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The spleen is one of the major immunological sites for maintaining blood homeostasis. 
Previous studies showed that heterogeneous splenic macrophage populations con-
tribute in complimentary ways to control blood-borne infections and induce effective 
immune responses. Marginal metallophilic macrophages (MMMΦs) and marginal zone 
macrophages (MZMΦs) are cells with great ability to internalize blood-borne pathogens 
such as virus or bacteria. Their localization adjacent to T- and B-cell-rich splenic areas 
favors the rapid contact between these macrophages and cells from adaptive immunity. 
Indeed, MMMΦs and MZMΦs are considered important bridges between innate and 
adaptive immunity. Although red pulp macrophages (RpMΦs) are mainly considered 
scavengers for senescent erythrocytes, several data indicate a role for RpMΦs in con-
trol of infections such as blood-stage malaria as well as in the induction of innate and 
adaptive immunity. Here, we review current data on how different macrophage subsets 
recognize and help eliminate blood-borne pathogens, and, in turn, how the inflammatory 
microenvironment in different phases of infection (acute, chronic, and after pathogen 
clearance) influences macrophage function and survival.
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introduction

Effective control of infections through the immune system is ensured by the well-organized  structure 
of secondary lymphoid organs, which allow capture, processing, and presentation of antigens, 
ultimately leading to successful elimination of pathogens and induction of adaptive immunity. 
Among lymphoid organs, the spleen is particularly shaped for clearance of blood-borne pathogens. 
Microanatomically, the spleen is divided into the white pulp and the red pulp (Rp), separated by 
the marginal zone (MZ) [reviewed in Ref. (1)]. Rp and MZ have a complex macrophage (MΦ) 
network with distinct origins and functions in the immune response to infections. RpMΦs form 
a vast network inside the Rp and are characterized in mice by expression of F4/80highCD68+CD1
1blow/− and intense autofluorescence (2). In turn, inside the MZ, two populations of MΦs can be 
discerned. The MZMΦs typically express in their surface the C-type lectin SIGN-related 1 (SIGNR1) 
and a type I scavenger receptor called Macrophage Receptor with Collagenous structure (MARCO), 
which recognize non-opsonized molecules (3), mainly blood-borne antigens (4). Furthermore, 
marginal metallophilic MΦs (MMMΦs) are defined, among other molecules, by the expression of 
Sialic acid-binding Ig-like Lectin-1 (Siglec-1, Sialoadhesin, CD169) and MOMA-1 (5). A general 
scheme of the spleen structure is depicted in Figure 1.
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Recent studies led to a growing understanding of the precise 
roles different splenic MΦs play to maintain blood homeostasis, 
particularly in infectious diseases, in which pathogen elimination 
depends on the development of appropriate adaptive immune 
response. In this review, we addressed the roles of each one of 
these MΦ subsets, with special focus on blood-borne infec-
tions. We described the current knowledge on the effects of 
splenic microarchitecture and microenvironment on these MΦs 
and reciprocal influence of these cells on spleen structure and 
functionality.

How Splenic MΦ Sense Pathogens and 
Damage-Associated Self-Molecules?

Splenic MΦs have two main protective activities during blood-
borne infections. The first and most well characterized is phago-
cytosis and elimination of pathogens from circulation. However, 
beyond the task of eliminating blood-borne pathogens, splenic 
MΦs can play a prominent role in immune system activation. 
To properly execute these functions, they are provided with 
a large variety of pattern-recognition receptors (PRRs) that 
recognize pathogen-associated molecular patterns (PAMPs) and 

FiGURe 1 | Localization and phenotype of splenic MΦ subsets. This figure is a broad scheme of the positioning of RpMΦs, MZMΦs, and MMMΦs inside 
spleen and their respective phenotypic markers. RpMΦs (in red) are typically found within cords on the red pulp, allowing direct contact with RBCs and other blood 
cells/particles passing through venous sinuses. They are better defined by the concomitant expression of F4/80, CD11b (at low levels), and CD68 as well as other 
receptors that aid in their function. MZMΦs (in green) are found in the marginal zone (MZ) outer layer – they are also in direct contact with blood-borne particles. 
These cells express in their surface the molecules MARCO and SIGNR1 and other receptors that help in the uptake of blood-borne pathogens. Finally, the MMMΦs 
(in brown) reside within the inner layer of the MZ, in the contact with the white pulp. They are also specialized in blood-borne particle uptake and express surface 
markers such as SIGLEC-1 and MOMA-1.

damage-associated molecular patterns (DAMPs). Engagement 
of Toll-like receptor (TLR) 4 by pathogen molecules, such as 
lipopolysaccharides (LPS) from Gram-negative bacteria is funda-
mental for the induction of a proinflammatory gene and protein 
expression signature in MΦs, which ultimately leads to innate 
immune activation (6). This also holds true for several other 
interactions such as TLR2 and/or TLR4 with glycosylphosphati-
dylinositol (GPI) anchors from Trypanosoma and Plasmodium 
parasites (7, 8) and TLR9 engagement by CpG motifs found in 
bacterial (9) and plasmodial DNA (10).

On the other hand, TLRs recognize DAMPs in  situations 
of tissue injury. For example, heat shock proteins (HSPs) are 
endogenous damage signals (molecules released by cells under 
stress or necrotic cell death) and bind to TLR2 and TLR4 in MΦs, 
inducing these cells to produce proinflammatory cytokines and 
to express costimulatory molecules (11). Release of HSPs to circu-
lation has been reported during sepsis (12) as well as production 
of HSP homologues by pathogens such as Plasmodium parasites 
(13). Also, TLRs  –  especially TLR2 and TLR4  –  can recognize 
extracellular matrix components such as fibronectin (14). TLR4 
engagement by fibronectin leads to MΦ activation in a similar 
fashion to what happens after LPS stimulation. Fibronectin is 
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presumably secreted by fibroblasts inside the spleen. Thus, this 
molecule may be produced during blood-borne infections such 
as malaria, where profound changes in splenic microarchitecture 
following acute infection occur, leading to the accumulation of 
fibroblasts inside the Rp (15). Expression of fibronectin-binding 
proteins (FnBPs) by Staphylococcus aureus is important to bacte-
rial uptake by MΦs in inflammatory situations through binding 
of very late antigen 5 (VLA-5) (16). Therefore, it is reasonable 
to question whether TLR2 and/or TLR4 expressed in MΦs are 
engaged by fibronectin in those situations. Importantly, S. aureus 
FnBPs are crucial for the development of sepsis (16).

Another DAMP that can induce MΦ activation is the high 
mobility group box protein 1 (HMGB1), an intracellular DNA-
binding protein involved in chromatin remodeling and transcrip-
tion regulation (17). Extracellular HMGB1 binds to different 
endogenous ligands that are recognized by receptors such as 
TLR4, as well as the receptor for advanced glycation end products 
(RAGE) (18), and triggers inflammatory responses by the innate 
immune system. Release of HMGB1 by splenic MΦs occurs upon 
extensive splenic cell apoptosis, a feature commonly observed 
during sepsis. Indeed, HMGB1 is released into the extracel-
lular milieu during sepsis and neutralization of this protein by 
monoclonal antibody treatment blocks sepsis development (19). 
Abundant splenic cell apoptosis is also typical in rodent malaria, 
at the peak of acute infection (20). In human malaria, endogenous 
HMGB1 serum levels are significantly higher in patients with 
severe disease compared to uncomplicated cases (21), suggest-
ing that HMGB1 might also be involved in the development 
of immunopathology. Thus, it would not be surprising if acute 
immune response to Plasmodium and consequent immunopa-
thology could be suppressed in great extent with neutralization 
of HMGB1.

Splenic MΦ receptors also include C-type lectin receptors 
(CLRs), such as dectin-1, mannose receptor, and dendritic cell-
specific intercellular adhesion molecule-3-grabbing non-integrin 
(DC-SIGN). CLRs have multiple functions in the immune sys-
tem, including pathogen recognition and neutralization (22). 
Additionally, the liver synthesizes mannose-binding protein 
(MBP) during infectious diseases. This protein activates the 
complement system in order to form the membrane attack com-
plex (MAC), and, more importantly in the spleen, to opsonize 
microorganisms such as virus (23) or protozoan parasites such 
as Trypanosoma cruzi (24). Scavenger receptors (SRs), such as 
SR-A1 and MARCO, are also expressed in splenic MΦs and like-
wise bind both self and pathogen molecules – more specificities 
of these receptors will be discussed later in this review. Among 
class B SRs, CD36 is known to mediate the uptake of oxidized 
low-density lipoprotein (oxLDL) and apoptotic cells, but also 
promotes phagocytosis of S. aureus bacteria by peritoneal MΦs 
(25). However, CD36 mediates cytoadherence of Plasmodium-
infected red blood cells (iRBCs) to microvascular endothelium 
(26), a process supposed to avoid parasite clearance inside the 
spleen. The role of CD36 in recognizing this parasite by splenic 
MΦs still needs to be fully elucidated. Of note, RpMΦs express 
constitutively this molecule, which implies a possible role for this 
receptor in antiplasmodial immunity. This is a clear example of 
a receptor capable of mediating the recognition of both self and 

non-self molecules, implicating RpMΦs with both blood homeo-
stasis and control of blood-borne infections.

Among cytoplasmic PRRs, splenic MΦs express molecules 
from the NOD-like receptor (NLR) family (27). For example, 
disturbance of cellular ionic gradient activates the pyrin sub-
family member NLRP3, leading to inflammasome complex 
formation and in consequence to the release of inflammatory 
cytokines IL-1β and IL-18. Hemozoin, a disposal product 
formed from hemoglobin digestion by Plasmodium parasites, 
triggers the NLRP3 inflammasome in bone marrow-derived 
macrophages (BMDMs) (28), mediating the production of 
proinflammatory cytokines by these cells. Furthermore, the 
NLRP3 inflammasome is activated in mouse RpMΦs and 
human peripheral monocytes during acute malaria – although 
large amounts of IL-1β are only produced after stimulation with 
LPS (29). Interestingly, in mice, this process is mediated by the 
purinergic P2 × 7 receptor which recognizes extracellular ATP. 
ATP accumulates in Plasmodium-iRBCs and is released into the 
extracellular milieu through ion channels in the erythrocyte 
membrane or upon iRBC rupture (30).

Role of RpMΦs in Blood-Borne infections

As stated previously, RpMΦs form a vast network inside the Rp, 
and although there is no consensus about the origin of RpMΦs, 
recent data indicate that these MΦs are maintained by local 
proliferation during physiological conditions (31). Conversely, 
in some pathological conditions, circulating monocytes are able 
to differentiate into RpMΦs (32). RpMΦ population comprises 
macrophage colony-stimulating factor (M-CSF)-dependent and 
M-CSF-independent cells (33). M-CSF-dependent RpMΦs are 
efficient phagocytes and produce proinflammatory cytokines 
such as TNF-α and type I IFNs and are highly responsive to 
prostaglandin E2 (PGE2). In contrast, M-CSF-independent 
BMDMs are less efficient phagocytes that produce high amounts 
of PGE2 (34). If this is a general feature of M-CSF-independent 
MΦ populations, M-CSF-independent RpMΦs might influence 
the activity of M-CSF-dependent RpMΦs.

Venous cords and sinuses render the splenic Rp bloodstream 
in a slow pace. This characteristic allows for the filtering func-
tion of the spleen and favors elimination of aberrant red blood 
cells (RBCs) or Plasmodium-iRBCs (35). Of note, development 
of RpMΦs relies on the expression of the transcription factor 
Spi-C, which is induced by free heme from RBC degradation 
(32). Thus, iron homeostasis – which conversely is controlled 
by RpMΦs – might play a role in RpMΦ development. Splenic 
structure also facilitates the control of numerous blood-borne 
infections by RpMΦs. For example, RpMΦs can recognize 
the capsular polysaccharide glucuronoxylomannan (GXM) 
from Cryptococcus neoformans and subsequently phagocytize 
the bacteria (36). RpMΦs can also eliminate Streptococcus 
pneumoniae under conditions of splenomegaly (37). However, 
these MΦs are permissive to intracellular growth of Salmonella 
typhimurium (38).

Red pulp macrophages have also been implicated in the con-
trol of blood-stage malaria (35). Nevertheless, in experimental 
Plasmodium yoelii infection, spleen remodeling facilitates iRBC 
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adherence to the vascular endothelium and, in consequence, 
allows parasites to escape from phagocytes (15). Interestingly, a 
proportion of Rp phagocytes exhibit strong labeling for F4/80 
and CD11c, a phenotype shared by RpMΦs and DCs (39). This 
population participates in the early clearance of Plasmodium 
chabaudi parasites, but it sharply declines at the parasitemia 
peak. RpMΦs have a slow turnover rate and possibly undergo 
cell death after ingesting Plasmodium-iRBCs due to the toxic 
effects of hemozoin. RpMΦs, which are primarily required to 
maintain tissue homeostasis, might be substituted by inflamma-
tory phagocytes as well as by MΦs derived from inflammatory 
monocytes. An alternative explanation is downregulation of the 
F4/80 molecule upon MΦ activation, as reported during myco-
bacterial infection (40).

Several mechanisms mediate RBC recognition and clearance 
by RpMΦs. One of the most studied mechanisms is the antibody 
binding to altered self components such as Band 3 clusters (41) 
or phosphatidylserine residues exposed in the outer leaflet of 
RBC membrane (42). In these cases, natural antibodies and 
complement system proteins opsonize RBCs though recogni-
tion of Band 3 clusters or phosphatidylserine residues. Another 
important interaction involved in RBC phagocytosis by RpMΦs 
is the ligation of CD47 to Signal Regulatory Protein alpha (SIRPα) 
(43). CD47 is a self-molecule important to avoid clearance by 
phagocytes, which is ubiquitously expressed on many cell types, 
including RBCs. CD47 expression on RBCs is an inhibitory 
signal for phagocytosis (44), but RBCs expressing a modified 
isoform of this molecule are phagocytized by RpMΦs through 
SIRPα binding (43). Interestingly, the conformation-dependent 
anti-CD47 antibody 2D3 binds sickle RBCs preferentially (45), 
which might explain the enhanced phagocytosis of sickle RBCs 
inside spleen. A recent study showed that P. yoelii parasites pref-
erentially infect young RBCs expressing high levels of CD47 and, 
in consequence, escape from splenic clearance (46). Furthermore, 
enhanced resistance to P. yoelii observed in CD47-deficient mice 
is associated with a larger population of RpMΦs that ingest more 
iRBCs than wild-type counterparts. These findings explain why 
individuals with mild genetic RBC disorders (e.g., sickle cell trait 
and glucose-6-phosphate dehydrogenase deficiency) are pro-
tected from lethal malaria due to enhanced RBC phagocytosis.

Apart from being phagocytized by splenic MΦs, Plasmodium-
iRBCs are also destroyed intravascularly as a consequence of plasma 
membrane damage upon release of free merozoites. Hemozoin, a 
disposal product formed from hemoglobin digestion by parasites, 
is released from lysed iRBCs. Furthermore, a massive destruction 
of non-infected RBCs occurs during blood-stage malaria, leading 
to increased hemoglobin levels in circulation [reviewed in Ref. 
(47)]. Another example of hemolysis induced by infections is 
observed in septicemia caused by Escherichia coli, which produces 
exotoxin α-hemolysin (Hlyα) (48). Evidencing RpMΦs crucial 
role in neutralizing toxic effects of hemoglobin, these MΦs have 
high levels of intracellular heme due to RBC phagocytosis (2) and 
of free hemoglobin through the scavenger receptor CD163 (49). 
The enzyme heme-oxygenase 1 (HO-1) plays an important role in 
degrading free heme, which in excess causes toxicity to MΦs (50). 
Importantly, RpMΦs are able to control pathogen burden through 
control of iron availability. For  example, RpMΦs express the 

natural resistance associated macrophage protein-1 (NRAMP1) 
that is associated with protection against intraphagosomal patho-
gens, such as Mycobacterium bovis BCG, Leishmania donovani, 
or S. typhimurium. This molecule is a pH-dependent metal trans-
porter localized in phagosomal compartments, which reduces 
intraphagosomal iron levels derived from RBC phagocytosis (51). 
NRAMP1 synthesis is upregulated in IFN-γ-activated MΦs (52), 
a condition likely to occur during acute blood-borne infections. 
RpMΦs also limit pathogen iron uptake through TLR-mediated 
release of lipocalin-2, which can form complexes with pathogen-
secreted siderophores – molecules that help the collection of iron 
available for pathogens (53). RpMΦs involvement in controlling 
excessive immune responses is suggested by studies on autoim-
mune syndromes, while a similar participation in infectious 
diseases remains to be established. For instance, RpMΦs con-
stitutively express peroxisome proliferator-activated receptor-γ 
(PPAR-γ), which might be important to curb excessive immune 
responses to pathogens, in a similar manner to PPAR-γ expressed 
on lung MΦs upon S. pneumoniae infection (54). RPMΦs can also 
prevent autoimmunity by producing anti-inflammatory cytokines 
such as TGF-β and IL-10 and by inducing generation of regulatory 
T (Treg) cells (55). Of note, there are many T cells scattered in Rp 
(55), and this population participates in acute immune responses 
to infections, such as blood-stage malaria (39). We present an 
illustrated scheme of the different roles of RpMΦs in homeostasis 
and disease in Figure 2.

MZMΦs and MMMΦs Role in Blood-Borne 
infections

Marginal zone macrophages and MMMΦs have unique charac-
teristics that contribute to rapid phagocytosis of pathogens and 
other particles. Thus, these MΦs act like scavenger cells, develop-
ing pro- or anti-inflammatory responses depending on the nature 
of the interaction. MZMΦs express SIGNR1 that binds to yeasts 
and the yeast-derived particle zymosan (4), to bacteria such as 
Mycobacterium tuberculosis (56), S. pneumoniae (57), E. coli, and 
S. typhimurium (58), and to virus such as human immunode-
ficiency virus (HIV) (4). This receptor recognizes carbohydrate 
antigens from blood-borne pathogens and mediates their subse-
quent internalization into phagosomes (4). Although SIGNR1 in 
peritoneal MΦs cooperate with dectin-1 in zymosan uptake (59), 
these innate receptors colocalize poorly in MZMΦs (60). Similar 
to classical complement pathway activation, but independently of 
antibodies, SIGNR1 also binds C1q and assembles the complex 
C4bC2a or C3 convertase that catalyzes C3b opsonin formation 
(61). This mechanism was shown to provide resistance to intra-
venous S. pneumoniae infection.

Expression of the scavenger receptor MARCO is upregulated 
in different MΦ populations, especially in MZMΦs and MΦs 
in the medullary cord of lymph nodes (3). MARCO was firstly 
reported to bind and mediate uptake of Gram-negative bac-
teria and also to recognize oxLDL [reviewed in Ref. (62)]. The 
structure of MARCO is similar to that of the Scavenger Receptor 
A1 (SR-A1, CD204), which plays a role in bacteria and virus 
recognition (3). TLR-mediated activation of BMDMs stimulates 
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FiGURe 2 | RpMΦ biology during homeostasis and infection. This figure summarizes the different roles of RpMΦs in maintenance of host homeostasis and in 
the control of different infections. In the absence of infection (left), RpMΦs play important roles in the uptake of apoptotic cells, oxidized LDL (oxLDL), or senescent 
RBCs (sRBCs) from the circulations, through interaction with receptors such as SIRPα, CD36, CR3, or FcRs. CD47 expression on RBCs is an inhibitory signal for 
phagocytosis mediated by SIRPα, but sRBCs expressing a modified isoform of this molecule (altCD47) are phagocytized by RpMΦs. CD36 binds to 
phosphatidylserine (PS) and, alternatively, to oxLDL. RpMΦs are also important for iron homeostasis, and conversely, iron homeostasis seems to control RpMΦ 
development, through the action of free heme on Spi-C transcriptional factor. In these situations, RpMΦs have the ability of self-renewal by proliferation. Beyond the 
task of maintaining blood homeostasis, RpMΦs contribute to control blood-borne infections such as malaria (center) or bacterial infections (right) lead to changes in 
RpMΦ function. Plasmodium-infected RBCs (iRBCs) are recognized through the same receptors that recognize sRBCs, such as SIRPα, CR3, FcRs, or CD36, 
inferring a role for RpMΦs in parasite clearance. However, the adherence of iRBCs to microvascular endothelium through CD36 prevents iRBC clearance inside the 
spleen. Interestingly, P. yoelii parasites preferentially infect young RBCs expressing high levels of CD47 and, in consequence, escape from splenic clearance. RpMΦs 
also present with other receptors such as CLRs and PPRs, which in conjunct with FcγRIII contribute to recognition and elimination of bacteria from circulation. 
RpMΦs can recognize the capsular polysaccharide glucuronoxylomannan (GXM) from Cryptococcus neoformans and subsequently phagocytize the bacteria. The 
ability of RpMΦ renewal during infections, however, is poorly understood, and substitution of dead RpMΦs for monocyte-derived RpMΦs is presumable.
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MARCO-mediated phagocytic activity (63). Furthermore, 
MARCO in MZMΦs directly binds and mediates phagocytosis 
of E. coli and S. aureus bacteria (3). TLR engagement leads to acti-
vation of transcriptional mechanisms that increase phagocytosis 
and cell activation, and MARCO seems to work in conjunct with 
TLRs in order to mediate pathogen control (64).

Marginal zone macrophages and MMMΦs are fundamental 
in the early control of Listeria monocytogenes bacteremia, 
as evaluated by depletion of these MΦs using a low dose of 

clodronate liposomes (65). T-cell responses are not affected in 
this experimental model, ruling out the participation of MZMΦs 
and MMMΦs as antigen-presenting cells. Similar findings were 
reported during infection with Neisseria meningitidis (64), thus 
it is likely that these MΦs have a direct role in the elimination 
of bacteria from circulation. Conversely, adenoviruses colocalize 
with MZMΦs as soon as a few minutes after intravenous injection 
in mice (66). MZMΦs and MMMΦs play a similar role in lympho-
cytic choriomeningitis virus (LCMV) infection, corroborating 
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FiGURe 3 | Role of MZMΦs and MMMΦs during infection. In this figure, a brief description on how MZMΦs and MMMΦs are able to recognize and mediate 
protection against blood-borne pathogens is shown. MZMΦs (above) can recognize bacterial and viral infections by receptors such as MARCO or SIGNR1, which 
usually induce internalization and further pathogen degradation. A similar feature can be depicted for MMMΦs, where MOMA-1 or SIGLEC can mediate pathogen 
recognition and elimination from circulation. MMMΦs can also interact with CD8α+ dendritic cells (DCs), which ultimately lead to CD8+ T-cell activation.
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the importance of these MΦs in first-line antiviral defense (67). 
On the other hand, localization of MZMΦs and MMMΦs in the 
interface between the bloodstream and lymphocyte-rich zones 
makes them suitable to bridge innate and adaptive immunity in 
several situations. For instance, mice lacking SRs MARCO and 
SR-A1 show a defective microarchitecture of the splenic MZ and 
an impaired T-independent type 2 response when challenged with 
pneumococcal polysaccharide (68). MMMΦs also collaborate 
in cytotoxic T-cell activation by transferring antigen directly to 
CD8α+ DCs, which are specialized in cross-presentation to CD8+ 
T cells (69). This observation supports the use of the MMMΦs 
antigen-concentrating capacity in therapeutic strategies for 
the development of antitumor immunity. The different roles of 
MZMΦs and MMMΦs in blood-borne infections are shown in 
Figure 3.

Reciprocal influence of Splenic 
Microenvironment and MΦs

In several aspects, splenic MΦs shape splenic structure and/or 
microenvironment. The development of splenomegaly is typical 
in blood-borne infections, and it is characterized by profound 
changes in splenic microarchitecture, including remodeling of Rp 
(1). Given this, splenic MΦs are expected to play a prominent role 
in the recruitment of different cell types during acute immune 
responses. For example, RpMΦs recruit neutrophils into the spleen 
during early Candida infection by releasing CXCL1 and CXCL2, 
through autophagy-mediated depletion of the NF-κB inhibitor 
molecule A20 (70). Another example is the arresting of T cells 
inside the Rp during acute Plasmodium infection (39). RpMΦs 

may produce CXCR3- and/or CCR5-binding chemokines by a 
mechanism similar to that observed during early Candida infec-
tion – CXCR3 and CCR5 are the main upregulated chemokine 
receptors in splenic CD4+ T cells during acute blood-stage malaria 
(71). However, splenic MΦs might also act on splenic microen-
vironment after an acute infection. For example, apoptotic cell 
uptake induces CCL22 production by MMMΦs, which in turn 
induces Foxp3+ Tregs and DCs recruitment and accumulation, 
leading to a state of tolerance (72). Since the accumulation of apop-
totic cells is a normal feature after acute blood-borne infections 
(20), a similar mechanism possibly takes place. RPMΦs can also 
prevent autoimmunity by producing anti-inflammatory cytokines 
such as TGF-β and IL-10 and by inducing the generation of Treg 
cells (55). These cytokines may be important – besides limiting 
autoimmunity – to curb an excessive immune response that could 
be dangerous to the host after pathogen clearance.

Conversely, the splenic structure and its microenvironment 
seem to play pivotal roles in MΦ homing and function. For instance, 
arrangement of sinusoidal endothelial cells inside Rp hampers the 
circulation of aging and/or iRBCs (1), facilitating their trapping 
inside Rp and posterior phagocytosis by RpMΦs. Importantly, 
the cytokine milieu in the microenvironment  –  which varies 
throughout an acute infection – may also dictate RpMΦ function. 
Classic M1 MΦs have an enhanced capacity to accumulate iron, 
which positively influences the maintenance of these cells in a pro-
inflammatory state. On the other hand, alternative M2 MΦs have 
an increased ability to release iron, and increased iron availability 
in the microenvironment seemingly favors tissue remodeling 
[reviewed in Ref. (73)]. These effects can easily be associated with 
RpMΦs especially considering their role in iron uptake (1), thus it 
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TABLe 1 | Overview of splenic MΦ subsets.

MΦ type associated markers Connection to immune response Associated pathogens

RpMΦs

F4/80+/++ (2), CD11blow (2),  
CD68+ (2), and SIRPα+ (43)

• Uptake of aging or apoptotic RBCs (2)
• Limitation of autoimmunity (IL-10 and TGFβ in resolution of inflammation) (55)
• Induction of Tregs by IL-10 production (55)
• Phagocytosis of blood-borne pathogens (35–38)
• Iron homeostasis (1, 50–53)

Plasmodium (35), Cryptococcus 
neoformans (36), Streptococcus 
pneumoniae (37), Salmonella 
typhimurium (38)

MZMΦs

SIGNR1+ (3, 4), F4/80+/‒ (3, 4),  
MARCO+ (3, 4), lymphotoxin, and  
TNF receptors (75, 76)

• Clearance of modified LDL (1)
• TI-2 B cell responses (68)
• Phagocytosis of blood-borne pathogens (3, 4, 65, 67)

Staphylococcus aureus (3), 
Listeria monocytogenes (65), 
Escherichia coli (3), HIV (4), 
LCMV (67)

MMMΦs

SigLec-1+ (CD169+) (5), MOMA-1+ (5), 
F4/80+/‒ (5), lymphotoxin, and TNF  
receptors (75, 76)

• Indirect activation of CD8+ T cells (69)
• Phagocytosis of blood-borne pathogens (67)

Listeria monocytogenes (65), 
LCMV (67)

A subdivision of splenic MΦs, detailing RPMΦs, MZMΦs, and MMMΦs associated markers, their connection to the systemic immune response, and associated pathogens. 
The respective references from each feature are detailed inside the table.
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is possible that RpMΦs play distinct roles as M1- or M2-skewing 
microenvironments may occur during the beginning of an acute 
blood-borne infection or after pathogen clearance, respectively. 
Furthermore, the MZ contains a large number of resident cells that 
apparently depend on each other for their localization, thereby 
establishing and maintaining MZ integrity (1). For example, studies 
in which B cells were absent from the time of birth or in which they 
are depleted led to disappearance of MZMΦs and MMMΦs (74). 
Thus, the continuous interaction between resident and transmi-
grating cells inside the spleen MZ is crucial for efficient homing of 
MZMΦs and MMMΦs as well as for efficient removal and destruc-
tion of blood-borne pathogens by these cells. Lymphotoxin (LT) 
and TNF also influence the dynamics of MZMΦs and MMMΦs. L. 
donovani-infected mice have profound changes in the splenic MZ 
including loss of MZMΦs, which depend on TNF signaling that 
may increase MZMΦs susceptibility to parasite-induced cell death 
(75). These changes block lymphocyte traffic in the white pulp, 
impairing the development of an appropriate adaptive immune 
response. In another case, MZ B cells secrete LT-α1β2, and this 
leads to induction of a range of chemokines that could, in turn, 
influence lodging and retention of MZMΦs (76).

Concluding Remarks

As discussed above, splenic MΦs (RpMΦs, MZMΦs, and 
MMMΦs) play important roles in the control of blood-borne 

infections and shape several aspects of innate and adaptive 
immune responses (Table 1). Thus, a clear concept on the nature 
of splenic MΦ populations can be drawn, in which their interplay 
with the splenic microenvironment guarantees efficient control of 
blood-borne pathogens and maintenance of homeostasis follow-
ing these infections. At the same time, the splenic structure is likely 
fundamental for proper localization and function of these MΦs. 
However, several questions on the nature and function of these 
cells are still unanswered, especially on (a) the development of 
splenic MΦs during embryogenesis, (b) the exact signals required 
for the homeostatic maintenance of these cells, and (c) the extent 
of how important each of these subsets are for the development 
of immunity against blood-borne infections. The development of 
mouse models to accurately study the distinct roles of RpMΦs, 
MZMΦs, and MMMΦs as well as the development of more 
detailed studies on signaling pathways and epigenetic modifica-
tions on genes involved in the function of these cells will be of 
great utility to solve these questions.
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