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Chagas myocarditis, which is caused by infection with the intracellular parasite Trypanosoma cruzi, remains the major infectious
heart disease worldwide. Innate recognition through toll-like receptors (TLRs) on immune cells has not only been revealed to
be critical for defense against T. cruzi but has also been involved in triggering the pathology. Subsequent studies revealed that this
parasite activates nucleotide-binding oligomerization domain- (NOD-)like receptors and several particular transcription factors in
TLR-independent manner. In addition to professional immune cells, T. cruzi infects and resides in different parenchyma cells. The
innate receptors in nonimmune target tissues could also have an impact on host response. Thus, the outcome of the myocarditis or
the inflamed liver relies on an intricate network of inflammatory mediators and signals given by immune and nonimmune cells.
In this paper, we discuss the evidence of innate immunity to the parasite developed by the host, with emphasis on the crosstalk
between immune and nonimmune cell responses.

1. Introduction

The intracellular protozoan parasite Trypanosoma cruzi is
the causative agent of Chagas disease, which is a health
threat for an estimated 10 million people, living mostly
in Latin America. More than 25 million people are at
risk of the disease. It is estimated that in 2008 Chagas
disease killed more than 10.000 people [1]. Although this
infection occurs mainly in Latin America, in the past
decades it has been increasingly detected in the United States
of America, Canada, many European, and some Western
Pacific countries. This is now a new worldwide challenge to
nonendemic countries [1, 2]. The infective trypomastigote
form invades macrophages and other cell types, where it
is converted into the amastigote form and replicates. Acute

manifestations often include parasitemia, which decays with
the onset of immunity. Progression from the acute to the
chronic phase coincides with the clearance of parasites from
the blood stream and tissues. After years or even decades of
primary infection, up to 30% of chronically infected people
develop cardiac alterations, and up to 10% develop digestive,
neurological, or mixed alterations [1].

Despite nearly a century of research, the most intriguing
challenge for understanding the pathophysiology of Chagas’
heart disease still lies in the complex host-parasite interrela-
tionship. Different mechanisms have been defined to explain
the pathogenesis of human and experimental Chagas disease.
Among the mechanisms described, autoimmunity is the one
that has received the most experimental evidence but also
controversy [3–6]. Nevertheless, there are studies suggesting
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that parasite persistence in the host tissues is relevant in the
pathogenesis of the disease [7–9]. Both theories recognize
the transcendental role of innate immunity during host
defense as well as in the development and progression of
myocarditis during Chagas disease. Geographical variation
in the severity of different forms of the disease indicates the
importance of T. cruzi genetic variation in addition to host
genetic background. Unfortunately, it remains as a neglected
disease in the world, and, despite considerable research,
effective vaccines and adequate drugs for T. cruzi infection
are still lacking. In this paper, we discuss the evidence of
innate immunity to the parasite developed by the host, with
emphasis on the crosstalk between immune and nonimmune
cell responses, and its role in sustaining defense as well as
injurious processes.

2. Role of Toll-Like Receptors in
the Innate Immune Recognition of
Trypanosoma cruzi

The innate immune response is initiated by pattern-
recognition receptors (PRRs), which recognizes pathogen-
associated molecular patterns [10, 11]. Different PRRs gener-
ally recognize diverse ligand specificities. The broad specifici-
ties of the PRRs and their ability to form functional multire-
ceptor complexes allow large combinatorial repertoires. This
further diversifies the recognition and signaling of cooperat-
ing PRRs and enables the host to detect almost any type of
pathogen, discriminate between different microorganisms,
and mount a competent immune response. The PRRs most
widely investigated are the toll-like receptors (TLRs). This
receptor family comprises 10 and 13 functional members in
humans and mice, respectively. Besides sensing pathogens,
ranging from bacteria to fungi, parasites, and viruses, it is
now thought that they recognize endogenous ligands which
have an important role in the regulation of inflammation
as well as in noninfectious disease [11]. Studies focusing on
host innate immunity against T. cruzi infection demonstrated
that these receptors are crucial for many aspects of microbial
elimination, including recruitment of phagocytes to infected
tissues and subsequent killing [10–12]. However, it has
been reported that, activated to excess, TLRs can mediate
pathology [12]. The TLR signaling pathways consist of
two cascades: a myeloid differentiation primary-response-
gene-88- (MyD88-) dependent pathway and a Toll/IL1R-
domain containing adaptor protein inducing IFNβ (TRIF-)
dependent (MyD88-independent) pathway. The MyD88-
dependent pathway mediates the production of proinflam-
matory cytokines through all TLRs except for TLR3, while
the TRIF-dependent way is indispensable for the induction
of type I IFNs through TLR3 and TLR4 [13].

Taking into account that proinflammatory cytokines
produced by TLR activation play an important role in the
immunopathology of chronic Chagas’ cardiopathy, it has
been proposed that a single-nucleotide polymorphism in the
genes that encode proteins in TLR signaling could play an
important role in differential susceptibility to Chagas disease.
Thus, it was recently demonstrated that T. cruzi-infected

individuals who are heterozygous for the MAL/TIRAP S180L
variant lead to a decrease in signal transduction upon
ligation of TLR2 or TLR4 to their respective ligands, which
is associated with lower risk of developing chronic Chagas’
cardiomyopathy [14].

TLRs are expressed on different immune cell popula-
tions, including macrophages, dendritic cells (DCs), B lym-
phocytes, specific T-cell subsets, and even on nonimmune
cells such as fibroblasts, parenchyma cells, and epithelial cells.
The importance of TLRs during T. cruzi immune response
was initially evidenced by studies performed with profes-
sional antigen-presenting cells [15], in which the authors
remark the importance of TLR2 as a mediator of the defense
mechanisms during the early stages of the host response
to infection. Internalization of intracellular parasites by
phagocytosis is a key event in the initiation of the immune
response, with phagosomal maturation being central to
microbial killing and antigen presentation. Regarding the
T. cruzi entry process, several studies have examined the
mechanisms of invasion or internalization of this parasite,
being the host cells and the host molecules involved in this
interaction still not completely understood. Interestingly, we
have recently demonstrated that activation of small guanine-
phosphonucleotide-binding proteins Ras-related protein-
(Rab-) 5, fusion of early endosomes, and phagocytosis
induced by trypomastigotes in macrophages, involved TLR2
but were independent of TLR4 [16] (Figure 1). Signaling
through the TLR2 by the parasite-released-antigen Tc52
stimulated the maturation of DCs and strikingly rescued
immunized mice from lethal infection [17]. Moreover, the
activation of TLR2 leaded to the secretion of chemokines
inducing leukocyte recruitment [18]. Thus, parasite antigens
and the cytokines locally released may act together to
promote DC maturation and subsequent development of
protective Th1 response. In our lab we also found that the
inoculation of TLR2-synthetic ligand prior to infection in
vivo improved the survival of lethally infected mice [19].
Noticeably, other authors showed that infected TLR2(−/−)
mice produced enhanced levels of cytokines suggesting that,
in vivo, TLR2 may have a predominant immunoregulatory
role during acute infection with T. cruzi parasites, at least
with the Y strain [20]. However, these authors observed
no major difference in parasitemia and mortality between
infected TLR2 knockout and wild-type mice. Furthermore,
MyD88 knockout mice were more susceptible to T. cruzi,
with higher parasitemia and greater mortality [21]. Addi-
tional studies attributed most of the MyD88-dependent host
resistance to the cooperative activation of TLR2 and TLR9
[20] (Figure 1). The activation of TLR9 by T. cruzi came from
early studies showing that parasite genomic DNA stimulates
cytokine responses in professional presenting cells [22].

The study of linkage between T. cruzi innate immunity
and the generation of adaptive immune response has been
scarcely explored. Recently, it was proposed that a weak
TLRs activation might contribute to the relatively slow
expansion despite strong CD8+ T cell response during acute
T. cruzi infection. This study was performed evaluating
the frequency of parasite-specific CD8 T cells among other
parameters. The authors found an earlier but transient



Journal of Parasitology Research 3

Endosome

TLR2 TLR4

TLR9

Cytokine induction
Th-1 inflammatory response
Oxidative burst 

TIRAPTIRAPTIRAP TRAM

TIRAP

Immunoregulatory
response 

TIRAP

Other
TLRs?

Other
parasite
antigens?

Response?

Inflammatory response
control Parasite killing

M
yD

88

M
yD

88

M
yD

88
M

yD
88

M
yD

88

Rab5

Rab5

Rab5
Rab5

Rab5

Rab5

T
R

IF
F

Figure 1: TLR-dependent innate immune responses. T. cruzi-derived components are recognized by TLR2, TLR4, and TLR9, triggering
the production of proinflammatory cytokines and microbicidal effectors. Thus, parasite antigens and the cytokines locally released act
together to promote the development of protective Th1 response, which lead to parasite growth control. Moreover, TLR2 signaling also has
immunoregulatory properties essential to hinder the immune response induced by the parasite. Regarding the T. cruzi entry process, TLR2
but not TLR4 is involved in the activation of Rab-5, fusion of early endosomes, and phagocytosis of trypomastigotes. Furthermore, it is
plausible to think that others unexplored TLRs and/or parasite antigens could be involved in the induction of the innate immune responses
against T. cruzi.

induction of this cell population by the administration of
the combination of TLR9 plus TLR2 agonist concomitantly
with the infection [24]. Otherwise, Oliveira and colleagues
(2010) found that T. cruzi-infected TLR2(−/−), TLR4(−/−),
TLR9(−/−) or Myd88(−/−) mice generated both specific
cytotoxic responses and IFNγ-secreting CD8+ T cells at levels
comparable to wild-type mice, although the frequency of
IFNγ+ CD4+ cells was diminished in infected knockout
Myd88 mice [25]. Thus, the authors concluded that neither
the lack of each TLR2, TLR4, or TLR9 nor the absence
of all MyD88-mediated pathways affect the development of
cytotoxic function and number of CD8+ T cells, which are
crucial effectors against this parasite.

The potent immune response elicited by T. cruzi requires
the generation of immunoregulatory network in order to
prevent or minimize reactivity to selfantigens or an excessive
response to the parasite. It has become clear that active
suppression mediated by regulatory T-cell (Treg) popula-
tions is crucial for the control of the immune response
both in human and experimental T. cruzi infection [26, 27].

It has been demonstrated that Tregs display an increased
level of TLR2, TLR4, TLR5, TLR7/8, and TLR10 expression
compared to conventional effector CD4+ CD25− T cells,
suggesting that the expansion and function of this regulatory
cells may be closely influenced by TLR ligands [28–31]. In
line with this, the immunoregulatory role for TLR2 reported
during the acute infection could be explained by the fact that
the suppressive function of Tregs is directly controlled by the
triggering of TLR2 but not TLR4 or TLR9 [32]. TLR2 ligands
activate the expansion of Tregs by an indirect effect via
antigen-presenting cells or by direct TLR2 triggering of Tregs.
Moreover, signaling through TLR2 strongly enhance CD25
expression inducing an increased sensitivity to interleukin
(IL) 2. It is believed that the increase in IL2 receptor
expression on Tregs [32] and IL2 production by effector
T cells temporally abrogate the suppressive capacity of the
Tregs in vivo [31] (Figure 1). Therefore, it is plausible to
think that TLR2 ligands provided by the parasite could
first expand Tregs and abrogate their suppressive phenotype.
When low numbers of the pathogen are present, as in the
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persistent phase of infection, Tregs regain their immune-
suppressive phenotype and could be responsible for the
pathogen persistence.

3. TLR Ligands from Trypanosoma cruzi

T. cruzi display numerous ligands for the TLRs. In 2001,
Gazzinelli’s team found two potent TLR2 activators; the
protozoan trypomastigote surface-highly purified glyco-
sylphosphatidylinositol (GPI) anchors linked to the surface
mucin-like glycoproteins, and free GPI anchors named gly-
coinositolphospholipids (GIPLs) were recognized through
TLR2. These parasite ligands trigger IL12, TNFα, and nitric
oxide (NO) production by inflammatory macrophages [15,
33]. Regarding other parasite molecules, it was reported that
the T. cruzi Tc52-released protein induces human DC matu-
ration signaling through TLR2. Tc52 comprises two homolo-
gous domains, which contain a glutathione-binding site and
a hydrophobic C-terminal region, and is essential for parasite
survival and virulence. Authors proposed that Tc52 would be
one candidate molecule to design a multicomponent vaccine
to control T. cruzi infection [17]. On the other hand, Oliveira
et al. (2004) observed that T. cruzi-derived GIPL ceramide,
in high concentration, could activate mouse cells through
TLR4 in vitro. Furthermore, TLR4-mutated C3H/HeJ mice
were highly susceptible to T. cruzi infection [34].

In addition, Bafica and colleagues demonstrated that T.
cruzi-DNA, a TLR9 agonist, stimulated cytokine production
by antigen-presenting cells and cooperatively participated
in the control of infection [20]. A more recent study
identified the ODNs containing CpG motifs in the T. cruzi
genome responsible for the immunostimulatory activation
of TLR9 from mouse and human infected cells, suggesting
that the killing of parasites may be required to release
agonists of TLR9 [35]. Remarkably, infected double knock-
out TLR2(−/−)TLR9(−/−) mice developed a parasitemia
equivalent to animals lacking MyD88 but did not show the
mortality displayed by MyD88(−/−) animals. Authors sug-
gest that TLR9 has a primary role in the MyD88-dependent
induction of IL12/IFNγ synthesis during infection.

Summing up, although some parasite ligands have been
reported as TLR agonists, it is plausible to think that other
molecular patterns from this complex parasite may activate
different combination of TLRs on target/effector cells. The
combined activation of these receptors would drive the final
outcome of host cellular response determining the defense as
well as tissue damage.

4. Toll-Like Receptor-Independent
Innate Immune Responses to
Trypanosoma cruzi Infection

As was discussed above, it is well established that the TLR-
dependent pathway initiates an effective innate immune
responses against T. cruzi. However, infection of cells
deficient for expression of the TLR adaptor proteins TRIF
and MyD88 still produces cytokines in response to this
protozoan, suggesting that other TLR-independent pathways

also may be activated during the early immune response. In
this sense, new families of PRRs have emerged as important
components of the innate immune system that sense the
presence of this microorganism and drive the host defense
to a protective phenotype.

The NOD-like receptors (NLRs) comprise a large family
of intracellular PRRs responsible for the recognition of
microorganisms independent of TLR signaling [36]. The
first and better characterized members of this family are
NOD1 and NOD2 [37, 38]. Although these receptors
were extensively characterized as PRRs for bacterial and
viral infection, little is known regarding their role in the
recognition of intracellular parasites, that is, T. cruzi. In this
regard, Silva and coworkers (2010) recently demonstrated
that the effective response required for host resistance to
infection was exclusively mediated by NOD1 but not by
NOD2 receptor [39]. Despite normal cytokine production in
the sera, NOD1(−/−) mice were highly susceptible to this
infection, as judged by the high parasite load in spleen and
heart tissues and succumbed to the infection in a similar
way to Myd88 and nitric oxide synthase (iNOS) knock-out
mice. In light of their results, the authors concluded that
the NOD1-dependent response may be implicated in host
resistance to T. cruzi by mechanisms independent of cytokine
production (Figure 2).

Strikingly, T. cruzi infection is able to activate other
innate immune pathways in the absence of TLR signaling,
although the sensing molecules that recognize the parasite
ligands are still unknown. Studies performed in vitro showed
that trypomastigotes trigger IFNβ expression in immune
and nonimmune cells by engaging a novel TLR-independent
pathway that requires both TANK-binding kinase 1 (TBK1)
and IFN-regulatory factors (IRF)3 [40] (Figure 2). Although
the role of IFNβ in the protection against parasite infection
remains controversial [41, 42], it was demonstrated that
IFNβ is responsible for resistance of macrophages infected
with T. cruzi mainly in the absence of MyD88 [43].

Furthermore, the activation of one member of the
nuclear factor of activated T-cell (NFAT) family transcription
factors NFATc1 mediated IFNγ production by macrophages
and DC, developing an effective Th1 response and DC
maturation during T. cruzi infection in double-knockout
mice (Myd88−/− and Trif−/−), despite high sensitivity to
the infection [44]. A pivotal signaling for the activation
of NFATc1 is mediated by the Ca2+ pathway. Previously, it
was demonstrated that the parasite increases intracellular
Ca2+ through interaction of kinins (bradykinin) with the
bradykinin B2 receptor, which is another defense mechanism
(Figure 2). In infected tissues, trypomastigotes induce a
robust secretion of chemokines and plasma extravasations in
macrophages via TLR2, thus providing the substrates for the
proteolytic generation of kinins, which are also involved in
DC maturation and IL12 production [45–48].

5. Innate Immune Response in Nonimmune
Target Tissues Elicited By Trypanosoma cruzi

It is known that innate immune cells, including macrophages
and DCs, play pivotal roles in immune response; however,
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Figure 2: TLR-independent innate immune responses. Infection triggers increased intracellular Ca2+ concentration through interaction of
bradykinin with the bradykinin B2 receptor (B2-R) among other mechanisms. Target innate immune cells utilize Ca2+ to activate the Ca-
dependent signaling pathway leading to the activation of NFATc1. Intracellular T. cruzi is recognized by NOD1, activating NF-κB. T. cruzi is
also recognized by unknown molecules leading to the activation of TBK1 and IRF3. Altogether the mechanisms participate in the induction
of an effective immune response against the parasite.

nonimmune cells such as parenchyma cells, epithelial cells,
endothelial cells, and fibroblasts, among others, also con-
tribute to immunity development [49]. Thus, the outcome
of the immune response in a target tissue depends not
exclusively on the immune cells but also on the intricate
network and signals given by immune and nonimmune cells.
Furthermore, although the dominant feature of the innate
immune system is to protect the host from infectious agents,
it may have other roles in mammalian biology. For example,
TLRs on parenchyma cells have been demonstrated to be
involved in tissue repair and homeostasis [50, 51].

Accumulative evidence demonstrates that the liver has
specific immunological properties and contains a large
number of resident and nonresident cells that participate
in the regulation of inflammatory and immune responses
[52, 53]. Although Kupffer cells are considered the primary
cells to respond to pathogen-associated molecular patterns,
recent studies provide evidence that multiple populations of
nonhematopoietic liver cells, including sinusoidal, endothe-
lial cells, stellate cells, and hepatocytes, express and respond
to PRR signaling as well as taking on the roles of antigen-
presenting cells [52–54].

Liver cells express a variety of TLRs, which have been
shown to participate in hepatic tissue injury and repair, and

contribute to the pathogenesis of a variety of liver diseases
[52, 55]. However, the action of TLRs on liver cells in host
defense against invading pathogens is less clear. The liver is
the target of a wide range of microbes including Listeria,
Salmonella, and Plasmodium species. However, there are
few data related to the implication of T. cruzi experimental
infection and the relevance of the innate immune response
against this parasite in this organ [56, 57].

We have reported a severe hepatic injury in B6 mice
infected with Tulahuen T. cruzi trypomastigotes. We noted
that this mouse strain showed a higher mortality than
BALB/c mice, associated with an unbalanced proinflamma-
tory cytokine profile, a decreased TLR2 and TLR4, and an
increased TLR9 expression in liver [23]. Supporting our
results, it was demonstrated that T. cruzi-infected TLR2
knockout mice produced higher levels of proinflammatory
cytokines and NO than wild-type mice. These results
suggest that TLR2 has an important immunoregulatory
role preventing excessive activation of innate immunity and
uncontrolled production of proinflammatory cytokines [33].
Furthermore, we also showed that infected BALB/c mice
developed a softer environment where the balance between
cytokine storm and immunomodulatory signaling given by
TLR2 and TGFβ may modulate the inflammatory damage
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Figure 3: Comparative analysis of hepatic injury, inflammation and TLR expression in Trypanosoma cruzi-infected B6 and BALB/c mice.
The parasitemia was higher in BALB/c than B6 mice. However infected B6 mouse strain showed stronger and injurious inflammatory
environment (increased NO and ROS) associated with high levels of TLR2, TLR4, and TLR9 in hepatic leukocytes. In contrast, BALB/c mice
displayed more balanced proinflammatory/immunoregulatory cytokines profile during the acute infection. Furthermore, TLR2 and TLR4
were upregulated in infiltrating leukocytes and hepatocytes as well, while TLR9 expression was low in hepatic leukocytes of infected BALB/c
mice. Altogether the results suggested that the strong inflammatory environment elicited in infected B6 mice plus the loss of TLR2 signaling
may be responsible for the severity of the hepatic injury and higher mortality of this mouse strain [19, 23].

in the liver [19] (Figure 3). We additionally demonstrated
a stronger expression of hepatic iNOS and a higher NO
production by liver leukocytes of infected B6 compared
to BALB/c mice [19]. Several authors have described that
reactive oxygen species (ROS) can induce cell death by
either apoptosis or necrosis in liver pathologies [58, 59].
In this sense, an enhanced and sustained nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase p47-
phox expression and the coexpression of gp91 and p47-phox
were found only in liver from infected B6 [19]. Thus, the
activation of NADPH oxidase enzymatic complex would be
a key player in the liver damage, probably as an instrument
contributing to liver apoptosis and necrosis during infection
in B6 mice (Figure 3). In addition, we found that while
TLR2 and TLR4 expression on hepatic immune infiltrating
cells was similar in both mouse strains, TLR9 expression
showed a clear difference in hepatic leukocytes. Thus, only
leukocytes from infected B6 mice sustained high expression
of TLR9 throughout the acute phase. These results support
the hypothesis that continuous TLR9 signaling might con-
tribute to excessive and harmful inflammatory response in
infected B6 mice. In accordance with our results, a crucial
role of TLR9 during T. cruzi infection was shown [20].
Interestingly, in hepatocytes we found that TLR2 and TLR4
are differentially modulated in infected BALB/c and B6 mice,

suggesting that these innate immune receptors would play a
role not only in immune cells but also in liver parenchyma
cells (Figure 3). In this sense, it has been postulated that TLR
signaling in parenchyma cells would be a key mechanism to
prevent death caused by excessive cytokine release [60, 61].

There are increased evidences demonstrating the poten-
tial role of TLR-ligands treatment as therapeutic approach
and they have shown to be highly effective in the protection
against protozoan, among them T. cruzi [14, 39, 40]. In
our study we further observed that pretreatment with
Pam3CSK4, a TLR2/TLR1 agonist, before infection induced
a marked reduction of proinflammatory cytokines, nitrite,
and transaminase levels and a decrease in the number of
hepatic inflammatory foci and consequently in the mortality
of infected mice [19]. In this study we postulate that
the inadequate integration of signals involving molecular
(TLRs, cytokines, NO, and ROS) and cellular (immune
and parenchyma cells) components influences the outcome
of local immune response during this parasite infection.
Moreover, the differential TLR and cytokine modulation
in the liver, induced by T. cruzi infection, emphasize the
importance of local innate immune response in hosts with
different genetic background and could contribute to the
understanding and the design of novel immune strategies in
controlling liver pathologies.
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On the other hand, local innate immunity also has a
key role in the pathophysiology of several cardiovascular
diseases. The heart muscle, initially thought to be a bystander
in the immune response to T. cruzi, has been found to be
an active participant in the innate response, a hypothesis
firstly postulated by Postan et al. (1999) [62]. During
this infection, cardiomyocytes are actively integrated in
the inflammatory response releasing NO, cytokines, and
chemokines which, in turn, attract leukocytes to the inflam-
matory site and control intracellular parasite replication [63–
67]. Cardiac cell exposure to proinflammatory cytokines may
pre-condition the myocardium environment to temporarily
protect cardiomyocytes from growth factor deprivation-
induced apoptosis [68]. In fact, we found that T. cruzi
infection protects isolated cardiac myocytes from apoptotic
cell death induced by serum deprivation, and this effect was
due to an increase in Bcl-2 molecule. Interestingly, we also
found that the infected cardiomyocyte culture pretreated
with inactive cruzipain, a major parasite antigen, enhances
antiapoptotic protection as well [69, 70]. In a recent study,
we explored the nature of the crosstalk between cardiac
innate immunity and T. cruzi infection. We found that the
triggering of TLR2 signaling could be playing an important
role in cardiomyocyte protection elicited by T. cruzi (Ponce
et al., results submitted). Another study indicates that
signaling through TLR2 and NF-κB activation also led to
the production of IL1β, which mediated the cardiomyocyte
hypertrophy observed in Chagas’ myocarditis [71].

Adipose tissue has also emerged as an important target
for infection, since a significant number of parasites are
found within this tissue during the chronic phase of infection
[72]. Because the adipocyte act as an active endocrine cell,
it is plausible to speculate that these cells may be critically
involved in the progression and reactivation of the disease.
Adipose tissue contains a number of different cell types.
A massive macrophage (F4/80-positive cells) influx was
observed in adipose tissue during acute infection. Thus,
macrophages and adipocytes combined may be important
contributors to systemic inflammation. In adipose tissue,
TNFα, IFNγ, and IL1β protein expression were upregulated
at least 10-fold compared with noninfected mice. In vitro
studies with a cell line model for adipocytes (3T3-L1)
revealed that the levels of TLR2 and TLR9 but not TLR4
expression were upregulated. In addition, IFNγ, TNFα, and
IL1β were also increased under infection [73].

Taken together, the results cited here make it clear that
TLR signaling contributes in the beginning and development
of the immune response, but the resolution does not depend
on individual pathways but on the integration of multiple
signals. The combined activation of different PRRs can result
in complementary, synergistic, or antagonistic effects that
modulate innate and adaptive immunity [11].

6. Microbicidal Activity of Effector
Cells and Inflammatory Mediators against
Trypanosoma cruzi

Arginine and tryptophan metabolism in macrophages
depends on cytokine-inducible enzymes and produce medi-

ators involved in microbicidal or suppressive mechanisms in
the context of infection. Classical activation of macrophages
by Th1 cytokines during infection by intracellular parasites
is thought to be protective, whereas alternative activation
by Th2 cytokines is involved in the survival of extracellular
parasites. Thus, iNOS and arginase have been involved in the
regulation of the Th1/Th2 balance during immune processes,
and have been used as markers for M1/M2 activation,
respectively [74].

Arginase and iNOS metabolize L-arginine, a semi-
essential amino acid, to L-citrulline plus NO and urea plus
L-ornithine, respectively. Two arginase isoforms have been
described in mammals encoded by different genes [75].
Arginase I is cytoplasmic and is highly expressed in liver
and alternatively activated macrophages by Th2 cytokines
(IL4, IL13) [76, 77] and also by IL10, TGFβ, GM-CSF,
and prostaglandin E2 (PGE2) [76, 78, 79]. Arginase II is
mitochondrial and expressed in a wide variety of tissues and
cell types, mainly in kidney [80] and cardiomyocytes [69],
and is induced by TLR ligands [81]. The product of arginase
activity, L-ornithine, can be metabolized by ornithine
aminotransferase giving L-proline, which is required for
collagen synthesis and by ornithine decarboxylase (ODC),
which results in polyamine synthesis needed for proliferation
of all eukaryotic cells.

There are three NOS isoforms: neural NOS (nNOS),
endothelial NOS (eNOS), and iNOS, which catalyze the
oxidation of L-arginine to L-citrulline and NO. Activated
iNOS is found in a diversity of cell types in the immune
system [82] and also in cardiomyocytes [83]. The most
common inducer for iNOS is IFNγ combined with LPS, but
other cytokines such as IL12, IL1β, and TNFα are also able to
induce it.

In vitro T. cruzi infection triggers the induction of potent
NO-dependent trypanocidal activity in infected cardiomy-
ocytes [65] and macrophages [84–89]. In addition, the
interaction of macrophages with apoptotic cells through
vitronectin receptor increases TGFβ and PGE2 release, which
promoted parasite proliferation by increasing ODC activity
[90].

The in vivo role of iNOS in T. cruzi infection is still
debated, because experiments with iNOS-deficient mice
are contradictory [91–93]. However, the administration
of iNOS inhibitors to infected mice results in increased
parasitemia and mortality, indicating a protective role [94].
On the other hand, when excessive, NO can also have a
cytotoxic effect in the host and lead to immune suppression
of T cells. In addition, NO production during acute T.
cruzi infection in rats was inhibited in peripheral blood
monocytes, due to the increase of arginase activity [95]. In
the mouse model of acute infection, it has been described
that the expression of both arginase isoforms and ODC
is higher in susceptible BALB/c mice than in C57BL/6
mice [96]. This was associated with an increased parasite
burden in BALB/c heart tissue. Interestingly, arginase II was
expressed by cardiomyocytes, whereas arginase I was found
in infiltrating CD68+ macrophages. These results suggest that
infection induces arginase expression, which may not only
influence host cell and parasite survival but which might
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also downregulate the counterproductive effects triggered by
iNOS in the heart during infection. The myeloid-derived
suppressor cells (MDSCs), which increase during acute T.
cruzi infection, also express iNOS and arginase, and they
are highly efficient in suppressing activated T cells [95]. It
is possible that the induction of iNOS and arginase seen in
infected hearts suppresses T-cell activation, allowing parasite
replication. In this direction, it is possible that arginase-
expressing infiltrated macrophages are MDSCs.

Moreover, the immunization of susceptible BALB/c mice
with cruzipain resulted in enhanced anti-inflammatory
cytokine secretion, associated with the induction of a
CD11b+ GR1+ spleen immature myeloid population that
exhibited arginase, but not iNOS, activity [97]. This pheno-
type is compatible with the MDSC population. Furthermore,
cruzipain-stimulated naive macrophages released IL10 and
TGFβ and displayed enhanced arginase activity, favoring
T. cruzi growth [98, 99]. By contrast, the immunization
of resistant C57BL/6 mice with cruzipain resulted in the
secretion of IL12 and IFNγ and consequently the induction
of iNOS messenger and protein expressions as well as high
NO production [100]. These findings point up the impor-
tance of host genetic background in macrophage response.
In another study, macrophages from mice, immunized with
a plasmid DNA containing the gene encoding the catalytic
domain of T. cruzi transsialidase, were able to effectively
kill intracellular parasites by a NO-dependent mechanism
[101]. Furthermore, CD4 and CD8 T-cell clones are able
to produce IFNγ that inhibits parasite replication into
macrophages. These results encourage the use of this strategy
for developing vaccines against Chagas disease [102].

The inflammatory cytokines also induce the enzyme
indoleamine-pyrrole 2,3-dioxygenase (IDO) in macro-
phages, which converts the essential amino acid L-
tryptophan to N-formylkynurenine. During T. cruzi infec-
tion, there is a systemic activation of IDO, and its inhi-
bition induces an exacerbated parasite load and infection-
associated pathology. Further, the authors demonstrated
that treatment of T. cruzi-infected mice with the IDO
downstream metabolite, L-kynurenine, was able to kill the
parasite and to improve the survival of lethally infected
mice. Moreover, IDO activity was critical to control in vitro
parasite’s replication despite the high production of NO
produced by IDO-blocked T. cruzi-infected macrophages
[103]. In summary, IDO activation and a high iNOS/arginase
balance are related to a better outcome of the disease.
These evidences suggest that intervention of IDO and
iNOS/arginase pathways could be useful in antitrypanoso-
matid therapeutic strategies for acute infection.

The production of superoxide anion (O2−) by neu-
trophils and other phagocytes is an important event in
innate immune response. This metabolite is the precursor of
a range of chemicals referred to as reactive oxygen species.
Although these act as microbicidal agents and kill invading
microorganisms, there is growing evidence to suggest that
myocardium from patients with Chagas disease is exposed
to sustained oxidative stress-induced injuries involved in
disease progression [104]. The superoxide anion is mainly
produced by the multiprotein enzyme complex NADPH

oxidase, which is inactive in resting phagocytes but becomes
activated after interaction with pathogens and their sub-
sequent engulfment in the phagosome [105]. In response
to a pathogen stimulus, the soluble subunits p47phox,
p67phox, and p40phox translocate en bloc to the membrane,
where they bind flavocytochrome b558. It is clear that
inflammatory cytokines are key players in the induction of
the oxidative metabolism. Macrophages exposed to IFNγ and
TNFα became primed to a state of enhanced responsiveness
by the respiratory burst with the induction of membrane
and cytosolic components. During T. cruzi infection, neu-
trophils, murine splenocytes [106, 107], blood monocytes,
and macrophages produced ROS and destroyed intracellular
forms of this parasite [108, 109]. However, ROS are also
produced by infected cardiomyocytes, and signal the produc-
tion of proinflammatory cytokines through the activation of
NF-κB, thereby contributing to maintaining the sustained
inflammatory state observed in Chagas disease [110].

In our laboratory, we recently demonstrated that cruzi-
pain was able to induce ROS production by splenocytes
and macrophage line RAW 264.7. This parasite glycopro-
tein triggered NADPH oxidase activation and induced the
production of several ROS in vitro, mainly O2− [111].
As expected, macrophages, derived from cruzipain-immune
mice, primed in vivo with IFNγ and TNFα, produced more
ROS than naive macrophages. This work was the first to
report that oxidative stress can be induced by a T. cruzi
antigen.

It has been proposed that strong oxidants, macrophage-
derived peroxynitrites (ONOO−), arising from the reaction
of NO with superoxide radical (O2−) participate in cyto-
toxic mechanisms against T. cruzi inside the phagosome.
More recently, it was demonstrated that internalization
of trypomastigotes by macrophages triggers ONOO− for-
mation when NO and O2− were produced simultane-
ously intraphagosomally. This microbicidal mechanism was
evidenced by amastigote killing, detected by nitroxidative
protein modifications and parasite ultrastructural alterations
[112].

Summing up, NO, ROS, and additionally ONOO− [113,
114] are also very efficient mechanisms in the fight against
pathogens. However, these reactive oxygen and nitrogen
species are very cytotoxic and, when excessive, can result in
tissue damage and promote inflammatory diseases.

7. Concluding Remarks

In this paper we emphasized the importance of the TLR
signaling pathway in the innate immune response to the
protozoan parasite T. cruzi. This parasite has multiple ligands
that elicit a potent innate immunity and the subsequent
development of adaptive immune response. This activation
pathway leads to pro- and antiinflammatory cytokine syn-
thesis. While there is much evidence indicating that MyD88
is a crucial molecule for activation of this type of receptor,
other TLR-independent mechanisms in host-parasite inter-
action are being elucidated. Thus, it has been demonstrated
that NLRs which recognize pathogens in the cytoplasm are
involved in parasite recognition. Furthermore, several other
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mechanisms that induce intracellular Ca2+ influx as well as
activation of NFATc1 and bradykinin B2 receptor can be
activated by this parasite infection. The combined activation
of TLRs and other cytoplasmic receptors opens new and
interesting viewpoints in our understanding of the synergis-
tic or antagonistic combined action of different PRRs.

The knowledge of the role of TLRs in the pathogenesis of
Chagas disease and the identification of new T. cruzi-derived
TLR ligands is not only important for developing better adju-
vant to be used in vaccines, but also new immunotherapy to
prevent or minimize Chagas disease pathology. In addition,
new pharmacological drugs that disrupt TLR signaling may
be attractive when excessive pathology-associated inflamma-
tion occurs, as well as in experimental acute infection.
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receptors (NLRs): bona fide intracellular microbial sensors,”
Current Opinion in Immunology, vol. 20, no. 4, pp. 377–382,
2008.

[37] S. E. Girardin, R. Tournebize, M. Mavris et al., “CARD4/
Nod1 mediates NF-kappaB and JNK activation by invasive
Shigella flexneri,” EMBO Reports, vol. 2, no. 8, pp. 736–742,
2001.

[38] N. Inohara, T. Koseki, L. Del Peso et al., “Nod1, an Apaf-1-
like activator of caspase-9 and nuclear factor-κB,” Journal of
Biological Chemistry, vol. 274, no. 21, pp. 14560–14567, 1999.

[39] G. K. Silva, F. R. S. Gutierrez, P. M. M. Guedes et al.,
“Cutting edge: nucleotide-binding oligomerization domain
1-dependent responses account for murine resistance against
Trypanosoma cruzi infection,” Journal of Immunology, vol.
184, no. 3, pp. 1148–1152, 2010.

[40] A. D. Chessler, L. R. Ferreira, T. H. Chang, K. A. Fitzgerald,
and B. A. Burleigh, “A novel IFN regulatory factor 3-
dependent pathway activated by trypanosomes triggers IFN-
beta in macrophages and fibroblasts,” Journal of Immunology,
vol. 181, no. 11, pp. 7917–7924, 2008.

[41] C. Une, J. Andersson, and A. Örn, “Role of IFN-α/β and IL-
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Cerbán, and S. Gea, “Cruzipain, a major Trypanosoma cruzi
antigen, conditions the host immune response in favor of
parasite,” European Journal of Immunology, vol. 32, no. 4, pp.
1003–1011, 2002.

[98] C. Stempin, L. Giordanengo, S. Gea, and F. Cerbán, “Alter-
native activation and increase of Trypanosoma cruzi survival
in murine macrophages stimulated by cruzipain, a parasite
antigen,” Journal of Leukocyte Biology, vol. 72, no. 4, pp. 727–
734, 2002.

[99] C. C. Stempin, T. B. Tanos, O. A. Coso, and F. M. Cerbán,
“Arginase induction promotes Trypanosoma cruzi intracel-
lular replication of Cruzipain-treated J774 cells through the
activation of multiple signaling pathways,” European Journal
of Immunology, vol. 34, no. 1, pp. 200–209, 2004.
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