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Abnormal metabolism of cholesterol may be a contributing factor in nonalcoholic steatohepatitis (NASH) pathogenesis.
Accumulating evidence has shown that liver X receptor (LXR) is closely related to intrahepatic inflammation and fibrosis. In
this study, we evaluated the effects of a novel liver-specific LXR inverse agonist, SR9243, on antifibrosis in NASH mice. A high-
cholesterol diet was employed to induce NASH in BALB/c mice by either carbon tetrachloride (CCL4) administration or bile-duct
ligation (BDL). Once NASH was induced, mice were treated with SR9243 for one month by intraperitoneal (i.p.) injection. Liver
tissues were collected to determine the degree of fibrosis and intrahepatic inflammation via pathological examination and QPCR;
serum was collected to analyze the plasma lipid levels and liver function by clinical biochemistry. The mice developed hepatic
steatosis, severe hepatic inflammation, and fibrosis by BDL or CCL4. Treatment with SR9243 significantly reduced the severity of
hepatic inflammation and ameliorated hepatic fibrosis; simultaneously, body weight, serum glucose, and plasma lipid levels were
controlled effectively. Our data demonstrate that SR9243 exerts an antifibrotic and anti-inflammatory effect in NASH mice; hence
these findings highly suggest that LXR inverse agonist could be therapeutically important in NASH treatment.

1. Introduction

Nonalcoholic steatohepatitis (NASH) is considered as leading
cause of hepatitis nonviral liver cirrhosis and hepatocellular
carcinoma [1, 2]. In the development of NASH, nonalco-
holic fatty liver disease (NAFLD) is the first step and is
characterized by hepatic steatosis which is caused by an
imbalance between fat/influx of energy and utilization [3, 4].
Since accumulating evidences have proved that efficiency
in both lipid transport and delivery seems to be a crucial
factor in transitioning from hepatic steatosis to NASH,
high-calorie diets with excessive fats and carbohydrates can
cause this imbalance leading to NAFLD and in some cases
progression to NASH; in addition, intrahepatic cholestasis
caused by biliary obstruction can also lead to NASH [5, 6].

Currently, there are no established treatment interventions
for NASH; however, some new agents have emerged as
potential therapeutic targets that can either activate or inhibit
nuclear receptor signaling [6]. Liver X receptors (LXRs)
control cholesterol and lipid metabolism via regulating gene
networks as members of a super family of nuclear hor-
mone receptors and they include two other homologous but
different isoforms (LXR𝛼 and LXR𝛽) [7]. Previous stud-
ies have proved that LXR𝛼 is highly expressed in kidney,
liver, intestines, and adipose tissue while LXR𝛽 is expressed
widespreadly throughout the body [8]. The potential of LXR
as a therapeutic target in the pathogenesis of metabolic
diseases by regulating metabolic and inflammatory pathways
has recently been realized [9]. Known synthetic LXR agonists
like GW3965 and T0901317 have previously been reported
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to reduce neuroinflammation, limit inflammation, attenuate
myocardial hypertrophy, prevent atherosclerosis, and reduce
ischemia/reperfusion injury [10].

LXR agonists exhibit their antitumor activity by sig-
nificantly lowering intracellular cholesterol levels in can-
cer cells [11–13]. Moreover, the LXR inverse agonist, like
SR9238, showed well antifibrosis effect [14]. Recently, some
studies have brought to light the emerging role of LXR in
tumor metabolism, immune evasion, and also progression.
LXRs also participate in receptor-mediated downregulation
of lipogenic and glycolytic enzyme expression, for which
LXR inverse agonists can be more better selective therapeu-
tic agents than targeted enzyme inhibition to disrupt the
Warburg effect and lipogenesis [15]. SR9243, one of novel
LXR inverse agonists, displayed safety in noncancer cells and
tissues and may be an important part in the mechanism of
action in lipogenic and glycolytic gene suppression mediated
by LXR [16].

In this study, we sought to determine if such a therapeutic
agent would have efficacy in reduction of both fibrosis and
inflammation in a mouse model of NASH; we therefore
used experimental models involving administration of high-
cholesterol (HC) diets to mice in which liver fibrosis was
induced by either bile-duct ligation (BDL) or carbon tetra-
chloride (CCl4) intoxication.

2. Materials and Methods

2.1. Animal and Animal Care. Seventy-two 8-week-old wild-
type BALB/c healthy male mice were used for the animal
model and kept in a special pathogen-free environment
where temperatures were maintained at 20–25∘C and humid-
ity at 50–70% [17]. The mice were acclimatized to this
new environment for two weeks prior to commencing the
experiments. Laboratory ethical requirements for animal care
were observed during the experiments.

2.2. Animal Models. Themice were randomly separated into
twelve experimental groups (𝑛 = 6 per group), and were fed
either a high-cholesterol (HC) (1% wt/wt) diet (TD 92181) or
a control diet (Teklad no. 7001; Harlan Teklad, Madison, WI)
for 4 weeks, and then either underwent BDL for 3 weeks or
were given CCl4 at a dose of 5 𝜇L (10% CCl4 in corn oil)/g
body weight, by intraperitoneal injection twice a week for 4
weeks.

After six weeks, the mice continued on the NASH diet
and were treated with 30mg/kg SR9243 q.d. i.p. in 10%
DMSO/10% Tween-80/80% water or vehicle for 30 days
during which food intake and body weight were monitored
daily. At the termination of dosing, blood was collected
through the eyeball method and analyzed using clinical
biochemistry and ELISA. Liver tissues were collected and
weighed, and a portion was immediately freshly frozen in
liquid nitrogen for RNA analysis.The rest were placed in 10%
neutral buffered formalin for histology.

2.3. Biochemical and Histologic Analysis. Serum concentra-
tions of ALT, TGs, glucose, and cholesterol were determined
using a Fuji Dry-Chem 5500 (Fuji Film, Tokyo, Japan).

Concentrations of liver hydroxylproline and hepatic TG
content were measured as described in a previous report [18].
After being fixed with 4% paraformaldehyde, liver tissues
were embedded in paraffin and then stained with H&E and
a Masson trichrome solution. Liver tissues were also frozen
in liquid nitrogen and stored at −80∘C until when needed for
either protein or RNA analysis [19]. RNA was isolated from
liver tissues and QPCR was used for analysis as described
previously [20].

2.4. Statistical Analysis. All the data are expressed as the
means ± standard errors of the means. Statistical analyses
were performed using the unpaired Student’s 𝑡-test or one-
way analysis of variance (𝑃 < 0.05 was considered signifi-
cant).

3. Results

3.1. SR9243 Significantly Decreased Liver Fibrosis Induced by
BDL and CCL4. There are reports that high-cholesterol diet
is sufficient to induce a NASH phenotype that correlates to
human disease pathology [21]. Based on this diet, we induced
chemical damage-induced NASH and biliary NASH, and
on the NASH model we examined the potential efficacy of
SR9243. As shown by Masson trichrome staining of liver
tissue (Figure 1), we clearly observed from the pathological
point of view, BDL significantly exacerbated liver fibrosis
in both the control diet and HC diet group. However, the
degree of liver fibrosis in the HC diet group was more
significant as compared to the control diet group.ThemRNA
expressions of hydroxyproline, collagen 1𝛼1, and collagen
1𝛼2 were significantly promoted as a result of liver fibrosis
induced by BDL and this was seen more clearly in the HC
diet group than in the control group.

After treatment with SR9243, we evaluated the effect of
SR9243 on hepatic fibrosis by the same test. The results
showed that SR9243 significantly inhibited liver fibrosis in
mice. The results were the same in both the normal diet and
the HC-fed NASH groups.

In a similar manner to the BDL model, the murine CCl4
model of liver fibrosis showed a significant progression of
liver fibrosis in the HC diet group versus control, and SR9243
was also effective in inhibiting CCl4-induced liver fibrosis.

3.2. Effects of SR9243 on Mouse Body Weight, Insulin Levels,
and Blood Glucose. Although we noted no alterations in
food intake during the treatment period, we did observe
a significant decrease in body weight after the treatment
(Figure 2). We found that CCL4 did not cause significant
changes in body weight in both normal and HC diet groups.
However, BDL decreased body weight in HC-treated mice,
while SR9243 significantly reduced body weight in all inter-
ventions, the reason may be that the degree of ascites in the
treatment group was lower than that in the control group.

We further measured the level of insulin and found that
BDL increased insulin levels in the normal diet group, but
not so obvious in the HC diet group; effects of CCL4 on
insulin levels were not obvious; however, SR9243 has a certain
inhibitory effect on insulin. The results of blood glucose test
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Figure 1: Effects of SR9243 on liver fibrosis induced by BDL or CCL4 treatment. After being fed a control or HC diet for 4 weeks, BALB/c
mice were subjected to (a, b) 3-week BDL or (c, d) CCl4 treatment twice a week for 4 weeks to induce NASH model (𝑛 = 6/group). ((a) and
(c)) H&E-stained sections and Masson trichrome-stained sections in representative liver samples. ((b) and (d)) Quantification of Masson
trichrome staining, liver hydroxyproline concentrations, and hepatic expression of collagen 1𝛼1 and collagen 1𝛼2. ∗∗𝑃 < 0.01.
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Figure 2: Effects of SR9243 on hepatocyte injury induced by BDL or CCL4 treatment. (a) Fasting insulin levels are shown in the middle
panel; glucose levels are illustrated in the right panel. (b) Total cholesterol, LDL, and plasma triglycerides were determined from mouse
plasma samples at the termination of the experiment. (c) Liver enzyme levels changed during the treatment. ∗𝑃 < 0.05 and ∗∗𝑃 < 0.01.
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Figure 3: Effects of SR9243 on hepatic proinflammatory cytokines expression induced by BDL or CCL4 treatment. mRNA levels of CD68,
TNF-𝛼, IL-1𝛽, and IL-6 were tested in liver tissues by QPCR, ∗∗𝑃 < 0.01.

showed that SR9243 controlled the blood sugar level in the
intervention group, which was more obvious in CCL4 model
under HC diet (Figure 2).

3.3. Effect of SR9243 on Blood Lipid Levels. We observed that
both BDL and CCL4 caused an increase in total cholesterol,
which was more pronounced in the HC diet (Figure 2).
SR9243 significantly inhibited mouse total cholesterol levels.
We also found that BDL decreased TG levels, while CCL4
showed the opposite results; meanwhile, the effect of SR9243
on TG was not obvious. BDL and CCL4 cause LDL levels
to rise, but this phenomenon is significantly inhibited by
SR9243.

3.4. Effects of SR9243 on Liver Functions. To understand the
changes in liver functions, we measured the weight of the
liver and the indicators of liver functions (Figure 2). Except
for the increase in liver weight caused by BDL, the weights in
other groups did not change significantly compared with the
control group. Fromour test results, BDL andCCL4 can cause
a significant increase in ALT and AST, and these increased
liver enzymes can be inhibited by SR9243.

3.5. Effect of SR9243 to Reduce Hepatic Inflammation. To
investigate whether SR9243 can reduce liver inflammation
caused byNASH,wedetected themRNAexpression ofCD68,
TNF-𝛼, IL-1𝛽, and IL-6 by QPCR (Figure 3). The trend
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of BDL and CCL4 increasing hepatic inflammatory injury
was consistent. After treatment with SR9243, the levels of
CD68, TNF-𝛼, IL-1𝛽, and IL-6 were significantly decreased
compared with those in the control group.

4. Discussion

As a healing reaction to chronic liver injury, liver fibrosis
poses a heavy burden on human health, and if the causative
agent persists, it is likely to develop further into cirrhosis,
liver failure, and even liver cancer, making it a common
cause of death. A recent study reported a 20–50% mortality
rate of end-stage liver disease resulting from fibrosis which
consequently leads up to severe liver cirrhosis [22]. The
development of liver fibrosis is promoted by chronic liver
disease which is characterized by two distinct features: cell
death and inflammation. NASH differs from simple steatosis
due to the presence of inflammation, hepatocyte death, and
also a varying degree of fibrosis. Various mechanisms have
been proposed to support the transition from simple steato-
sis to NASH and NASH-related fibrosis, and this includes
reactive oxygen species (ROS)whose production results from
poorly regulated cholesterol and hepatic lipid metabolism
[23]. This, in turn, recruits monocytes that are more potent
proinflammatory agents than resident KCs and produce such
cytokines like TNF-a and IL-1𝛽 which contribute to NASH
and fibrosis development. There are no standard treatments
for NASH which target on inflammation and fibrosis except
for improved diets and weight loss.

Liver X receptors (LXRs) are nuclear, lipid-activated
receptors whose important functions include lipogenesis,
cholesterol transport, and anti-inflammatory signaling. Dur-
ing chronic liver injury, hepatic stellate cells are activated and
facilitate the fibrotic response. Beaven et al. [24] reported
that LXRs are among the most highly expressed nuclear
receptors in stellate cells and that LXR signaling plays a role
in regulating the expression of those genes which are linked
to inflammation, metabolism, and fibrogenesis in primary
cells. Accordingly, treatment with synthetic LXR activators
might have a beneficial effect in models of fibrotic liver
disease.

In this study, we demonstrated that continuous low dose
(30mg/kg) of LXR inverse agonist (SR9243) suppressed the
liver fibrosis in chemical damage-induced NASH or biliary
NASH mice models effectively; simultaneous, intrahepatic
inflammatory factors have been relieved by varying degrees;
this mechanismmay be consistent with previous reports that
showed LXR-mediated glycolytic and lipogenic gene suppres-
sion [16]. Griffett et al. [14] reported the same treatment
effect of another LXR inverse agonist (SR9238). However,
some studies recently published suggest that hepatotoxicity
is one of the main side effects of currently available pan-
LXR agonists [25]. Archer et al. [26] found that when
ob/ob mice were treated for 5 weeks with the synthetic LXR
agonist GW3965 (10mg/kg), increased hepatic TG content
and lipotoxicity were detected inmice due to activation effect
on both LXR𝛼 and LXR𝛽. Interestingly, we also observed that
mice body weight and lipid levels were under control, while
hepatotoxicity was not observed in this study, which revealed

evenmore potential effects of inverse agonists to control liver
fibrosis as compared to agonists.

Although the present results have provided obvious
evidence of SR9243 in decreasing liver fibrosis in mice, lots
of work should be done in the future. For it is challenging to
obtain a LXR knockout mouse in a short time, we have not
explained the pathway and multiple mechanisms involved in
the process. And we plan to further examine the biosafety of
SR9243 in an expanded animal model.

5. Conclusions

Our results show a significant therapeutic potential in treat-
ing NASH with LXR inverse agonist SR9243.
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