would be associated with age.

2 | METHODS

2.1 | Population

The study included data from 211 typically developing participants

from eight research studies who completed a research MRI at the

Alberta Children's Hospital in Calgary, Alberta, Canada. Original con-

sents from each study allowed for the secondary re-use of data. This

collaborative study was approved by the University of Calgary

Research Ethics Board. Inclusion criteria were (1) aged between 6 and

21 years, (2) no history of neuropsychiatric or developmental disor-

ders through parent or self-report, or semi-structured interviews,

(3) completion of a diffusion MRI with a b-value �1000 s/mm2 and

�32 diffusion directions, and (4) completion of a T1-weighted ana-

tomical MRI. Participants were excluded if substantial head motion

prevented processing of the MRI.

2.2 | Neuroimaging acquisition

All scans were acquired using the same 3T GE (Waukesha, WI)

MR750w pediatric research scanner with a 32-channel head coil at

the Alberta Children's Hospital's (ACH) Child and Adolescence Imag-

ing Research (CAIR) program. Imaging parameters for each substudy

are given in Table 1.

2.3 | Neuroimage processing

The image-processing pipeline is shown in Figure 1. Anatomical

T1-weighted images were processed using statistical parametric map-

ping 12 (SPM12, https://www.fil.ion.ucl.ac.uk/spm/software/spm12/

), which segmented brain tissue into gray matter, white matter, cere-

brospinal fluid (CSF), bone, and air. A 5-tissue-type image was then

created including gray matter, subcortical gray matter assessed by

FSL's “FIRST,” white matter, CSF, and a fifth optional image that was

available but never used in this study. This 5-volume image defined

the interface between white and gray matter, serving two purposes:

first, it was the seed image used to generate whole-brain tractogra-

phy, and second, it constricted the respective reconstructed tracts to

only be contained in white-matter areas (Smith et al., 2012).

Diffusion scans were corrected for eddy currents and small motion

using FSL's “eddy_correct.” (Jenkinson et al., 2012) All scans were then

visually assessed on the coronal and axial plane. To be included in the

analysis, each scan required a minimum of 25 volumes not greatly

affected by motion. Response functions were calculated for each indi-

vidual using the “Tournier” algorithm. Whole brain tractography was

then performed via MRtrix3's “tckgen” with the “iFOD2” algorithm

extracting 1 M streamlines (Tournier et al., 2010). The “iFOD2” algo-

rithm was preferentially used instead of the tensor model due to the

CSD model's reliability and superior ability to resolve crossing fibers

(Boukadi et al., 2019; Jeurissen et al., 2010; Newman et al., 2020;

Tournier et al., 2010). Commands utilized optimized default settings as

well as implemented anatomically constrained tractography (ACT) with

the prior gray matter white matter interface image serving as the seed

and cut-off images (Smith et al., 2012; Tournier et al., 2019). This

TABLE 1 Image acquisition information

Dataset No. of scans B-value No. of diffusion directions No. of b0 volumes Voxel size TR/TE

1 21 750 32 3 0.86 � 0.86 � 2.2 11.5/69.1

2 25 900 30 5 0.86 � 0.86 � 2.2 14.0/92.5

3 21 750 32 3 0.86 � 0.86 � 2.2 12.0/88.0

4 32 750 32 3 0.86 � 0.86 � 2.2 12.0/98.0

5 17 900 30 5 0.86 � 0.86 � 2.2 11.5/69.1

6 27 900 26 3 0.86 � 0.86 � 2.2 11.5/69.1

7 30 900 32 4 0.86 � 0.86 � 2.2 12.0/88.0

8 38 900 30 5 0.95 � 0.95 � 2.2 12.0/88.0

Note: This table outlines the imaging parameters of the diffusion MRI sequences that were used in this collaborative study.

Abbreviations: TE, echo time (milliseconds); TR, repetition time (seconds).
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reduced the presence of spurious streamlines and two authors addi-

tionally examined the color-coded, directional reconstruction of stream-

lines slice-by-slice independently assuring that streamline direction

alities were appropriately anatomically representative.

2.4 | Structural connectome generation

The automated anatomical labelling 2 (AAL2) atlas, consisting of

120 brain regions covering the whole cortex and main subcortical

structures, was used to define ROI (Rolls et al., 2015). The AAL2 atlas

was first linearly then nonlinearly transformed into participant-space

using FSL's “FLIRT” and “FNIRT,” respectively (Jenkinson et al., 2012).

The AAL2 atlas was then overlaid onto the whole-brain tracts to

extract a measure of connectivity. A weighted connectivity measure

was defined as the number of streamlines that enters/begins between

each pair of ROIs. A number was generated based on every connec-

tion and ROI to generate a weighted, symmetrical adjacency matrix of

120 � 120 ROIs. In accordance with prior studies, cerebellar ROIs

were excluded due to various imaging acquisitions not including the

cerebellum consistently in the field of view (Craig et al., 2020). This

left a 94 � 94 ROI matrix that was then split into left and right hemi-

spheres for a pair of final weighted, symmetric adjacency matrices that

were 47 � 47 ROIs in size. The weighted matrix underwent density-

based thresholding to remove the bottom 25% of potentially spurious

reconstructed streamlines (Chapter 11 - statistical Connectomics, 2016;

Erd}os & Renyi, 1961).

2.5 | Graph theory outcomes

2.5.1 | General definitions

A node is a delineated brain region, represented by circles in Figure 2.

For our analysis, we defined nodes as regions from the AAL template.

An edge is what connects each node (i.e., reconstructed streamline

count), represented as lines between circles in Figure 2. A path is any

route of connections to get from one node to another within the net-

work. Degree is the total number of other nodes that a given node is

connected to. All metrics were generated using the Brain Connectivity

Toolbox (Rubinov & Sporns, 2010).

2.5.2 | Global efficiency

Global efficiency (Eglob) is a global measure based on the notion that

paths with fewer segments are more efficient (Rubinov &

Sporns, 2010). For example, in Figure 2a, it would be more efficient to

F IGURE 1 Displays the major processing steps to generate the structural connectome. Anatomical images were processed using statistical
parametric mapping (SPM) and FSL. Diffusion images and adjacency matrix generation were processed using MRTrix3. AAL2, automated
anatomical labelling 2 atlas; EEC, Eddy current correction; FOD, fiber orientation distributions; GM, gray matter; WM, white matter

F IGURE 2 Is a graphic representation
to help illustrate different graph theory
metrics. Nodes are defined as the circles

and the lines represent the edges that
connect the nodes. Degree is defined as
the number of nodes one node is
connected to. For example, node H in
Figure 2a has a degree of 2
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travel from node A to I directly through E, rather than having to go

through nodes D, G, and H. Here, the shortest path length from node

A to node I is 2 (A-E-I), whereas the longest path length would be

4 (A-D-G-H-I). Eglob measures the average shortest path length for

every node in the network. It may be energetically advantageous in

the brain to have generally shorter path lengths as it may allow

regions to communicate faster with one another.

2.5.3 | Hierarchical complexity

As the brain is inherently a complex structure, the global measure of HC

attempts to quantify the complexity of connectivity within a topological

area (Smith et al., 2019). In this metric, a network is more simple, and in

turn less complex, if all nodes with the same degree are connected to

other nodes with the same degree. For example, in Figure 2b, which

would be considered an ordered (therefore less complex) network, all

nodes with a degree of 2 (blue nodes) are connected to other nodes with

a degree of 3 (green). Similarly, all nodes with a degree of 3 are connected

to one node that has a degree of 4 (orange) and 2 nodes with a degree of

2. This would be contrasted with a more complex network, such as the

one in Figure 2c, where while each node has the same degree as in

Figure 2b, the nodes they are connected to appear to join with nodes of

various degrees. For example, while the node with a degree of 4 (node C)

in Figure 2b was connected to only nodes with a degree of 3, it is con-

nected to nodes with a degree of 3 and 2 in Figure 2c. Higher complexity

of brain structure/connections has been positively correlated with

increased higher-level cognitive processing abilities (Smith, 2019).

2.5.4 | Clustering coefficient

Clustering coefficient assesses how connected a node's direct neigh-

bors are to each other (Rubinov & Sporns, 2010). If two direct neigh-

bors of a node are connected to each other, they would then create a

closed triplet, such as the one between nodes A-B-E. The more con-

nected neighbors are, the higher the CC. For example, in Figure 2a,

node A would have a higher CC than node G. Here, node A has 2/3

potentially closed triplets (A-B-E and A-B-D), compared to node G,

where no direct neighbors are connected to each other. Neurologically,

a high CC may represent a situation where small networks may be pre-

sent that work together on various tasks. CC is first calculated for each

individual node and can also be averaged across larger regions, such as

networks or hemispheres. Here, we used CC as an average across

entire hemispheres and as an average of all nodes in various networks.

2.5.5 | Betweenness centrality

Betweenness centrality represents how “central” a node is by asses-

sing how many connections go through a single node to get to other

nodes within the network (Rubinov & Sporns, 2010). For example, in

Figure 2a, node F has a low BC as no connections need to go through

node F to get to another node in the network, compared to node B,

which would have a higher relative BC as both nodes C and F must go

through node B to be connected to the rest of the network. Higher

BC may represent the presence of hub nodes or a node where many

connections come together. Like CC, an average of all nodes' BC can

be used as an estimate of the hemisphere's overall tendency to have

“central” nodes or can be used as a direct measure of how “central” a
specific node is. Similar to CC, BC was used as an average of each

hemisphere and various networks.

2.6 | Statistical analyses

2.6.1 | Demographic analysis

Shapiro–Wilk tests assessed distribution normality of age within each

dataset separately. A nonparametric Kruskal-Wallis one-way analysis of

variance (ANOVA) tested differences in participant age between datasets

followed by Dwass-Steel-Critchlow-Fligner (DSCF) pairwise tests to iden-

tify which datasets differed from each other (correcting for multiple com-

parisons [MCs]). An independent test compared ages between participant

groups who were scanned using a b-value of 750 versus 900 s/mm2.

2.6.2 | Hemispheric analysis

A linear mixed effect model (LMEM) in Jamovi (https://gamlj.github.io/)

was used to assess fixed effects of hemisphere, age, and sex on the respec-

tive graph theory metric (Eglob, HC, CC, and BC), with random effects of

participant (to account for data in each hemisphere) and diffusion

sequence. Interactions between the fixed effects were applied in the first

model, before correction for MCs, and removed if they were not signifi-

cant. Factors that showed significant relationships to graph theory metrics

were further investigated using Wilcoxon signed-rank test or Spearman

correlations where normality was first assessed by the Kolmogorov–

Smirnov test. Bonferroni correction was used to correct for MCs.

2.6.3 | Network-wise analysis

Additional investigations assessing between-hemisphere differences

in specific functionally-defined cortical networks were completed.

Networks were defined in two steps. First, the automated anatomi-

cal labelling 2 atlas (AAL2) was overlaid on to the MNI152 brain tem-

plate. Second, the CONN Network Cortical ROIs (HCP-ICA) were

overlaid on top of the AAL2 atlas, defining intrinsic connectivity net-

works such as the sensorimotor, default mode, visual, salience, dorsal

attention, and language networks (Whitfield-Gabrieli & Nieto-

Castanon, 2012). Values within the AAL2 atlas that were in the same

neurological space as the CONN Network Cortical ROIs were

extracted, and defined the nodes considered to be a part of the

respective network. Nodes from the AAL2 atlas that are in each net-

work are given in Table 2.
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Similar to the hemispheric analysis, a LMEM in Jamovi was used

to investigate fixed effects of hemisphere, sex, and age, and random

effects of participant and diffusion sequence, with the network graph

theory metric (CC and BC) as the dependent variable. Post hoc analy-

sis was identical to the hemispheric analysis.

3 | RESULTS

3.1 | Population

The initial sample consisted of 223 participants, but 12 were removed

due to excessive head motion. The final sample consisted of

211 participants (mean 14.01 ± 3.26 years; range = 6.48–21.08 years;

51% female). Distributions of age and sex are shown in Figure S1. A total

of 196 participants were right-handed (93%). Median age was the same

for most datasets, except for slightly older participants in dataset 3 com-

pared to datasets 1 (p = .015), 4 (p < .01), and 8 (p < .01) (H = 38.9,

p < .001, Figure S1). Age and sex distributions were not different

between the two groups using b-values of 750 versus 900 s/mm2.

3.2 | Hemispheric analysis

Linear mixed effect model results are summarized in Table 3 and

Figure 3. Eglob, HC, CC and BC all showed significant differences

TABLE 2 Defining major cortical networks

Network AAL2 node left AAL2 node right AAL2 node names

Sensorimotor 1 2 Precentral gyrus

15 16 Supplementary motor area

61 62 Postcentral gyrus

Default mode 13 14 Rolandic operculum

19 20 Superior frontal gyrus, medial

55 56 Middle occipital gyrus

69 70 Angular gyrus

71 72 Precuneus

84 85 Superior temporal gyrus

Visual 47 48 Calcarine fissure and surrounding cortex

49 50 Cuneus

51 52 Lingual gyrus

53 54 Superior occipital gyrus

57 58 Inferior occipital gyrus

93 94 Inferior temporal gyrus

Salience 5 6 Middle frontal gyrus

7 8 Inferior frontal gyrus, opercular part

13 14 Rolandic operculum

27 28 Anterior orbital gyrus

33 34 Insula

37 38 Middle cingulate gyrus and paracingulate gyri

67 68 Supramarginal gyrus

Dorsal attention 3 4 Superior frontal gyrus, dorsolateral

61 62 Postcentral gyrus

63 64 Superior parietal gyrus

65 66 Inferior parietal gyrus, excluding supramarginal and

angular gyri

67 68 Supramarginal gyrus

Language 9 10 Inferior frontal gyrus

11 12 Inferior frontal gyrus pars orbitalis

67 68 Supramarginal gyrus

85 86 Superior temporal gyrus

89 90 Middle temporal gyrus

Note: This table displays the various AAL2 nodes that were used to define various networks for the graph theory metrics.
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between hemispheres. Eglob, HC, and CC were higher in the left hemi-

sphere compared to the right, and BC was higher in the right hemi-

sphere. Age and sex were not related to any of the metrics. The

interaction between sex and age for HC was nominally significant but

did not survive Bonferroni correction.

3.3 | Network analysis

Results for the network analysis are given in Table 4. CC of the senso-

rimotor network was higher in the left than the right hemisphere

(Figure 4a), whereas BC did not show any difference between

TABLE 3 Structural connectivity differences between hemispheres using graph theory.

Graph theory metric R2 adjusted Predictor Estimates ± SE Confidence interval t statistic p

Global efficiency 0.684 Hemisphere �4.61 ± 1.04 �6.65 to �2.58 4.44 <.001***

Sex �3.40 ± 2.12 �0.76 to 7.56 1.60 .440

Age 0.83 ± 0.34 0.16 to 1.50 2.44 .064

Hierarchical complexity 0.296 Hemisphere �0.08 ± 0.01 �0.10 to �0.07 9.59 <.001***

Sex �0.01 ± 0.01 �0.02 to 0.01 0.59 .124

Age 0.00 ± 0.00 �0.01 to 0.00 1.47 .576

Sex � Age 0.01 ± 0.00 0.00 to 0.01 2.38 .072

Clustering coefficient 0.491 Hemisphere �18.31 ± 1.48 �21.21 to �15.41 12.38 <.001***

Sex �0.35 ± 2.12 �3.81 to 4.51 0.16 .999

Age 0.76 ± 0.34 0.10 to 1.42 2.24 .104

Betweenness centrality 0.187 Hemisphere 1.42 ± 0.38 0.68 to 2.15 3.77 <.001***

Sex �0.16 ± 0.44 �0.71 to 1.02 0.35 .999

Age 0.15 ± 0.07 0.01 to 0.29 2.16 .128

Note: This table displays the results of the linear mixed effects model of the hemispheric analysis. All p-values have been corrected for multiple

comparisons using the Bonferroni method.

***p < .001.

F IGURE 3 Shows the relationships
between various graph theory metrics and
how they differ between the left and right
hemisphere, where global efficiency,
hierarchical complexity, clustering
coefficient are higher in the left
hemisphere and betweenness centrality is
higher in the right hemisphere. Error bars
represent the 95% confidence interval. L,
left hemisphere; R, right
hemisphere; *p < .001
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hemispheres. Age and sex were not significant factors for either met-

ric. CC of the default mode network was significantly higher in the left

hemisphere compared to the right (Figure 4b), whereas BC was not

different between hemispheres. Age and sex were not significant fac-

tors for either metric. CC and BC of the visual network did not differ

between hemispheres. Age was positively related with CC but not

BC. Sex was not a significant factor for CC or BC. CC of the salience

network was higher in the left hemisphere compared to the right

(Figure 4c), whereas BC was higher in the right hemisphere compared

to the left (Figure 4d). Age and sex were not significant factors for

TABLE 4 Lateralization of major cortical networks using structural connectivity and graph theory.

Network Metric R2 adjusted Predictor Estimates ± SE Confidence interval Statistic p

Sensorimotor Clustering coefficient 0.342 Hemisphere �5.93 ± 0.95 �7.80 to 4.06 6.22 <.001***

Sex �1.63 ± 1.28 �4.13 to 0.87 1.28 .406

Age 0.48 ± 0.20 0.04 to 0.83 2.16 .064

Betweenness centrality 0.276 Hemisphere 5.02 ± 3.59 �2.03 to 12.06 1.40 .328

Sex 3.72 ± 4.17 �4.45 to 11.90 0.89 .746

Age 0.581 ± 0.67 �0.74 to 1.90 0.86 .778

Default mode Clustering coefficient 0.395 Hemisphere �28.22 ± 2.35 �32.82 to �23.63 12.04 <.001***

Sex �0.59 ± 2.87 �6.20 to 5.02 0.21 .999

Age �0.733 ± 0.46 �1.63 to 0.17 1.60 .222

Betweenness centrality 0.211 Hemisphere �5.36 ± 2.60 �10.44 to �0.28 2.07 .080

Sex 1.87 ± 3.08 �4.16 to 7.90 0.61 .999

Age 0.35 ± 0.49 �0.62 to 1.31 0.70 .966

Visual Clustering coefficient 0.425 Hemisphere 3.69 ± 3.20 �2.57 to 9.95 1.16 .498

Sex 9.91 ± 4.63 0.84 to 18.99 2.14 .066

Age 4.12 ± 0.73 2.69 to 5.56 5.63 <.001***

Betweenness centrality 0.245 Hemisphere �0.58 ± 2.10 �4.70 to 3.54 0.28 .999

Sex �5.77 ± 2.61 �10.90 to �0.65 2.21 .056

Age �0.30 ± 0.42 �1.12 to 0.52 0.72 .944

Salience Clustering coefficient 0.388 Hemisphere �11.89 ± 1.73 �15.28 to �8.50 6.87 <.001***

Sex 0.73 ± 2.46 �4.10 to 5.55 0.30 .999

Age 0.56 ± 0.39 �0.20 to 1.32 1.44 .302

Betweenness centrality 0.213 Hemisphere 7.17 ± 1.55 4.14 to 10.20 4.64 <.001***

Sex �0.81 ± 1.85 �4.43 to 2.81 0.44 .999

Age 0.54 ± 0.28 �0.02 to 1.09 1.90 .118

Dorsal attention Clustering coefficient 0.441 Hemisphere 1.57 ± 2.17 �2.67 to 5.82 0.73 .936

Sex �1.61 ± 3.30 �8.08 to 4.86 0.49 .999

Age 2.22 ± 0.52 1.19 to 3.25 4.24 <.001***

Betweenness centrality 0.233 Hemisphere �36.47 ± 11.21 �58.44 to �14.49 3.25 .002**

Sex �0.08 ± 2.94 �5.83 to 5.68 0.03 .999

Age 0.01 ± 0.48 �0.91 to 0.94 0.03 .999

Hemisphere � Age 2.11 ± 0.78 0.59 to 3.63 2.71 .014*

Language Clustering coefficient 0.449 Hemisphere �38.40 ± 2.73 �43.75 to �33.04 14.1 <.001***

Sex 33.93 ± 15.21 4.13 to 63.73 2.23 .054

Age �0.44 ± 0.55 �1.52 to 0.64 0.80 .854

Sex � Age �2.70 ± 1.06 �4.78 to �0.63 2.55 .022*

Betweenness centrality 0.357 Hemisphere �3.52 ± 2.41 �8.24 to 1.19 1.46 .290

Sex 6.60 ± 2.97 0.78 to 12.41 2.22 .054

Age 0.56 ± 0.48 �0.39 to 1.49 1.15 .506

Note: This table displays the linear mixed effects model results from the network analysis. All p-values have been corrected for multiple comparisons using

the Bonferroni method.

*p < .05.**p < .01.***p < .001.
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either metric. CC of the dorsal attention network did not differ

between hemispheres, but BC was higher in the left hemisphere

(Figure 4e). CC was positively associated with age but not with sex. A

significant interaction between hemisphere and age revealed that BC

of the dorsal attention network decreased in the left hemisphere at

older ages, with the opposite relationship with age in the right hemi-

sphere. CC of the language network was higher in the left hemisphere

compared to the right (Figure 4f), but the hemispheres did not differ

in BC. The interaction between sex and age was significant, such that

CC of the language network was positively related to age in females

but negatively related to age in males. BC had no significant relation

to age or sex in the language network.

4 | DISCUSSION

The present study describes structural connectivity differences

between the left and right hemisphere in a sample of children, adoles-

cents, and young adults. Our findings reveal topological differences

between hemispheres in typically developing populations for multiple

brain networks. Age and sex were not related to most outcomes, sug-

gesting that structural topology may be relatively stable throughout

school-aged development compared to other macro- and microscale

measures and may only change during later adolescence or early

adulthood. Using the combination of structural diffusion MRI tech-

niques with anatomical parcellations to generate graph theory

F IGURE 4 Shows different networks
being compared between the left and
right hemispheres. Error bars represent
the 95% confidence interval. **p < .001;
*p = .00. BC, betweenness centrality; CC,
clustering coefficient; DAN, dorsal
attention network; DMN, default mode
network; L, left hemisphere; LN, language
network; R, right hemisphere; SMN,

sensorimotor network; SN, salience
network
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representations of brain networks is a promising tool to better under-

stand lateralization during neurodevelopment.

4.1 | Hemispheric-level analysis

At the hemispheric level, we found that global efficiency was higher in

the left hemisphere compared to the right, confirming our original

hypothesis. This finding aligns with two prior studies in samples of dif-

ferent ages: the first was a mixed sample of adults and children

(N = 102 < 18 years old) (Dennis et al., 2013) and the second was a

large cohort of 346 adults (Caeyenberghs & Leemans, 2014). This

hemispheric asymmetry may be associated with cortical volume as

both cerebral cortex and white matter volume are, on average, larger

in the right hemisphere, potentially resulting in more long range and

less efficient connections (Giedd et al., 1996), though recent research

suggests that intracranial volume is not associated with graph theory

metrics (Wierenga et al., 2016). Since our sample was mostly right

handed (93%), it seems more likely that the “dominant”, classically
left-sided networks such as the language, sensorimotor, or other net-

works may have exhibited more efficient connections compared to

the right hemisphere, manifesting as higher global efficiency in the left

(Corballis, 2014). This finding contrasts with Zhong et al. (2017), who

found that the right hemisphere was more efficient (Zhong

et al., 2017). One possible explanation for this discrepancy is the slight

age difference between the populations, where Zhong et al. (2017)

included participants between the ages of 11–26 years, compared to

the younger group in our current study that included children as

young as 6 years of age (6–21 years). Differences in statistical meth-

odology and network resolution may also underlie these disparate

findings. In the Zhong study, participant age was used a between-

group factor rather than a continuous covariate and connectivity

matrices contained 512 � 512 ROIs (higher resolution) compared to

94 � 94 in the present study. Other reasons for such discrepancies

between these quite similar, well-powered studies are still somewhat

unclear but also reflect inconsistencies reported in the adult literature

(Caeyenberghs & Leemans, 2014; Iturria-Medina et al., 2011). Further

studies may assist in clarifying these differing findings.

Interestingly, global efficiency was not related to age in either

hemisphere, suggesting that lateralization did not differ across the age

range of our cohort (6–21 years). In contrast, most research has

shown that global efficiency of the whole brain has a positive relation-

ship with age (Baum et al., 2017; Chen et al., 2013; Dennis

et al., 2013; Hagmann et al., 2010; Huang et al., 2015; Khundrakpam

et al., 2013; Wierenga et al., 2016; Yap et al., 2011; Zhao et al., 2015).

The current findings contrast with those of Dennis et al. (2013), who

found that the efficiency of the left hemisphere network increased

with age while the right decreased. Participant sample differences

may explain our different findings, as Dennis et al. (2013) included

individuals between the ages of 12–30 years while almost half of our

sample was younger than 13 years. We have likely captured different

developmental time points, and one explanation could be that effi-

ciency does not increase until late adolescence and early adulthood

(>20), ages we did not comprehensively sample (Chen et al., 2013;

Dennis et al., 2013). It could also be that developmental trajectories

are not linear. We used a linear mixed model for exploring associa-

tions with age, and more complex, nonlinear patterns may exist (Baum

et al., 2017; Chen et al., 2013), something we were not optimized to

detect despite sufficient statistical power. The calculation of the aver-

age metrics within a given hemisphere also may obscure trends pre-

sent within more specific networks developing at different rates. For

example, when investigating CC, which is related to efficiency, the

dorsal attention network shows a strong positive relationship with

age in the left hemisphere (Figure 4e), whereas some networks do not

relate to age at all. Similar to Dennis et al. (2013), we did not find sex

differences in global efficiency within either hemisphere. These find-

ings are consistent with white-matter microstructure metrics in simi-

larly aged populations (Lebel & Beaulieu, 2011).

For HC, left hemisphere topology was more complex compared

to the right hemisphere. This means that, on average, regions with

similar connectivity patterns tend to connect in a more ordered fash-

ion, rather than a more complex one, in the right hemisphere com-

pared to the left. In the absence of prior studies investigating

lateralization of HC at any age, we can only speculate why the left

hemisphere is more complex, or less ordered, than the right. A poten-

tial explanation could be that our mostly right-handed population has

a “dominant” left hemisphere. Increased use of the left hemisphere to

control the dominant hand, for example may result in a more complex

connectome than a simpler, more ordered “nondominant” hemi-

sphere. Further, we have previously shown that HC was higher in con-

trols compared to children who have survived strokes near birth

(Craig et al., 2020).

The CC was higher in the left hemisphere compared to the right,

whereas BC was higher in the right hemisphere compared to the left.

These findings suggest that the neighbors of nodes are more likely to

be connected in the left hemisphere, whereas the right hemisphere

tends to have more nodes that serve as a central hub compared to the

left hemisphere. The higher CC in the left hemisphere adds converg-

ing evidence to the hypothesis that the left hemisphere is more con-

nected than the right and, in turn, is more efficient. This finding of

higher left hemisphere CC is supported by previous findings in a sam-

ple of adolescents and young adults (Dennis et al., 2013). A higher BC

and lower complexity score may be associated. As a more ordered

network, the right hemisphere potentially has more critical nodes that

serve as a “pitstop” to other connections.

4.2 | Network-level analysis

We also investigated lateralization of topological outcomes in six net-

works. The sensorimotor, default mode, salience, and language net-

works showed a leftward asymmetry of the CC, suggesting that the

neighbors of the nodes within these networks are more likely to be

connected in the left hemisphere than the right. For the sensorimotor,

default mode, and language networks, higher clustering could repre-

sent a dominance of connectivity of the left hemisphere, as our
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population was mainly right-handed. A left-lateralized clustering of

these networks is supported by similar findings in functional MRI

studies and other diffusion studies across the lifespan (Agcaoglu

et al., 2015; Banks et al., 2018; Vassal et al., 2016). Whether this

increase in clustering is caused by activity-dependent neuroplasticity

or itself drives dominance is yet to be determined. Absence of rela-

tionships with age suggests that this lateralization may already be

developed by age six. While age can often be used as a proxy for neu-

rodevelopment, this may not hold true when investigating topological

neurodevelopment (Lebel et al., 2017). However, this may be impor-

tant when investigating neurodiverse populations (Craig et al., 2020).

Betweenness centrality was only lateralized in the salience and

dorsal attention networks. The salience network had higher BC in the

right hemisphere, while it was higher in the dorsal attention network

in the left hemisphere. The rightward laterality of BC in the salience

network is confirmed in various fMRI studies potentially highlighting

an overlap of structural and functional connectivity (Seeley

et al., 2007; Zhang et al., 2019). Previous studies have shown that the

dorsal attention network is thought to be symmetrically organized

(Vossel et al., 2014); thus, our finding of a leftward asymmetry in BC

is novel. Further, BC appears to decrease in the left hemisphere with

age but increases in the right hemisphere with age. This could poten-

tially suggest that the right hemisphere develops more critical nodes

compared to the left hemisphere.

4.3 | Implications

An understanding of typical, healthy structural connectivity provides a

baseline that can be used to help reveal how the brain develops in

response to injuries or neurologic conditions. We provide evidence of

strong and consistent differences in laterality of structural connectiv-

ity across childhood and adolescence. This lateralization may play a

critical role in cognitive specialization and should be further investi-

gated in clinical populations. To our knowledge, only a few studies

have investigated lateralization of structural topology between hemi-

spheres and have generated contradictory answers suggesting that

further investigations would be helpful in elucidating this disparity

(Dennis et al., 2013; Iturria-Medina et al., 2011; Zhong et al., 2017).

Perhaps the most interesting finding across our analyses is the lack of

relationship between topological outcomes and age, which contrasts

with a vast literature demonstrating microstructural changes across

white-matter development throughout childhood and adolescence

(Lebel et al., 2017). Specifically, the results suggest that, perhaps dur-

ing early development, the underlying properties of white matter in

those tracts are changing in ways that do not alter structural topology.

Therefore, while the brain's microstructure may be changing, its con-

nectivity patterns during this time may be static. As prior studies have

revealed topological changes at different stages of later stages of the

lifespan, this may reflect a complex, nonlinear relationship across the

entirety of the lifespan (Dennis et al., 2013; Zhong et al., 2017). Topo-

logical organization or reorganization may be a valuable tool to further

predict and understand disease (Fornito et al., 2015).

4.4 | Limitations

Although this study draws on participants from a single site and

scanner, the data were collected from eight different research pro-

jects as part of a larger collaboration. To account for small differ-

ences in b-values (750 vs. 900 s/mm2) and number of diffusion

directions (26–32), we used sequence as a random effect in our

model. Across all models, sequence accounted for <5.3% of the var-

iance of the model, with an average of 2.7%. Interestingly, recent

evidence shows that large variations in b-values (1200 vs. 3000 s/

mm2) and number of diffusion directions (30 vs. 60) still leads to

relatively consistent tractography results and only small (<5%) vari-

ations in FA values (Schilling et al., 2021). We do concede that

there are differences in methodology between the two studies that

should be considered, such that Schilling et al. (2021) used frac-

tional anisotropy and a tract of interest approach rather than our

current methods of using streamline count and graph theory. None-

theless it is encouraging to see relatively small variations in results

with the use of somewhat different diffusion parameters. Despite

these mitigation strategies, there remains the possibility that the

use of slightly different diffusion parameters added additional vari-

ability to our dataset. Due to the lack of consistent acquisitions of

reverse phase-encoded diffusion sequences for all participants, EPI

distortion correction was not performed, potentially causing a

slight geometric mismatch between the anatomical and diffusion

sequences. We did not use spherical-deconvolution informed filter-

ing of tractograms (SIFT), which may have improved the accuracy

of the reconstructed connectomes. It has been suggested that the

use of rigorous tools like SIFT2 (Smith et al., 2015a) or COMMIT2

(Schiavi et al., 2020) is important to reduce possible tracking biases

and make resulting streamline count biologically meaningful

(Calamante, 2019; Jones et al., 2013), more in-line with underlying

fiber density. We also could have reconstructed a greater number

of streamlines (100 vs. 1 M), a difference that has been shown to

increase accuracy and reduce variability of resulting connectomes

when combined with algorithms such as SIFT2 (Smith et al., 2015b).

Given the additional significant computational costs of reconstruct-

ing 100 M streamlines, 1 M was used here. Future endeavors will

include these powerful tools combined with 100 M streamline

connectomes.

Many different graph theory metrics can be used to assess brain

topology. Although we did not investigate all graph theory metrics,

we attempted to use a subset of them that account for unique topo-

logical features (Smith, 2019). Further, many approaches can be used

to investigate adjacency matrices that generate graph theory metrics

– we elected to pursue a weighted matrix that may be more relevant

to clinical populations. Even with the small number of graph theory

outcomes, the stringent Bonferroni correction used to adjust our

findings for MCs may have resulted in some false negatives (type

2 error). However, we can be confident that the remaining significant

results are unlikely to be false positives (type 1 error). We used an

atlas developed from resting state functional MRI networks to define

our ROI, which were subsequently used to investigate structural
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connectivity. Although this may appear to be uncommon, a recent

study has highlighted consistencies between structural and func-

tional networks (Osmanlıo�glu et al., 2019). Functional networks are

well-established in the literature and have been repeatedly validated,

therefore functionally-defined connectomics assessing lateralization

may provide synergistic information to our study. In addition, devel-

opmental trajectories of specific functional networks have been

shown to differ in the time-period between early childhood and early

adulthood (Betzel et al., 2014; Rubia, 2013) and investigating

similarly-defined structural networks may shed light on such differ-

ing developmental processes. Finally, although the nodes that were

assigned within each network are limited in number, they may also

be structurally connected to other nodes that are outside of the

assigned network. Therefore, we postulate that this method can still

inform on laterality, sex, and age-related associations in such

networks.

5 | CONCLUSION

In our investigation of topological lateralization of the brain in chil-

dren, adolescents, and young adults, we found strong, consistent dif-

ferences between hemispheres. Surprisingly, age did not play a

significant role in our cross-sectional study, highlighting that while

microstructural changes likely occur in this developmental period,

topological changes may be static in early development and in turn

represent a more complex, nonlinear trajectory throughout all courses

of development. The utilization of topological outcomes using struc-

tural connectivity is a potentially advantageous tool for understanding

the development of brain connectivity and laterality.
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