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Abstract

Like many other types of cancer, colorectal cancer (CRC) develops through multiple path-

ways of carcinogenesis. This is also true for colorectal carcinogenesis in Lynch syndrome

(LS), the most common inherited CRC syndrome. However, a comprehensive understand-

ing of the distribution of these pathways of carcinogenesis, which allows for tailored clinical

treatment and even prevention, is still lacking. We suggest a linear dynamical system

modeling the evolution of different pathways of colorectal carcinogenesis based on the

involved driver mutations. The model consists of different components accounting for inde-

pendent and dependent mutational processes. We define the driver gene mutation graphs

and combine them using the Cartesian graph product. This leads to matrix components built

by the Kronecker sum and product of the adjacency matrices of the gene mutation graphs

enabling a thorough mathematical analysis and medical interpretation. Using the Kronecker

structure, we developed a mathematical model which we applied exemplarily to the three

pathways of colorectal carcinogenesis in LS. Beside a pathogenic germline variant in one of

the DNA mismatch repair (MMR) genes, driver mutations in APC, CTNNB1, KRAS and

TP53 are considered. We exemplarily incorporate mutational dependencies, such as

increased point mutation rates after MMR deficiency, and based on recent experimental

data, biallelic somatic CTNNB1 mutations as common drivers of LS-associated CRCs. With

the model and parameter choice, we obtained simulation results that are in concordance

with clinical observations. These include the evolution of MMR-deficient crypts as early pre-

cursors in LS carcinogenesis and the influence of variants in MMR genes thereon. The pro-

portions of MMR-deficient and MMR-proficient APC-inactivated crypts as first measure for

the distribution among the pathways in LS-associated colorectal carcinogenesis are com-

patible with clinical observations. The approach provides a modular framework for modeling

multiple pathways of carcinogenesis yielding promising results in concordance with clinical

observations in LS CRCs.
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Author summary

Cancer is a disease caused by alterations of the genome. The alterations can affect each

component of the genome, whereas only some lead to a change in the functioning of the

cell. As there are several of those so-called driver mutations, there are different possibili-

ties in which order they can occur. It is currently assumed that the order of driver muta-

tions is linked to the course of cancer and thus to clinical treatment and even prevention.

However, cells with a driver mutation, which carry a risk to grow out to a tumor, are clini-

cally invisible for a long time. This means the early carcinogenesis is a hidden process.

Mathematical models allow testing related medical hypotheses to obtain a better under-

standing of the underlying biological processes. We proposed a mathematical model for

different molecular pathways of carcinogenesis based on a linear dynamical system.

Thereby, we used the Kronecker structure, a specific structure which allows for a thorough

mathematical analysis and medical interpretation. The model consists of multiple compo-

nents to account for independent and dependent mutational processes. For the presented

work, we focused on cancer development in the colon. However, modifications of the

model could be applied to other organs.

1 Introduction

Cancer is the second leading cause of death worldwide accounting for an estimated 9.6 million

deaths in 2018, whereby the second most common type is colorectal cancer (CRC) [1]. Still,

adequate treatment and in particular prevention strategies are lacking in many cases, as it is

difficult to investigate the process of cancer development, called carcinogenesis, right from the

beginning.

In this work, we present a mathematical model of colorectal carcinogenesis. It takes into

account the multiple pathway nature of carcinogenesis (Fig 1A) reflecting different types of

CRC based on molecular parameters with individual needs for prevention and treatment [2].

Fig 1. From the medical hypothesis over the modeling approach to the mathematical structure. The medical hypothesis of multiple pathways of

carcinogenesis is widely known for various types of cancer. (A) We present a model for this phenomenon at the example of Lynch syndrome, the most

common inherited CRC syndrome, with specific key driver events in the MMR genes, CTNNB1, APC, KRAS and TP53. (B) This current medical

understanding of carcinogenesis is translated into a mathematical model using a specific dynamical system, which can be represented by a graph

structure, where each vertex in the graph represents a genotypic state and the edges correspond to the transition probabilities between those states.

Starting with all colonic crypts in the state of all genes being wild-type and a single MMR germline variant due to Lynch syndrome, we are interested in

the distribution of the crypts among the graph at different ages of the patient in order to obtain estimates for the number of crypts in specific states, e.g.,

adenomatous or cancerous states. (C) The underlying matrix of the dynamical system makes use of the Kronecker sum and product. It is a sparse upper

triangular matrix accounting for the assumption that mutations cannot be reverted. This allows fast numerical solving by using the matrix exponential.

Each nonzero entry of the matrix represents a connection between genotypic states in the graph.

https://doi.org/10.1371/journal.pcbi.1008970.g001
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The mathematical model makes use of a dynamical system with a specific matrix structure

using Kronecker products and sums (Fig 1C) in order to systematically describe the muta-

tional events of individual genes (Fig 1B). These mutational events can be independent of or

depending on other mutations, accounting for different types of mutations and for currently

available data.

To exemplify this approach, we build the model for Lynch syndrome, the most common

inherited CRC syndrome with an estimated population frequency of 1 in 180 [3]. Lynch syn-

drome is associated with an inherited mismatch repair (MMR) gene variant [4]. CRCs which

develop in the context of Lynch syndrome mostly are MMR-deficient and enhance microsatel-

lite instability (MSI) [5].

In addition to Lynch syndrome colorectal carcinogenesis, we modify the ansatz to model

the sporadic counterpart of Lynch syndrome, often called Lynch-like cancers [6], as well as the

classical adenoma-carcinoma sequence first described by Vogelstein and Kinzler [7] for micro-

satellite-stable (MSS) CRCs. Further, we apply the model to another hereditary CRC syn-

drome, familial adenomatous polyposis (FAP) [8].

1.1 Organization

To make this paper self-contained, we elucidate the medical background in Section 1.2. Section 2

presents related work and our contribution in this context. The mathematical model is presented

in Section 3.1 which is based on different components: The first model component implements

independent mutational processes and the other components model known mutational depen-

dencies. Section 3.2 represents modifications for non-Lynch scenarios or cancer in other organs

than the colon. Section 4 demonstrates a selection of the results which can be obtained with the

model and its modifications. Finally, we conclude in Section 5 discussing the assumptions of the

model and their implications. For a mathematical background, we refer to S1 Appendix.

1.2 Medical background

Cancer is a disease caused by alterations of the genome, the carrier of genetic information [9,

10]. Precisely defining these changes, which are required to transform a normal cell of the

human body into a malignant cancer cell, is a crucial step towards understanding the develop-

ment of cancer.

Multiple pathways of carcinogenesis. In the early stages of cancer research, it was

unknown whether the development of cancer, a process called carcinogenesis, was a purely

chaotic process of random mutations. However, in 1959, Nowell and Hungerford [11] made

the observation of a specific recurrent alteration across different cancers of the same type. This

suggested the existence of at least a certain degree of order in the chaos.

In the following decade, evidence emerged that one single mutation is normally insufficient

to drive a cell into malignancy because cells possess multiple control mechanisms which pro-

tect the organism from the uncontrolled growth of single cells. Thus, Vogelstein, Fearon and

Kinzler [7, 12] established a step-wise hypothesis of cancer formation in the colon postulating

that several mutations are required for the development of cancer cells. This Adenoma-Carci-

noma Hypothesis describes the formation of certain precancerous lesions and their progres-

sion into a manifest cancer. The model implies that adenomas are the precursor lesions of

most colorectal cancers and it describes typical molecular events associated with progression

to cancer. The step-wise hypothesis has been validated subsequently in many independent

studies for many different cancer types. Currently, it is expected that a minimum number of

three mutation events is required to transform a normal cell into a cancer cell. This hypothesis

is called the three strikes hypothesis [13]. Accordingly, cancer for the present modeling
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approach is defined as a state, in which alterations of at least three key signaling pathways or

respective genes are present in one crypt (see also Section 4).

Mutations occur over the whole genome, whereby we differentiate between two broad clas-

ses: So-called point mutations only affect a single nucleotide, while loss of heterozygosity

(LOH) refers to the loss of some region in one copy of the diploid genome, which can result in

the deletion of whole genes.

If mutations strike in regions with a protein-encoding function, two main scenarios that

can favor uncontrolled cell growth are seen: Somatic mutations can either directly activate

oncogenes (typically referred to in the literature as gain-of-function mutations), which physio-

logically promote appropriate cell growth and proliferation, through conformational changes

or impairing self-inactivation, or mutations can damage or destroy tumor suppressor genes

(typically referred to in the literature as loss-of-function mutations), which physiologically

limit cell growth and proliferation.

These coding mutations have to be identified from all the possible mutations that can

occur, as they might have a functional impact on the cell. This includes the identification of

oncogenes and tumor suppressor genes, but there are many more mutations to be identified.

Moreover, only a certain combination of these mutations will lead to cancer in the end. This

might be due to the fact that some mutations have a growth-repressing effect and lead to cell

death. Further, there is the possibility of controlling cancer by non-cell autonomous mecha-

nisms, like immune surveillance, which is especially important for the presented example of

Lynch syndrome [14]. Apart from that, current data raise the possibility that the immune sys-

tem may not only remove precursor lesions but also infiltrating cancers, as described for

Lynch syndrome-associated cancers [15].

Different combinations of key mutations result in several distinct pathways to be distin-

guished by the involved genes and the ordering thereof. An important goal in cancer research

is to investigate which of these pathways can arise in human carcinogenesis. Here, Lynch syn-

drome colorectal carcinogenesis is a prime example with three currently hypothesized main

pathways of carcinogenesis [16] (Fig 1A) which will be explained in more detail in the next

paragraph.

Lynch syndrome-associated colorectal carcinogenesis. Individuals with Lynch syndrome

are predisposed to developing certain malignancies with a substantially higher lifetime risk

compared to the general population. The most common Lynch syndrome manifestations are

CRC (50% [17] compared to 6% in the normal population) and endometrial cancer (40–60%

compared to 2.6% in women without Lynch syndrome) [4, 18]. Further, individuals have an

increased lifetime risk for many other types of cancer such as in the stomach, small bowel,

brain, skin, pancreas, biliary tract, ovary (only for women) and upper urinary tract [19].

Lynch syndrome carriers have an inherited pathogenic variant in one allele of the affected

MMR genes MLH1, MSH2, MSH6 or PMS2 [20] passed down in the family from parent to

child. Upon the second somatic hit inactivating the remaining allele, MMR deficiency mani-

fests in the affected cell [21]. DNA replication errors, especially those which occur at repetitive

sequences (microsatellites consisting of a consecutive series of identical basepairs) cannot be

corrected by the mismatch repair system. MMR deficiency leads to microsatellite instability.

MMR deficiency can be an initiating or a secondary event in Lynch syndrome carcinogene-

sis. This is reflected by the hypothesis of three pathways responsible for colorectal carcinogene-

sis in Lynch syndrome [22] (see Fig 1): One pathway of carcinogenesis starts with adenoma

formation, then MMR deficiency and cancer outgrowth; the second is initiated by MMR defi-

ciency, then adenoma formation and cancer outgrowth; and the third shows MMR deficiency

as initiating event and invasive cancer growth.
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The relative proportion of one or the other pathway of carcinogenesis and the contribution

of certain molecular events is thereby an open question with clinical implications: Ahadova

et al. [16] showed that the molecular pathways of carcinogenesis are linked to different muta-

tional processes, e.g., CTNNB1-mutant colorectal carcinomas are associated with immediate

invasive growth, following the third presented pathway. Recent independent studies (analyzed

in [23]) demonstrated that a substantial proportion of Lynch syndrome individuals develops

CRC despite regular colonoscopy and that there is no difference in CRC incidence or stage at

detection by colonoscopy with respect to different Lynch syndrome surveillance intervals [24].

This emphasizes the need for improved cancer prevention depending on the molecular foot-

prints of carcinogenesis for Lynch syndrome individuals. Further, there are MMR gene-depen-

dent differences regarding the risk of colorectal adenomas and carcinomas, and regarding

somatic mutations in patients with Lynch syndrome [25] which supports the need of adjusting

surveillance guidelines based on MMR gene variants.

As a special case of CRC, Lynch syndrome-associated colorectal cancer is widely believed to

originate in colonic crypts [26]. Those are found in the epithelia of the colon and consist of dif-

ferent cell types [27], among others, stem cells located at the crypt base. They are important for

tissue renewal due to their unlimited proliferative potential, however also prone to mutations.

If a cell in a crypt becomes mutated, this mutation has to spread within the crypt such that the

whole crypt is mutated and can be measured with current techniques, a process called fixation

or monoclonal conversion [28]. Modeling this process and analyzing the role of colonic stem

cells located at the crypt base is important to understand the intra-crypt dynamics. We are cur-

rently working on these aspects with first results in [29]. However, for the present model, we

focus on the evolution of genetic states within crypts as a whole and compare the modeling

results with currently available biological and epidemiological data.

2 Related work

First attempts to build mathematical models in cancer research were made in the middle of the

20th century. Armitage and Doll [30, 31] proposed and analyzed one of the first multistage

models of carcinogenesis, which are based on the hypothesis that there are multiple subsequent

steps before a cancer is formed. The model was extended in the following years [32, 33].

Among the first to consider a model of multiple pathways of carcinogenesis were Tan et al.

[34, 35]. These are based on the hypothesis that there are several possible ways in which cancer

can develop.

With the increasing medical knowledge about cancer development, it became more and

more evident that a single model describing the whole process of carcinogenesis from the

genomic, over the cell, up to the tissue, organ and organism-level is too complex to build.

Nowadays, there exist different types of models describing individual aspects of carcinogenesis

(in an unordered list of example publications):

⊳Modeling healthy tissue formation, such as the evolution of colonic crypts [36–38],

⊳ detecting driver genes [39–42],

⊳ estimating the most likely temporal order of key mutations [13, 43],

⊳modeling the cancer-immune system interaction, including neoantigen presentation [44–

46],

⊳ predicting effects of intervention strategies on tumor growth and patient survival, such as

the effect of screening on adenoma risk [47].
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From a mathematical point of view, the modeling makes use of different approaches, such

as ordinary differential equations [48, 49], partial differential equations [50], stochastic pro-

cesses [51, 52], graph theory [53–55], and statistics [56, 57].

For hereditary CRCs, in particular, Komarova et al. [48, 58] proposed a model for the

occurrence and ordering of key events during carcinogenesis based on ordinary differential

equations [48, 58], which was adapted to sporadic carcinogenesis. In particular, it addresses

the question of the extent of genetic instability as an early event in carcinogenesis.

A recent paper by Paterson et al. [59] presents a model for quantifying the evolutionary

dynamics of CRC initiation and progression based on describing the occurrence of key driver

mutations. The individual mutational graphs of APC, KRAS and TP53 in our model corre-

spond to those in [59], considering APC and TP53 as classical tumor suppressor genes and

KRAS as classical oncogene in CRC. In addition, the general approach of calculating gene-spe-

cific numbers of driver positions as well as assuming APC and KRAS provide fitness advantage

but not TP53 are in concordance with [59]. The latter assumption is based on several indepen-

dent studies [28, 37, 60].

2.1 Contribution

We provide a general mathematical framework that describes arbitrarily complex and arbi-

trary numbers of pathways and mutations because the chosen Kronecker structure enables a

modular construction and an analytic, computationally efficient solution. We use Lynch syn-

drome carcinogenesis to illustrate the flexibility of the model. Naturally, specific assumptions

may vary for other types of cancer. We illustrated model modifications for FAP, Lynch-like

and the classical colorectal carcinogenesis.

Instead of focusing on modeling APC inactivation and MMR deficiency as in [48], we

choose a more general approach for combining mutations in different genes. Compared to

[59], we take into account different modes of cancer evolution beside the classical adenoma-

carcinoma sequence of colorectal carcinogenesis, including hereditary forms like Lynch syn-

drome and familial adenomatous polyposis (FAP). Further, recent data show that in Lynch

syndrome-associated CRCs, biallelic mutations of CTNNB1 seem to be required to mediate an

oncogenic driver effect [61, 62], which we included in the definition of the gene mutation

graphs.

While the approach in [59] is a hybrid approach of linear ordinary differential equations

(ODEs) and a stochastic branching process, we use a system of ODEs to model the evolution

of all genotypic states which eases the computational solution process tremendously. This goes

in hand with the fact that all formulas in our model are exact from a mathematical point of

view without using any approximations which in turn allows for an analytical solution of the

ODEs by using the matrix exponential.

Further, the model consists of different components for modeling independent and depen-

dent mutational processes taking into account currently available clinical observations and

biomedical data.

Finally, our approach makes it possible to easily include new medical insights, while pre-

serving the other properties of the model, like the integration of the involved differential equa-

tions. This incorporates the possibility for multiple cancerous genotypic states reflecting the

real world heterogeneity of cancer, the consideration of multiple driver genes, as well as the

use of different initial values and parameter combinations for modeling other carcinogenesis

processes.
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3 Methods

3.1 Modeling Lynch syndrome carcinogenesis

In this section, we introduce our model for colorectal carcinogenesis in Lynch syndrome. The

model consists of a dynamical system given in the form of a linear ordinary differential equa-

tion which is constructed with the help of adjacency matrices describing the joint process of

mutations in several genes, including mutations independent of and depending on other

mutations. All mutations are assumed to be present in the whole crypt. Mutations which occur

in one cell but are washed out as they reach the top of the crypt and undergo apoptosis are not

considered in the model.

The system matrix is built in an additive way for implementing independent and dependent

mutational processes. The matrix A for the independent processes is based on three main

assumptions leading to the Kronecker sum in a natural way: 1) All combinations of mutations

in the considered genes are possible and there are no additional genotypic states, 2) no two

mutations in different genes occur at the exactly same point in time, 3) the mutational pro-

cesses are independent of each other (see also Section 2 in S1 Appendix).

The model components representing dependent mutations are constructed in a similar way

using the Kronecker structure, but here we do not make the assumptions 2 and 3. This allows

for modeling dependent mutations and for the possibility of simultaneous mutations (see

model components B, C, D, E and F).

3.1.1 Gene mutation graphs. In the case of colorectal carcinogenesis in Lynch syndrome,

the MMR gene mutations are are associated with an increased cancer lifetime risk of Lynch

syndrome individuals. Besides the MMR genes, we consider four additional possible driver

genes, namely APC, KRAS, CTNNB1 and TP53 which are typical representatives of the onco-

genes and tumor suppressor genes affected in the corresponding pathways of Lynch syn-

drome-associated carcinogenesis.

Each of these genes can have a variety of mutation status:

State ;: In this state, none of the alleles has a point mutation or is affected by an LOH event.

States m and mm: These states describe one allele being hit by a point mutation (where the

other one is not mutated) and point mutations on both alleles.

States l and ll: Similarly, these states describe one (respectively two) allele(s) being affected

by an LOH event.

State ml: One of the alleles has obtained a point mutation and in the other one, an LOH event

occurred. We do not differentiate which allele has which mutation and in which order they

happened.

We assume that ll in CTNNB1, APC and TP53 damage a cell in such a way that it directly

leads to cell death [59]. Thus, there will be no crypt with all cells being in that state. As we

model the evolution of genotypic states of crypts, we do not consider the ll status for

CTNNB1, APC and TP53.

As our example is Lynch syndrome carcinogenesis, all cells and hence, also all crypts have a

single germline variant in the respective MMR gene and there is no ; status for MMR.

Further, APC and TP53 are tumor suppressor genes meaning that both alleles have to be

mutated for an inactivation, whereby this two hit hypothesis dates back to Knudson et al in

1971 [63]. In particular, we ignore a possibly dominant-negative effect of APC and TP53 muta-

tions resulting in a single hit necessary for inactivation [64].
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In addition, KRAS is an oncogene, where one activating mutation is necessary. In Lynch

syndrome-asscociated CRC, biallelic mutations of CTNNB1 seem to be required to mediate an

oncogenic driver effect [61, 62].

All these assumptions lead to the vertex sets

VMMR ¼ fm;l;mm;ml ; llg; ð1Þ

VCTNNB1 ¼ f;;m;l;mm;ml g; ð2Þ

VAPC ¼ f;;m;l;mm;ml g; ð3Þ

VKRAS ¼ f;;mg; ð4Þ

VTP53 ¼ f;;m;l;mm;ml g: ð5Þ

Using these vertex sets, we construct gene mutation graphs, in which we connect the muta-

tion status that differ by only one mutation. This means we assume that only one mutation

happens at any specific time point.

Further, we make the assumption that once a mutation has happened it cannot be reversed

by another mutation. Because of this, the mutation graphs are directed acyclic graphs and their

adjacency matrix can be written as a triangular matrix.

The resulting graphs are illustrated in Fig 2. This figure also displays the edge weights of the

gene mutation graph, i.e., the likelihood that we transfer from one mutation status to another.

The choice of the edge weights will be explained in the following sections.

3.1.2 Point mutations. To model the likelihood ppt(gene) for crypts being affected by

point mutations in a specific gene, we make the following configurable assumptions for the

example of Lynch syndrome colorectal carcinogenesis. For other types of cancer, or once new

medical insights are gathered, they can and should be adapted.

⊳We would like to model the evolution of crypts over years. Many measurements and esti-

mates are given in days. Thus, we use the factor 365 to convert the measurements per day to

measurements per year.

⊳ In each cell division, we accumulate npt = 1.2 point mutations according to measurements

in [65], where we assume that a cell division takes one day [27].

⊳ The point mutations are uniformly distributed over the base pairs on the entire genome.

⊳ Each crypt is estimated [37] to consist of approximately 1.7�103 to 2.5�103 cells, whereas only

approximately 75% of them can divide. Thus, we use ncells = 1500 as an approximation to

the number of cells per crypt.

⊳ There are nbp,genome = 3.2�109 base pairs (bp) on the genome.

⊳Only the point mutations which occur in hotspots of the genes are relevant for cancer devel-

opment. Hotspots are regions of a gene which give rise to a phenotypical change if mutated.

The size of the hotspots nhs(gene) is gene dependent and is explained in the following.

⊳Not all point mutations which appear in a crypt take over the entire crypt [28]. We model

this in a gene dependent fixation affinity f(gene), i.e., the tendency of a cell with a mutation

in a gene to take over the whole crypt.
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Fig 2. Gene mutation graphs for independent mutational processes. These graphs represent the possible mutation status, i.e., which mutations the

alleles of the gene can have accumulated, as vertices ;, m, l, mm, ll and ml. They are given for (A) MMR gene mutations, (B) APC mutations, (C)

KRAS mutations, (D) CTNNB1 mutations, and (E) TP53 mutations. The edges connecting different vertices represent mutations, whereas self-loops,

i.e., edges that connect a vertex with itself, describe no mutation occurring at the current point in time. The edges are labeled by the amount of change

which happens at each point in time. Note that in the colon, biallelic mutations of CTNNB1 seem to be required to mediate an oncogenic driver effect

[61, 62], leading to a gene mutation graph similar to that of APC and TP53.

https://doi.org/10.1371/journal.pcbi.1008970.g002
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⊳We assume that the alleles are independent of each other, i.e., a mutation in one allele does

not influence the mutation probability in the other allele. Thus, the likelihood ppt(gene) is

twice as large if there is no mutated allele (nmut(gene) = 0) compared to the state where one

allele is already mutated (nmut(gene) = 1).

These assumptions lead to the following formula for the likelihood ppt(gene):

pptðgeneÞ ¼ 365 npt ncells
nhsðgeneÞ
nbp;genome

f ðgeneÞ 1 �
1

2
nmutðgeneÞ

� �

: ð6Þ

Regarding the hotspots, we assume for MLH1, MSH2 and TP53 that the whole coding

sequence is susceptible to inactivating point mutations, where we use the reference sequence

database at NCBI for coding sequence lengths [66]. For APC, we use mutation data from the

publicly available DFCI database using the cBioPortal website [67, 68]. We make use of data

from about 4000 CRC samples to identify approximately 2400 hotspots.

For the present parameter choice, we assume for CTNNB1 that only 5 mutations in codon

45 are relevant, according to [16]. Further, for KRAS, we assume 7 relevant mutations [22]. In

summary, we obtain the following numbers for nhs given in Table 1.

3.1.3 LOH events. We assume that all detectable LOH events are large enough to inacti-

vate an affected gene. In other words, we assume that if LOH affects a certain gene, then an

exon will be lost and the gene, therefore, is inactivated. As a consequence, the probability of

LOH pLOH(gene) for a given gene is proportional to its length, denoted by nbp(gene).

The probability of a relevant LOH event for a specific gene with nmut(gene) 2 {0, 1, 2}

already mutated alleles and length nbp(gene)bp to be present in the whole crypt is given by

pLOHðgeneÞ ¼ 365 ncells 1 �
1

2
nmutðgeneÞ

� �

a nbpðgeneÞ f ðgeneÞ; ð7Þ

where a 2 R>0 is a parameter to be estimated, independent of the considered gene.

The available data for MLH1 suggests that inactivation is twice as likely to occur due to

LOH than due to point mutations [69]. Thus, we assume

pLOHðMLH1Þ ¼ 2 pptðMLH1Þ: ð8Þ

Table 1. Estimates for nhs.

gene nhs

MLH1 2,270

MSH2 2,800

CTNNB1 5

APC 2,400

KRAS 7

TP53 1,180

The given estimates are used for the computation of the point mutation rates for the individual genes. Those are

based on the following data from the literature: MLH1, MSH2 and TP53: [66]; CTNNB1: [16]; APC: [67, 68]; KRAS:

[22].

https://doi.org/10.1371/journal.pcbi.1008970.t001
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Together with (6) and (7), we get

a ¼ 2
nhsðMLH1Þ

nbpðMLH1Þ

npt

nbp;genome
: ð9Þ

In order to determine α and pLOH, we again use the reference sequence database at NCBI

for the length of individual genes [66] given in Table 2.

3.1.4 Fitness advantages and clonal expansion. There is the possibility of introducing fit-

ness changes b(gene) for individual mutation status of a gene. As we model the evolution of

mutations at the crypt level, this corresponds to the clonal expansion of the crypts with one of

the considered mutations. A fitness advantage is ensured by b(gene)>0 and a disadvantage

with b(gene)<0. By using the notion of graphs, this corresponds to a self-loop of the respective

genotypic state node with a weight equal to the fitness change. We assume that MMR defi-

ciency leads to a fitness disadvantage [70], i.e., b(MMR)<0, and APC inactivation and KRAS
activation lead to a fitness advantage, i.e., b(APC)> 0 and b(KRAS)> 0, in concordance with

current measurements [28, 71].

In other words, the proliferation and disappearance of certain genotypic states is jointly

modeled by the self-loops in the graph. This largely reduces the number of probability parame-

ters necessary to be determined, accounting for the fact that there are currently not enough

prospective data available to estimate or learn all the parameters. However, once there are

enough data available, an additional state for dead or disappearing lesions can be introduced.

We describe the corresponding formulas in S1 Appendix.

3.1.5 A model for carcinogenesis. Our mathematical model of multiple pathways in

Lynch syndrome carcinogenesis is given by a system of linear ordinary differential equations

_xðtÞ ¼ ðAþBþCþDþEþFÞ>xðtÞ; xð0Þ ¼ x0: ð10Þ

The system matrix with its additive components implements the independent mutational

processes in the matrix A and all mutational dependencies, supported by available data, in the

matrices B, C, D, E and F. How the individual matrices are built mathematically is introduced

in the following paragraphs.

We shortly explain how the model (10) is solved. While the system matrix has

1250 = 5�5�2�5�5 rows and columns, corresponding to all possible genotypes, it is very sparse,

as illustrated in Fig 3A.

The transpose of the matrix is merely due to different notation conventions for adjacency

matrices and differential equations.

We assume that the Lynch syndrome individuals have no mutations at birth except for an

MMR germline variant due to a point mutation (90–95% of individuals) or due to an LOH

Table 2. Estimates for nbp.

gene nbp

MLH1 57,500

MSH2 80,000

CTNNB1 41,000

APC 139,000

TP53 19,200

The following estimates for nbp are necessary for the computation of the LOH rates for the individual genes. They are

based on the reference sequence database at NCBI [66].

https://doi.org/10.1371/journal.pcbi.1008970.t002
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event (5–10% of individuals) [72]. We differentiate these two groups of individuals by using

different initial values for the differential equation. The initial value x0 for the first group of

individuals is

x0 ¼ ncrypts em � e; � e; � e; � e;|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
no mutations in CTNNB1;

APC; KRAS and TP53

;

ð11Þ

where ncrypts = 9.95�106 is the estimated [73] number of crypts in the colon and em denotes the

unit vector, which is zero everywhere, except for a 1 at the entry corresponding to the state m.

This initial value can also be described as a vector which has the entry ncrypts at the position

corresponding to the genotype (m, ;, ;, ;, ;) and is zero everywhere else.

Accordingly, the initial value for the second group of individuals is given by

x0 ¼ ncrypts el � e; � e; � e; � e;|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
no mutations in CTNNB1;

APC; KRAS and TP53

:

ð12Þ

As stated in Eq (S1–8) in S1 Appendix, the exact solution of the differential equation is

given by x(t) = expm(t(A + B + C + D + E + F)>)x0. We illustrate the sparsity structure of the

matrix exponential in Fig 3B.

Model component for independent mutations. We explain how the matrix A for indepen-

dent mutational processes is built. Having defined the gene mutation graphs with adjacency

matrices AMMR, ACTNNB1, AAPC, AKRAS, ATP53 for different genes (Fig 2), we combine them

using the Kronecker product as explained in Section 2 in S1 Appendix. Accordingly, the adja-

cency matrix of the combined model is given by the Kronecker sum of the adjacency matrices

Fig 3. Sparse matrix structure. (A) The system matrix (A + B + C + D + E + F) of the linear model is a very sparse matrix, i.e., only a few entries are

nonzero. These nonzero entries are colored red in the plot, which also illustrates the fact that (A + B + C + D + E + F) is an upper triangular matrix. (B)

The sparsity structure of the matrix expm(A + B + C + D + E + F), which is reminiscent of a Sierpiński fractal, is due to the individual matrices being the

Kronecker product and sum of matrices. The two plots also illustrate nicely how modeling sparse local interactions in the matrix (A + B + C + D + E +

F) can have a more global effect in expm(A + B + C + D + E + F).

https://doi.org/10.1371/journal.pcbi.1008970.g003
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of the individual genes

A ¼ AMMR � ACTNNB1 � AAPC � AKRAS � ATP53 : ð13Þ

When only considering independent mutational processes, the model (10) reduces to

xðtÞ ¼ A>xðtÞ; xð0Þ ¼ x0; ð14Þ

where the solution can be rewritten in the following way (see Eq (S1–1) in S1 Appendix)

xðtÞ ¼ expmðtA>MMRÞem � expmðtA>CTNNB1
Þe; � expmðtA>APCÞe;

� expmðtA>KRASÞe; � expmðtA>TP53
Þe;ncrypts

ð15Þ

for the case of the first group of individuals (11). This reduces the computational costs tremen-

dously, as only several small matrices have to be considered instead of one large matrix.

The model components for mutational dependencies. The first model component, given

by matrix A, implements all mutational processes that are independent of each other, which is

either due to a independence indicated by data or due to missing medical insight suggesting

otherwise. However, mutations change the functional behavior of a cell and thus, there are spe-

cific mutations that affect the probability of certain other mutations. In other words, there are

mutations which are mutually exclusive or mutations which increase the probability of muta-

tions in other genes [74].

Instead of changing the adjacency matrix A, we add the adjacency matrices for the depen-

dent mutational processes to the independent one. This allows us to study the effects of the dif-

ferent mutational processes individually and makes it possible to include further dependencies

when additional data are available in the future.

For the approach presented here, we assume and model the following molecular and bio-

logical mechanisms:

Matrix B: increased point mutation rate of APC after MMR deficiency,

Matrix C: positive association of CTNNB1 and MLH1 alterations,

Matrix D: increased LOH rate after APC inactivation,

Matrix E: mutual enhancement of effects C and D,

Matrix F: increased mutation rate of KRAS after MMR deficiency.

In the following paragraphs, we explain all considered mutational dependencies in detail.

Increased point mutation rate of APC after MMR deficiency. MMR deficiency leads to

an increased mutation rate, especially in microsatellites [20]. Among others, this is true for the

point mutation rate of APC. Thus, we assume that the point mutation rate of APC is increased

by a factor β + 1 if the crypt has an MMR-deficient state. This is assumed to be independent of

the state of the other genes.

As we do not want to change the matrix A, we introduce an additional matrix B. This

means, instead of multiplying single entries of A by β + 1, we add a matrix B to A with corre-

sponding entries multiplied by β.

We define the matrix B by

B ¼ BMMR � BCTNNB1 � BAPC � BKRAS � BTP53 ; ð16Þ

where BAPC is the adjacency matrix of the gene mutation graph in Fig 4 and

BMMR ¼ diag ð0; 0; 1; 1; 1Þ; BCTNNB1 ¼ I5 ¼ BTP53 ; BKRAS ¼ I2: ð17Þ
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Here, diag ðd1; d2; . . . ; dnÞ 2 R
n�n

denotes a diagonal matrix with entries di, i 2 {1, 2, . . ., n} on

its diagonal.

The definition (16) of the matrix B yields the desired result of increasing the point mutation

rate of APC after MMR deficiency. This can be explained intuitively: We only want to increase

the point mutation rate after MMR deficiency, meaning that the MMR state is mm, ml or ll,

leading to the matrix BMMR. Further, this influence of MMR on APC is independent of the

other genes, meaning that it should hold for all states of the other genes. Thus, we choose the

respective identity matrices for KRAS, CTNNB1 and TP53 and connect all matrices via the

Kronecker product, instead of the Kronecker sum as in the matrix A.

Positive association of CTNNB1 and MLH1 alterations. According to [25], somatic

CTNNB1 mutations are significantly higher in MLH1-cancers than in the other MMR gene-

associated CRCs. For illustration purposes, we make the assumption that inactivation of

MLH1 and CTNNB1 are triggered by non-independent events. We calculate this dependency

with an occurrence rate reffLOH, which we set to reffLOH = 0.9, and introduce an additional

matrix C. The latter is based on a combined gene mutation graph for MLH1 and CTNNB1 and

its connection with the remaining genes via the Kronecker product. Note that this is possible

due to the chosen ordering of the genes.

Fig 4. Gene mutation graph of APC for increasing the point mutation rate of APC after MMR deficiency.

https://doi.org/10.1371/journal.pcbi.1008970.g004
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The matrix C 2 R1250�1250
is given by

C ¼ CMLH1;CTNNB1 � CAPC � CKRAS � CTP53; ð18Þ

where CAPC = CTP53 = I5 and CKRAS = I2. The matrix CMLH1,CTNNB1 is the adjacency matrix cor-

responding to the combined gene mutation graph for MLH1 and CTNNB1. We explain in the

following how this combined gene mutation graph is built and illustrate it in Fig 5.

Let _ denote an arbitrary state of the corresponding gene. Instead of multiplying the edge

weight pLOH(MMR)/2 of the edge (m, ;, _, _, _)! (ml, ;, _, _, _) by (1 − reffLOH) in the original

matrix A, we add a matrix C with a corresponding edge weight −reffLOH pLOH(MMR)/2. The

Fig 5. Model component for the positive association of MLH1 and CTNNB1. Part of the combined gene mutation graph for CTNNB1 and MLH1 of

the matrix C. The gene mutation graphs for the other possible gene states MLH1 2 {l, ll}, CTNNB1 2 {m, ml} are defined in an analogous way.

https://doi.org/10.1371/journal.pcbi.1008970.g005
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following edges are added to the matrix C with the same weight:

ðl; ;; ; ; Þ ! ðll ; ;; ; ; Þ; ð19Þ

ðm;m; ; ; Þ ! ðml ;m; ; ; Þ; ð20Þ

ðl;m; ; ; Þ ! ðll ;m; ; ; Þ: ð21Þ

Furthermore, we need to insert the following new edges with edge weight −reffLOH

pLOH(MLH1)/2

ðm; ;; ; ; Þ ! ðml ;l; ; ; Þ; ð22Þ

ðl; ;; ; ; Þ ! ðll ;l; ; ; Þ; ð23Þ

ðm;m; ; ; Þ ! ðml ;ml; ; ; Þ; ð24Þ

ðl;m; ; ; Þ ! ðll ;ml; ; ; Þ: ð25Þ

All other entries of C are zero, leading to a sparse matrix with only 400 non-zero entries.

Increased LOH rate after APC inactivation. The following model component deals with

the increased LOH rate of APC-inactivated crypts, which is assumed to be the case in many

cancers [52]. In the latter, we will denote those APC-inactivated crypts by APC-/-, which are

inactivated due to mm or ml.

As further LOH events can occur for MMR, CTNNB1 and TP53 in APC-/- crypts, we have

to introduce individual matrices for each effect leading to the matrix D = D1 + D2 + D3, where

D1 ¼ DMMR � I5 � diag ð0; 0; 0; 1; 1Þ � I2 � I5; ð26Þ

D2 ¼ I5 � DCTNNB1 � diag ð0; 0; 0; 1; 1Þ � I2 � I5; ð27Þ

D3 ¼ I5 � I5 � diag ð0; 0; 0; 1; 1Þ � I2 � DTP53 : ð28Þ

Analogous to the model component B, we define a gene mutation graph of MMR, CTNNB1
and TP53 with parameter δ such that the LOH rate is increased by a factor δ + 1. This is illus-

trated in Fig 6 for CTNNB1 and TP53, where the gene mutation graph for MMR is defined

analogously.

Mutual enhancement of effects C and D. APC inactivation increases the LOH rate of

other genes, including MLH1, which is modeled by the matrix D. Further, there is a positive

association of MLH1 and CTNNB1 alterations, which we can model in the same way as an

LOH event, as described in matrix C. Thus, we would like to demonstrate how to model the

mutual enhancement of two effects, which will be described by an additional matrix E. As for

the matrix C, we build the combined adjacency matrix for MLH1 and CTNNB1 and combine

it with the other genes via the Kronecker product, i.e.,

E ¼ EMLH1;CTNNB1 � diag ð0; 0; 0; 1; 1Þ � I2 � I5; ð29Þ

where again, the ordering is essential to enable an efficient implementation.

This enhancement only affects the APC-/- crypts, thus we use diag(0, 0, 0, 1, 1) for the APC
matrix. Analogous to Fig 5, we illustrate parts of the gene mutation graph for the combination

of MLH1 and CTNNB1 after APC inactivation in Fig 7.
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Increased mutation rate of KRAS after MMR deficiency. KRAS is an oncogene with one

point mutation sufficient for activation, where mainly codon 12 or 13 are hit. Codon 13 muta-

tions are known to be associated with and enriched in MMR-deficient cancers, as these muta-

tions are more likely to occur under the influence of MMR deficiency [22]. We will consider

this association by increasing the KRAS mutation rate after MMR deficiency by a factor z + 1.

Fig 6. Model component for increasing the LOH rate of MMR, CTNNB1 and TP53 by a factor δ + 1 after APC inactivation. Gene mutation graph

for both genes, CTNNB1 and TP53, of the component D. The gene mutation graph for MMR is defined in an analogous way.

https://doi.org/10.1371/journal.pcbi.1008970.g006
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For this, the matrix F is defined analogously to the matrix B with the corresponding matrix

entries multiplied by z. The gene mutation graph of KRAS is given in Fig 8.

3.2 Modifications to the model

In Section 3.1, we introduced a mathematical modeling approach for colorectal carcinogenesis

using the example of Lynch syndrome. We will present modifications to the model to handle

other forms of colorectal carcinogenesis such as Lynch-like and MSS carcinogenesis, as well as

colorectal carcinogenesis in FAP individuals.

For example, this can be done by changing the initial values of the model to differentiate

between sporadic and hereditary cases or to consider germline variants in different genes, e.g.,

MMR in Lynch syndrome and APC in FAP.

Further, we can include other mutation status of already included genes, for instance the

wild-type state in the MMR gene for the Lynch-like and sporadic MSI case, and we can adapt

specific parameters to account for specific carcinogenesis mechanisms like we will do for the

example of FAP later in this section.

Fig 7. Model component for the mutual enhancement of two dependencies by a factor δreffLOH. Part of the gene mutation graph for CTNNB1 and

MLH1 after APC inactivation considered by the component E. The gene mutation graphs for the other possible gene states MLH1 2 {l, ll}, CTNNB1
2 {m, ml}, APC 2 {ml} are defined in an analogous way.

https://doi.org/10.1371/journal.pcbi.1008970.g007
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Finally, we describe the potential for modifications to account for cancer evolution in other

organs.

3.2.1 Non-Lynch and FAP. Lynch-like and Lynch syndrome carcinogenesis. The main

difference between Lynch-like and Lynch syndrome carcinogenesis is the absence or presence

of a monoallelic MMR germline variant as a first hit at birth. In Lynch syndrome carcinogene-

sis, all body cells, including those constituting colonic crypts, already carry a monoallelic vari-

ant in one of the MMR genes, whereas in Lynch-like carcinogenesis all cells start with wild-

type MMR genes. By introducing the additional vertex ; in VMMR ¼ f;;m;l;mm;ml; llg with

point mutation and LOH rates described in Sections 3.1.2 and 3.1.3, it is possible to represent

those two forms of MSI carcinogenesis. The initial value changes to x0 = 0 except for the entry

corresponding to (m, ;, ;, ;, ;) or (l, ;, ;, ;, ;) in the hereditary case and (;, ;, ;, ;, ;, ;) in the

sporadic case for which the value is set to ncrypts.

MSS carcinogenesis. It is possible to model the evolution of MSS CRCs with the proposed

model by not including MMR genes in the vertex set. Due to the absence of MMR in the

model, CTNNB1 mutations are much less frequent. The classical adenoma-carcinoma model

including APC, KRAS and TP53 is the dominant pathway of carcinogenesis.

FAP carcinogenesis. Another application of the model is the evolution of CRCs in another

hereditary syndrome, namely FAP. Those individuals have a single germline variant in APC,

which is known to be a point mutation in almost all cases [75, 76]. Thus, the dynamical system

starts with all crypts in the state (;, ;, m, ;, ;).

As reported in [77], we assume that the germline variants are not equally distributed among

the base pairs of the APC gene. Instead, they are concentrated at specific codons leading to the

fact that we change the number of hotspot base pairs in the FAP case. Due to [78], the classical

FAP case is associated with germline variants in codons 1250−1464, leading to the assumption

nhs = 600 in our model for FAP simulations. Thus by changing the parameters of the model,

we are able to model other cases of colorectal carcinogenesis.

The common regions of germline variants described above are also correlated with the

most occurring polyps (more than 5,000) [78] in FAP individuals. With an estimated diameter

of 4.8 mm per polyp [79] and 0.09 mm per crypt [80], this would result in 107 crypts in a poly-

pous state. Thus, our model simulations should also reflect that the number of polyps, assumed

to consist of APC-/- crypts, should be much higher than in the sporadic case.

3.2.2 Cancer in other organs. In general, it is possible to modify the model in such a way

that it can not only model carcinogenesis in the colon but also in other organs. For this, the

incorporated genes have to be changed as well as the definitions of point mutations and LOH

events have to be adapted to account for different cell structures. The application to other

organs will be considered in future work.

Fig 8. Model component for increasing the mutation rate of KRAS after MMR deficiency. Gene mutation graph of KRAS for the matrix F with the

KRAS mutation rate increased by a factor z.

https://doi.org/10.1371/journal.pcbi.1008970.g008
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4 Results

We present the results of modeling the evolution of human colorectal crypts in a typical Lynch

syndrome patient over the course of 70 years. The model starts with a germline variant in

MMR in all crypts at birth and yields the temporal evolution of the crypt distribution among

all genotypic states, where we only show the results for MLH1 and MSH2, as those are related

to the highest CRC incidence in Lynch syndrome [25].

4.1 Evolution of crypts with specific genotypic states

Making use of Eq (S1–15) in S1 Appendix, we extracted and combined different genotypic

states from the overall distribution. We did so for MMR-deficient crypts as well as other more

advanced states, which we refer to adenomatous and cancerous states. They are defined in the

following way:

MMR-deficient: MMR-deficient; CTNNB1, APC, KRAS, TP53 intact, i.e., (mm, ;, ;, ;, ;) +

(ml, ;, ;, ;, ;) + (ll, ;, ;, ;, ;)

State 1: MMR-proficient or MMR-deficient, CTNNB1 activated; APC inactivated; KRAS and

TP53 intact (called early adenomatous)

State 2: MMR-proficient or MMR-deficient, CTNNB1 activated; APC inactivated; KRAS acti-

vated; TP53 intact (called late adenomatous)

State 3: MMR-proficient or MMR-deficient, CTNNB1 activated; APC and TP53 inactivated;

KRAS activated (called cancerous)

The parameters are set in such a way that the number of MMR-deficient crypts is quantita-

tively comparable to the clinical data presented in [80]. We show the results for MLH1 and

MSH2 in Fig 9. The impact of the parameters on the simulation results are discussed in Section

4.4. The procedures for parameter learning and sensitivity analysis are planned to be included

in a more mathematically focused follow-up work.

Further, the results for early and advanced adenomatous and cancerous states are given in

Fig 10 for a typical Lynch syndrome patient with a germline variant in MLH1. It is important

to note that we can analyze, e.g., the relative contribution of MMR-deficient and MMR-profi-

cient adenomatous and cancerous states. With the chosen parameter combinations, this rela-

tive contribution changes between the advanced adenomatous and the cancerous states. We

will further elaborate these contributions in Section 4.3. Further, it is possible to compare the

evolution of these states with respect to the contribution of APC and CTNNB1. Note that some

of the parameters are chosen without any bio-molecular data at hand meaning that some of

the absolute numbers of crypts presented here may not match the real numbers once measur-

able. With increasing data available for the mutation rates or the evolution of crypt numbers,

the model parameters can be adapted to further improve the similarity of the model output to

clinical observations.

4.2 Influences of variants in MMR genes

The model is able to compare the carcinogenesis process for the different MMR genes in order

to examine gene-specific differences. This in particular includes the questions of whether and

how the distribution of crypts in various states changes when considering different MMR

genes. More generally, the distribution among the different pathways of Lynch syndrome car-

cinogenesis may vary among the MMR genes. As the different pathways of carcinogenesis

need different treatment and surveillance strategies, it is essential for Lynch syndrome-related
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clinical guidelines to examine the gene-specific associations with the pathways of carcinogene-

sis, as depicted in [25].

An early example is given in Fig 9 showing the differences among MMR-deficient crypt

foci which are the first detectable precursor lesions of the Lynch syndrome carcinogenesis

pathways 2 and 3 illustrated in Fig 1. Differences among the MMR genes are reported for

Fig 9. Number of MMR-deficient crypts over the life of a typical Lynch syndrome patient for MLH1 and MSH2. The parameters in the model are

set in such a way that the simulation results are in concordance with published data [80]. In our model, differences among genes are due to differences

in coding region and gene lengths as well as the magnitude of the effects of the dependent mutational processes.

https://doi.org/10.1371/journal.pcbi.1008970.g009

Fig 10. Number of crypts over time in a typical MLH1 carrier in combined states, like early adenomatous, advanced adenomatous and cancerous

states as defined in the text for the given parameter set. Due to the model components accounting for different genetic dependencies, the distribution

of MMR-deficient and MMR-proficient, as well as the contribution of APC and CTNNB1 change for the different states. Due to the lack of suitable

medical data, parameter learning was not performed in a rigorous way. As soon as data are available, this can be done using different mathematical

techniques.

https://doi.org/10.1371/journal.pcbi.1008970.g010
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adenoma and carcinoma incidences of Lynch syndrome individuals [25]. In the model, the dif-

ferences are due to differences in the properties of the MMR genes, such as coding region and

gene lengths, and due to the fact that dependent mutational processes influence the evolution

of the crypts differently. As soon as there are more data available on bio-molecular mecha-

nisms or there are further pathogenic variant hypotheses to be tested, these differences can be

made even more explicit by introducing additional model components. This will be the subject

of future work.

4.3 Distribution among the carcinogenesis pathways

We analyzed the proportion of MMR-proficient and MMR-deficient crypts in various states to

determine the proportion in which MMR deficiency occurred as an initial event in carcino-

genesis of Lynch syndrome carriers. The results are shown in Fig 11 and are similar to the cur-

rently available data [22] with a slight underestimation of MMR-deficient APC-/- crypts

compared to MMR-proficient ones.

In general, for independent mutational processes, the distributions in Fig 11 are the same as

there are no influences between the different genes. In our model, we can recognize the depen-

dencies, as the distributions vary within the subsequent states. From APC-/- to APC-/- and

KRAS-activated crypts, the difference in the proportions of MMR-proficient and MMR-defi-

cient crypts greatly increases with the given parameter setting leading to the fact that almost all

APC-/-, KRAS-activated crypts are MMR-deficient. As more of the APC-/- crypts are MMR-

deficient, this seems to imply that MMR deficiency is often the initial event in Lynch syndrome

carcinogenesis.

Further, the proportions do not change if TP53 inactivation happens because currently,

there is no such effect incorporated in our model for, e.g., increasing the mutation rate of

TP53 after MMR deficiency or after KRAS activation.

4.4 Analysis of parameter contributions

The results were obtained with the set of parameters given in Table 3. We analyzed the influ-

ences of the parameters on the simulation results. First, the number of point mutations npt, the

number of cells ncells, and the number of crypts ncrypts determine the absolute values of the ana-

lyzed numbers.

Further, the relation of the hotspot length and the gene length determines the relative fre-

quency of point mutations and LOH events for the individual genes, which can be changed by

Fig 11. Proportion of MMR-proficient and MMR-deficient crypts in a typical MLH1 carrier in different states corresponding to the states in the

classical adenoma-carcinoma sequence by Vogelstein [7]. Among the APC-/- crypts (left), the number of MMR-deficient crypts is up to 20% higher

than the number of MMR-proficient ones. This difference largely increases with the subsequent KRAS activation (KRAS+) (middle) and TP53
inactivation (TP53-/-) (right) leading to the fact that almost all crypts in the last state, corresponding to a cancerous state, are MMR-deficient. These

simulation results are in concordance with available data with a slight underestimation of MMR-deficient APC-/- crypts [22].

https://doi.org/10.1371/journal.pcbi.1008970.g011
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including mutational dependencies for specific genotypic states. Here, the magnitude of the

parameters reffLOH, β, δ, and z determines how large the contribution of the individual depen-

dency is.

The parameters b(gene) affect the slope of the crypt evolution curve. In our case, b(MMR)<

0 leads to the fact that further MMR-deficient crypts are disadvantageous for the crypt survival

leading to fewer additional MMR-deficient crypts with increasing age (Fig 9).

In contrast, APC inactivation is modeled as an advantage for the crypts such that b(APC) >

0 leads to more additional APC-inactivated crypts with increasing age.

Furthermore, the relation of the fixation affinities f(gene) for different genes seems to influ-

ence the ordering of the mutations. A larger value of f(gene) leads to a faster fixation in this

gene and thus to an earlier event in carcinogenesis (Fig 11).

However, there is still uncertainty in the data about the fitness advantages and disadvan-

tages of individual genetic changes as well as on the fixation affinities of mutations. General

information on mutational dependencies and how they affect the phenotype of the cells is cru-

cial to include further bio-molecular mechanisms.

4.5 Non-Lynch and FAP

We compared different types of colorectal carcinogenesis by changing the initial values of the

dynamical system or by adapting other parameters.

First, we compared the number of MMR-deficient crypts in Lynch-like and Lynch syn-

drome individuals, as illustrated in Fig 12. The latter is much larger in Lynch syndrome indi-

viduals than in Lynch-like individuals, corresponding with [80].

This is due to the fact that in Lynch syndrome, a germline variant in one allele of the MMR

gene is already present such that an additional somatic mutation leading to MMR-deficiency

could be gained earlier in life.

Table 3. Parameter setting for the shown results.

Parameter Value

ncrypts 9.95�106

ncells 1.5�103

nbp,genome 3.2�109

npt 1.2

b(MMR) −0.01

b(CTNNB1) 0.0

b(APC) 0.10

b(KRAS) 0.01

b(TP53) 0.0

f(MMR) 2.3�10−6

f(CTNNB1) 1.2�10−3

f(APC) 8.3�10−7

f(KRAS) 2.5�10−8

f(TP53) 1.2�10−5

reffLOH 0.9

β 103

δ 102

z 102

https://doi.org/10.1371/journal.pcbi.1008970.t003
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Further, we compared the APC-/- crypt evolution of a typical FAP patient with a sporadic

case without a germline variant in APC for all crypts. We used the parameter setting given in

Table 3, except for nhs(APC) = 600. We changed the number of hotspot base pairs in the FAP

case due to the fact that the germline variants are not equally distributed among the base pairs

of the APC gene, as described in Section 3.2.1.

With the given parameter set, our model simulations yield between 104−105 APC-/- crypts,

which is below the estimates calculated from the literature (see Section 3.2.1). The time evolu-

tion of the number of crypts is shown in Fig 13. It would be necessary for the future to obtain

age-dependent data as well as further measurements to be able to adapt the parameters

accordingly.

5 Discussion

We presented a mathematical model for the multiple pathways of colorectal carcinogenesis

based on a dynamical system with Kronecker structure, which models the number of colorec-

tal crypts being present in different genotypic states.

The modeling approach consists of different model components for independent and

dependent mutational processes. Although the Cancer Dependency Map [81] provides a great

resource and extensive information about gene dependencies, data for specific medical

Fig 12. Comparison of MMR-deficient crypts in Lynch-like and Lynch syndrome individuals. The number of MMR-deficient crypts is significantly

higher in Lynch syndrome individuals compared to Lynch-like individuals, which matches the findings in [80].

https://doi.org/10.1371/journal.pcbi.1008970.g012
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contexts are scarce. Thus, the first model component is neutral and starts with the artificial

assumption of complete independence. The process of adaptation to known dependencies is

illustrated in our example of Lynch syndrome carcinogenesis.

Mathematically, the independence is represented by building mutation graphs for all genes

individually and combining them using the Cartesian graph product. This means that the

matrix of the corresponding model component can be obtained by combining the adjacency

matrices using the Kronecker sum. The use of the Cartesian graph product is based on three

assumptions: 1) the genotypic states in the combined graph are exactly the combination of the

mutation status of the individual genes. This is a natural choice and not a limitation of the

model. If there were additional genotypic states which should be considered, then they would

be included in the individual genes already. 2) There is only one mutation at any point in time.

However, simultaneous mutations can be included explicitly in the model. This is for example

already done in the case of MLH1 and CTNNB1. 3) The mutations considered in this model

component are independent of each other. This is true for those mutations with data suggest-

ing independence or due to lack of data indicating dependency. However, if there are data sug-

gesting any dependency, this is considered in other model components.

Fig 13. Comparison of APC-/- crypts in the sporadic case and in FAP individuals, where we changed the initial value of the dynamical system as

well as nhs(APC) = 600 for FAP. Our simulation results yield numbers below estimates found in the literature [78–80]. With improved measurements,

future work will adapt the parameters accordingly.

https://doi.org/10.1371/journal.pcbi.1008970.g013
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The model includes further components representing specific correlations and dependen-

cies of genetic events which are chosen in concordance with existing medical hypotheses and

data. The corresponding matrices again have a Kronecker structure. Further, all matrices are

combined in an additive way which eases the analysis of the individual effects on the overall

model solution. In addition, if further medical hypotheses and data are available, it is straight-

forward to include further mutation dependencies in the model.

As an example, we focused on the evolution of key genotypic states occurring in Lynch syn-

drome, the most common inherited CRC syndrome, namely alterations in the MMR genes,

with focus on MLH1 and MSH2, CTNNB1, APC, KRAS and TP53. There might be other driver

mutations in Lynch syndrome-associated colorectal carcinogenesis where empirical data are

scarce and thus, these mutations are currently not covered for the specific example of Lynch

syndrome modeling. Due to the general structure of the model, it would be possible to con-

sider other driver mutations in future.

In order to apply the modeling approach to Lynch syndrome carcinogenesis, we assume

gene-dependent mutation and LOH event rates meaning that the mutation rate of a gene is

proportional to the length of the gene and the total number of mutations occurring in a cell

during cell division. As there are multiple cells within a crypt each having an individual cell

cycle, it takes some time until the mutation is present in the whole crypt, a process called fixa-

tion. Further, a mutation could be washed out of the crypt, if it is not advantageous enough for

fixation to occur. Thus, we assume that the mutation rate of a gene in a crypt also depends on

a fixation tendency of the specific genetic event. The edge weights in the graph representation

correspond to the mutation rates between those genotypic states of crypts, where the mutation

rates are computed based on the described assumptions.

By this choice of parameters, we were able to obtain simulation results which are in concor-

dance with clinical observations. This includes the number of crypts in a specific genotypic

state, like MMR-deficient crypts which are early precursors in Lynch syndrome carcinogenesis

[80]. Further, we analyzed the influence of variants in different MMR genes, here for MLH1
and MSH2 as an example, leading to differences in numbers of crypts in specific states. This

was recently observed in clinical data [25] suggesting adaptation of Lynch syndrome surveil-

lance guidelines based on MMR gene variants. Here, rigorous analysis of the impact of MMR

gene variants, considering also other MMR genes, and other molecular differences is subject of

future work.

We are fully aware of the fact that our simulation results are depending on specific a priori
assumptions. Moreover, our model is deterministic; therefore, options for assessment of

robustness are limited and mainly based on parameter variations. Therefore, development of

stochastic modeling approaches is desirable to more faithfully reflect natural cancer evolution,

including random events and spontaneous disappearance of precancerous and potentially

even cancerous lesions.

We analyzed the proportion of MMR-deficient and MMR-proficient crypts showing APC
inactivation as a first indicator for the distribution among the three currently hypothesized

pathways of carcinogenesis in Lynch syndrome individuals, with a good concordance to cur-

rent clinical observations [22]. Future studies will include a more systematic analysis and

modeling of this aspect.

The model can be easily modified to other types of carcinogenesis, such as sporadic MMR-

deficient cancers, Lynch-like MMR-deficient cancers, other hereditary CRCs like FAP, and

microsatellite-stable CRCs.

It is important to note that the modeling approach in general is independent of the specific

parameter values. Thus, different assumptions for the mutation rates of individual genes can

be used, if appropriate, for another carcinogenesis scenario. Moreover, different assumptions
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for Lynch syndrome carcinogenesis, e.g., the inclusion of the ll states or dominant-negative

effects can be accounted for by adapting parameter values.

In principle, it is possible to apply the model structure to other organs by modifying the

mutation probability definitions according to the underlying cell structure and by incorporat-

ing different genes with appropriate predominant genetic effects. This will be the subject of

further investigation. Further, in the presented example, the model components are based on

individual genes and gene-specific aspects. In other words, we consider genes individually and

not their signaling pathways as entities. However, in general, it is possible to represent the

model components by signaling pathways and the influence of alterations thereof.

In summary, we model carcinogenesis on the basis of the number of crypts being present

with specific genotypic states. The latter can be aligned to clinically defined stages such as early

adenoma, although we are fully aware of the fact that the congruence between clinical and

molecular definitions will be limited due to the dynamics of cancer evolution and the limited

availability of comprehensive data. Limitations of data also concern the topic of overdiagnosis

and disappearing lesions. From a mathematical point of view, it is straightforward to include

spontaneous disappearance of lesions in the modeling approach, as shown in the manuscript.

However, there are currently not enough prospective data available to estimate or learn the

necessary parameters, e.g., the probability of spontaneous crypt loss for each mutation status.

This is the reason why we have chosen a simpler model jointly modeling the proliferation and

disappearance by the self-loops in the graph, largely reducing the number of parameters that

need to be determined. If more molecular data with the analysis of all possibly relevant genes

are available, a comparison of the model with these data will allow for parameter learning of

the yet unmeasurable parameters. In this context, we would like to emphasize that the “linear

model” used in the present approach only reflects the mathematical framework of linear differ-

ential equations, but does not represent the evolutionary process, which we consider as a paral-

lel, competitive process of mutational events, persistence and regression of lesions.

Further, the modular structure of the model allows for an inclusion of further states, e.g.,

death/disappearing states in a natural way. This also concerns external factors, such as effects

of the microenvironment or the role of the immune system: Our model, through the flexibility

regarding mutational events and their consequences, can also be used to make specific

assumptions about tumor-immune cell interactions, for example assuming a higher immune

visibility of MMR-deficient cell clones with high mutation load, which is part of future work.
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16. Ahadova A, von Knebel Doeberitz M, Bläker H, Kloor M. CTNNB1-mutant colorectal carcinomas with

immediate invasive growth: a model of interval cancers in Lynch syndrome. Familial cancer. 2016; 15

(4):579–586. https://doi.org/10.1007/s10689-016-9899-z

PLOS COMPUTATIONAL BIOLOGY Mathematical modeling of multiple pathways in colorectal carcinogenesis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008970 May 18, 2021 28 / 31

https://doi.org/10.1038/nm.3967
https://doi.org/10.1038/nm.3967
http://www.ncbi.nlm.nih.gov/pubmed/26457759
https://doi.org/10.1053/j.gastro.2010.01.054
https://doi.org/10.1053/j.gastro.2009.12.064
https://doi.org/10.1053/j.gastro.2014.01.041
https://doi.org/10.1016/0168-9525(93)90209-Z
https://doi.org/10.1093/ije/dyl272
https://doi.org/10.1093/ije/dyi134
https://doi.org/10.1056/NEJM198809013190901
https://doi.org/10.1056/NEJM198809013190901
http://www.ncbi.nlm.nih.gov/pubmed/2841597
https://doi.org/10.1073/pnas.1421839112
https://doi.org/10.1016/j.trecan.2016.02.004
https://doi.org/10.1186/s13053-019-0106-8
http://www.ncbi.nlm.nih.gov/pubmed/30858900
https://doi.org/10.1007/s10689-016-9899-z
https://doi.org/10.1371/journal.pcbi.1008970
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