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Abstract
Frankincense is a hard gelatinous resin exuded by Boswellia serrata. It contains a complex array of components, of which 
acetyl-11-keto-beta-boswellic acid (AKBA), a pentacyclic triterpenoid of the resin class, is the main active component. 
AKBA has a variety of physiological actions, including anti-infection, anti-tumor, and antioxidant effects. The use of AKBA 
for the treatment of mental diseases has been documented as early as ancient Greece. Recent studies have found that AKBA 
has anti-aging and other neurological effects, suggesting its potential for the treatment of neurological diseases. This review 
focuses on nervous system-related diseases, summarizes the functions and mechanisms of AKBA in promoting nerve repair 
and regeneration after injury, protecting against ischemic brain injury and aging, inhibiting neuroinflammation, ameliorat-
ing memory deficits, and alleviating neurotoxicity, as well as having anti-glioma effects and relieving brain edema. The 
mechanisms by which AKBA functions in different diseases and the relationships between dosage and biological effects 
are discussed in depth with the aim of increasing understanding of AKBA and guiding its use for the treatment of nervous 
system diseases.
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Introduction

Plants have long been used for the treatment of human dis-
ease and are important sources for drug development (Koehn 
& Carter, 2005; Liu et al., 2018). Frankincense is a hard 

gelatinous resin exuded from the olive plant Boswellia ser-
rata (Niphadkar & Rathod, 2017). The chemical constituents 
of frankincense are complex and diverse, and are mainly 
divided into three categories: resin, gum, and volatile oil. 
In China, frankincense is often used in traditional Chinese 
medicine (Hou et al., 2014); as it is able to activate blood 
circulation to relieve pain, soothe tendons, and promote 
detumescence, it is commonly used to treat bruises, rheu-
matism, rheumatoid arthritis, and osteoarthritis. The penta-
cyclic triterpenoid compound 3-acetyl-11-keto-β-boswellic 
acid (AKBA), is the main active component of frankincense 
(Weber et al., 2006). Currently, several animal and clinical 
trials have confirmed that AKBA from frankincense extract 
possesses a variety of pharmacological activities, including 
anti-inflammatory (Wang et al., 2018), anti-infection (Raja 
et al., 2011a, 2011b), anti-tumor (Gerbeth et al., 2011), anti-
oxidant (Han et al., 2019), and anti-aging (Bishnoi et al., 
2005) actions, as well as having biological activity in the 
nervous system (Hamidpour et al., 2013). AKBA has been 
shown to modulate multiple signaling pathways, including 
the NF-κB (Park et al., 2011; Xiong et al., 2019), Nrf2/HO-1 
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(Minj et al., 2021a, 2021b), and ERK pathways (Jiang et al., 
2018). AKBA can also inhibit 5-lipoxygenase (5-LOX) (Gil-
bert et al., 2020), leukocyte esterase (Rall et al., 1996) and 
TNF-α (Al-Dhubiab et al., 2020), which are key enzymes in 
leukotriene synthesis. In terms of anti-infection, AKBA pro-
vides resistance to bacterial infection by inhibiting biofilm 
formation (Raja et al., 2011a, 2011b) and has been found 
to be effective against the SARS-CoV-2 virus through its 
ability to bind functional proteins of the virus (Caliebe 
et al., 2021). In vitro experiments have shown that AKBA 
is also active against Leishmania donovani (Greve et al., 
2021). AKBA plays an active role in breast cancer (Bini 
Araba et al., 2021; Schmiech et al., 2021), non-small-cell 
lung cancer (Lv et al., 2021), and gastric cancer (Sun et al., 
2020) by inducing apoptosis. Additionally, AKBA attenuates 
oxidative stress through the TGF-β1/Smad3 pathway (Shang 
et al., 2016). In terms of the nervous system, frankincense 
has been used for the treatment of mental illnesses since 
the time of ancient Greece (Laios et al., 2019). The anti-5-
LOX activity of AKBA has been found to be beneficial in 
the treatment of age-related neurodegenerative diseases (Qu 
et al., 2000). AKBA can also inhibit glioma progression by 
inhibiting autophagy (Li et al., 2020), cell cycle arrest (Li 
et al., 2018), or the inhibition of factors regulating cell death 
(Conti et al., 2018).

Although current research has confirmed the diverse 
biological functions of frankincense, there are few com-
prehensive reviews on AKBA. AKBA clearly has complex 
mechanisms of action, and we believe that AKBA has great 
potential for the treatment of neurological diseases. Here, 
we have analyzed various studies and summarize recent 
research on the biological activities of AKBA in the nerv-
ous system, to extend our understanding of the compound 
and its potential application for the treatment of nervous 
system diseases.

Actions of AKBA in the Nervous System

Promotion of Nerve Injury Repair and Nerve 
Regeneration

Schwann cells, the primary glial cells of the peripheral 
nervous system, contribute to the microenvironment for 
peripheral nerve regeneration through their secretion of 
neurotrophic factors, adhesion molecules, and extracel-
lular matrix components (Cattin et al., 2015; Han et al., 
2017). Axonal damage results in the activation of extra-
cellular regulated protein kinase (ERK) signaling path-
ways in Schwann cells both at the injury site and distal 
to it, which, in turn, promote nerve regeneration by the 
production of neurotrophic factors (Webber & Zochodne, 
2010). In vitro experiments have shown that ERK pathway 

activation-induced dedifferentiation of Schwann cells in 
myelinated nerve fibers (Harrisingh et al., 2004), with the 
dedifferentiated Schwann cells transforming to myelin-
associated progenitor-like cells that are able to differ-
entiate and grow, resulting in regeneration of the nerve 
(Clements et al., 2017; Lopez-Verrilli et al., 2013). Jiang 
et al. developed a sciatic nerve-crush injury model in rats, 
followed by the intraperitoneal injection of 1.5, 3, and 
6 mg/kg AKBA every three days. The results showed that 
AKBA increased the expression of pERK1/2 in Schwann 
cells and promoted nerve repair. In addition, AKBA regu-
lated the proliferation and myelination of Schwann cells 
by increasing ERK phosphorylation, which ultimately pro-
moted the sciatic nerve repair (Jiang et al., 2020).

Neuroprotective Effects in Ischemic Brain Injury

Oxidative and cytotoxic injury plays an important role 
in the pathogenesis of cerebral ischemia, and targeting 
these processes may have potential for treating cerebral 
ischemia. Transcription factor erythroid-derived nuclear 
factor-related factor-2 (Nrf2) acts as a free radical scaven-
ger to maintain redox homeostasis. Upregulation of Nrf2 
and HO-1 expression protects the brain from injury caused 
by middle cerebral artery occlusion and middle cerebral 
artery occlusion (MCAO) resulting from ischemia reperfu-
sion. Thus, Nrf2/HO-1 may be a key target for the treat-
ment of cerebral ischemia (Yang et al., 2009).

In a cerebral ischemia model constructed using primary 
neuronal glucose and oxygen deprivation (OGD), AKBA 
increased the expression of Nrf2 and HO-1 and protected 
against OGD-induced oxidative damage. In a rat MCAO 
model of cerebral ischemia simulated by reperfusion, 
AKBA significantly reduced the cerebral infarction area 
and the numbers of apoptotic nerve cells and increased the 
National Institute of Health stroke scale’s scores. All these 
results indicate that AKBA plays a neuroprotective role 
in ischemic brain injury by regulating Nrf2/HO-1 (Ding 
et al., 2014).

The pathogenesis of ischemic brain injury also involves 
pathways associated with oxidative stress. AKBA-loaded 
O-carboxymethyl chitosan nanoparticles (AKBA-NP) have 
been shown to exert effective antioxidant and oxidative 
effects by increasing Nrf2/HO-1 and reducing the expression 
of NF-κB and 5-LOX compared with AKBA administra-
tion alone, indicating that AKBA-NPs are an effective drug 
delivery system in the treatment of cerebral ischemia (Ding 
et al., 2016). As a 5-LOX inhibitor, AKBA combined with 
cyclooxygenase-2 (COX-2) inhibitors was found to alleviate 
kainate-induced excitatory neurotoxicity as well as oxida-
tive brain injury through antioxidant activity (Bishnoi et al., 
2007).
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Mitigation of Brain Aging

COX-2 and 5-LOX are two enzymes involved in the oxida-
tion of arachidonic acid. In the central nervous system, their 
expression increases during aging, and have been associated 
with Alzheimer’s disease, an age-related disease (Fujimi 
et al., 2007; Qu et al., 2000). Administration of 100 mg/
kg of AKBA and 2.42 mg/kg of the COX-2 inhibitor Nime-
sulide for 15 days was found to reverse age-induced memory 
loss in mice.

The combination of AKBA and Nimesuride also reduced 
oxidative damage caused by aging. Although AKBA alone 
could reduce oxidative damage, the effect was more remark-
able when it was administered together with Nimesuride. 
These findings indicate that AKBA could mitigate the effects 
of aging and reduce the development of age-related brain 
diseases (Bishnoi et al., 2005). Moreover, in vitro experi-
ments have shown that AKBA has proangiogenic properties 
(Bertocchi et al., 2018), suggesting that AKBA may have 
potential in counteracting capillary damage leading to the 
functional impairment of the aging brain (Wang et al., 2004).

Inhibitory Effects of Neurological Inflammation

Neurological inflammation is involved in the pathogenesis 
of neurodegenerative diseases, which can cause dysfunction 
of cognitive and behavioral (Sayed & El Sayed, 2016). Stud-
ies have shown that 5-LOX is a key enzyme involved in the 
biosynthesis of the inflammatory mediator leukotriene Gil-
bert et al. found that inhibition of 5-LOX by AKBA reduced 
inflammation (Gilbert et al., 2020). AKBA was found to 
inhibit the expression of inflammatory cytokines, such as 
TNF-α, IL-1, IL-2, IL-6, INF-γ, ICAM-1, and C3aR. AKBA 
also suppressed activation of the complement system by 
blocking the transformation of C3 to C3a and C3b (Ahmad 
et al., 2019; Ammon, 2016). Lipopolysaccharide (LPS) is a 
potent pro-inflammatory factor that causes cognitive dys-
function. Sayed et al. demonstrated the anti-inflammatory 
and neuroprotective effects of AKBA in LPS-mediated neu-
roinflammation model in mice using. Y-Maze experiments 
to measure the effects on behavior. The authors found that 
after seven days of AKBA (5 mg/kg) administration to LPS 
(0.8 mg/kg)-treated mice the time spent by the mice in the 
novel arm of the Y-Maze increased. This was associated 
with inhibition of the NF-κB pro-inflammatory pathway 
through the degradation of IκB-α, reversing the behavioral 
disorders of the mice induced by LPS-mediated neuroin-
flammation (Sayed et al., 2018; Syrovets et al., 2005).

Amelioration of Memory Impairment

The hippocampus is a sensitive area of the brain involved 
in learning and memory functions (Lisman et al., 2017). 

Studies have shown that rats fed with frankincense during 
pregnancy produced offspring with more dendritic branches 
in the pyramidal neurons in the CA3 region of the hippocam-
pus and better learning and memory abilities (Hamidpour 
et al., 2013), indicating that frankincense intervention during 
pregnancy could improve the memory and intelligence of 
the offspring. Frankincense has also been found to improve 
learning and, especially, memory in the elderly (Hosseini 
et al., 2010). It has been demonstrated that frankincense is 
able to improve memory by up-regulating the expression 
of brain derived neurotrophic factor (BDNF) in the hip-
pocampus (Khalaj-Kondori et al., 2016; Yuan et al., 2010). 
Experiments by Gunasekaran et  al. using scopolamine-
induced dementia rat models, the animals were treated with 
AKBA (5, 10, and 15 mg/kg, ip) and donepezil (2.5 mg/kg, 
ip). The results suggested that AKBA significantly reversed 
scopolamine-induced memory impairment, and, further-
more, that AKBA reduced acetylcholinesterase activity 
without affecting the GABA- and glutamate-mediated neu-
ronal excitability. These findings suggest that AKBA could 
alleviate dementia through anti-cholinesterase activity and 
preservation of cholinergic function (Gunasekaran et al., 
2021a, 2021b).

Additionally, AKBA improved the memory impairment 
caused by the inflammatory injury of the nervous sys-
tem after LPS administration. In a study (Marefati et al., 
2020), 40 male rats were divided into four groups: control 
(DMSO + saline), LPS (1 mg/kg), LPS + AKBA (5 mg/kg) 
and LPS + AKBA (10 mg/kg) to conduct Morris water maze 
and passive avoidance response tests. Compared with the 
LPS-treated rats, elapsed time and traveled distance in the 
target quarter of the Morris water maze were found to be 
prolonged in the AKBA-treated group. The passive avoid-
ance response test found that the AKBA-treated rats spent 
more time in the light rooms with less time in the dark 
compartments than LPS-treated rats, and that movement 
from the bright compartment to the dark chamber was sig-
nificantly decreased. In conclusion, compared with the LPS 
group, the results of Morris Water Maze test and passive 
avoidance response test showed that the memory functions 
of the AKBA-treated had improved significantly (Marefati 
et al., 2020).

Alleviation of Neurotoxicity

Excessive amounts of glutamic acid (Glu), a neurotransmit-
ter in the central nervous system, have been shown to lead to 
neuronal dysfunction and degeneration (Lau & Tymianski, 
2010). Rajabian et al. showed that AKBA played a protective 
role in Glu-induced neuronal injury. PC12 and N2a neuronal 
cells were pretreated with AKBA (2.5–10 µM) before induc-
ing injury by excess Glu administration. The results showed 
increased cell death in both cell lines after incubation with 
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Glu for 24 h, while AKBA pretreatment increased the cell 
viability (Rajabian et al., 2020). AKBA has also been found 
to reverse glutamate abnormalities caused by chronic unpre-
dictable mild stress through influencing the central hypo-
thalamic–pituitary–adrenal axis (Gunasekaran et al., 2021a, 
2021b). AKBA was also able to alleviate the toxic effects of 
Glu, namely, increased levels of intracellular reactive oxy-
gen species (ROS) (Cattin et al.), and lipid peroxidation, 
by increasing superoxide dismutase activity and reducing 
oxidative DNA damage (Rajabian et al., 2016).

Up-regulation of the 5-LOX and COX enzymes which 
catalyze the incorporation of arachidonic acid into prosta-
glandins and leukotrienes renders neurons more susceptible 
to degeneration in the central nervous system (Bishnoi et al., 
2007; Tuncer & Banerjee, 2015). Andis Klegeris et al. devel-
oped in vitro testing assays to detect neurotoxicity in micro-
glia and other mononuclear macrophages. As an inhibitor 
of 5-LOX, AKBA may be considered a possible neuropro-
tectant that reduces toxicity to the microglia/macrophages 
(Klegeris & McGeer, 2002).

Anti‑glioma Effects

Recent studies have focused on the anti-tumor actions of 
AKBA (Pillai et al., 2021). Glioma is one of the most com-
mon primary malignancies of the central nervous system, 
accounting for 12% to 15% of all types of brain tumors (Li 
et al., 2018, 2020). Animal experiments demonstrated that 
AKBA (100 mg/kg) could improve the metabolism of mice 
with glioblastoma in the U87-MG glioma orthotopic model. 
Western blotting has shown that AKBA reduced the expression 
of ATG5, p62, LC3B, p-ERK/ERK, and p53 but increased the 
phosphorylation of mTOR in mice with glioblastoma. These 
results suggested that the anti-glioblastoma effect of AKBA 
could be realized by treating metabolic dysfunction in tumor 
cells and inhibiting autophagy. Consequently, AKBA can 
inhibit the glioma growth by modulation of the ERK signaling 
pathway and p53 protein to inhibit autophagy (Li et al., 2020). 
Abnormal activation of the NF-κB signaling pathway has been 
shown to lead to glioma, but not glioblastoma, progression 
(Puliyappadamba et al., 2014). Therapeutic effects of AKBA 
(10 μM, 20 μM, 30 μM, 40 μM) in combination with radia-
tion have been observed in glioma (GBM subcutaneous tumor 
model), indicating that AKBA has potential anti-tumor effects 
and also enhances the effects of radiation. An ectopic glioblas-
toma model was also used to estimate the effects of combining 
AKBA and radiation, observing that the combined therapy 
had a stronger inhibitory effect than AKBA or radiation alone 
(Conti et al., 2018). Moreover, AKBA inhibited the prolif-
eration, migration, invasion, and colony formation in U251 
and U87-MG glioblastoma cells through the release of lactic 
dehydrogenase and reducing DNA synthesis. These results are 
consistent with the proposed mechanism that AKBA inhibits 

glioblastoma proliferation by arresting the cell cycle in the 
G2/M phase, suggesting that AKBA might have potential 
application as a chemotherapeutic treatment for glioblastoma 
(Li et al., 2018).

Remission of Brain Edema

In 2002, frankincense extract was classified by the Euro-
pean Medicines Agency as an “orphan drug” for the treat-
ment of brain edema resulting from brain tumors (Gerbeth 
et al., 2013). The anti-inflammatory function of AKBA is 
known to play a positive role in the treatment of brain edema 
(Di Pierro et al., 2019). Peritumoral edema is one of the 
main causes of neuro-related diseases in patients with brain 
tumors, and dexamethasone is the drug of choice for reduc-
ing peritumoral edema associated with primary and second-
ary brain tumors (Gerbeth et al., 2011). However, there are 
many side effects, and the hormonal medicine has limited 
curative effect (Uomoto & Brockway, 1992). Patients with 
a brain tumor who have received radiation therapy usually 
suffer from the clinical symptom of brain edema; although 
dexamethasone is widely used for this symptom, it has 
numerous side effects and limited therapeutic effect. A ran-
domized cohort study by Simon et al. published in Cancer 
randomly divided 44 patients with malignant brain tumors 
into several groups: control (radiotherapy + placebo), radio-
therapy + AKBA (BS 4200 mg/die). The area of brain edema 
was measured immediately and the results showed reduction 
in the area of more than 75% in 60% of patients treated with 
AKBA combined with radiotherapy, which was significantly 
superior to the placebo control group (Kirste et al., 2011).

Another randomized controlled trial published on J 
Pharm Biomed Anal conducted a double-blind clinical trial 
on 14 patients with high dose of 4200 mg BS per day and 13 
patients with placebo. After monitoring the boswellic acid 
levels in the serum with HPLC–MS, the results suggested 
that boswellic acids are promising treatments for peritumoral 
edema (Gerbeth et al., 2011). Twenty patients with glioblas-
toma multiforme were treated with surgery, radiotherapy and 
chemotherapy, and temozolomide. Patients were treated with 
4500 mg/die Monoselect AKBA™ while receiving radia-
tion therapy, and brain edema was assessed at 4, 12, 22, and 
34 weeks after surgery. Monoselect AKBA™ complemen-
tary therapy significantly reduced the radiochemotherapy-
induced cerebral edema (Di Pierro et al., 2019).

Discussion

Figure 1 summarizes the main signaling pathways influenced 
by AKBA, indicating its likely mechanisms of action. More-
over, we have summarized and collated the roles and related 
mechanisms of AKBA in different diseases (Table 1). 
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Although AKBA is known to reduce oxidative damage, 
this action appears to require different doses in different dis-
eases; this may be related to varying degrees of cell damage 
in each disease. For example, in vitro experiments in rats 
with Alzheimer’s disease, cerebral ischemia, and amyo-
trophic lateral sclerosis, the doses of AKBA were 5 mg/
kg, 20 mg/kg, and 100 mg/kg, respectively. Therefore, we 
speculate that the reduction in oxidative damage by AKBA 
is dose-dependent, suggesting that this should be further 
investigated and verified.

Coincidentally, in terms of different diseases different 
doses of AKBA also appear to be important in the inhibi-
tion of inflammation, for example, in the in vitro trials of 
behavioral disorders caused by inflammation of the nerv-
ous system, cerebral ischemia, and Alzheimer’s disease, the 
doses of AKBA used were 5 mg/kg, 10 mg/kg, and 100 mg/
kg, respectively, with all doses having similar effects.

However, it is possible that AKBA may have similar over-
all effects resulting from different mechanisms. For example, 
in Alzheimer’s disease, AKBA can both inhibit 5-LOX to 
slow down aging and inhibit the NF-κB signaling pathway 
at doses of 100 mg/kg, with similar effects seen in cerebral 
ischemic diseases. This suggests that AKBA has similar dos-
age effects in targeting specific diseases even if the pathway 
mechanisms are different.

ERK1/2 activity and its duration of action are critical 
for cell functioning (Subramaniam & Unsicker, 2010). 
The activation of the ERK pathway can both promote 
the growth of gliomas (Jin et al., 2019), inhibit osteo-
clast formation (Shi et al., 2021) and play an important 
role in the regeneration of peripheral nerves (Hausott & 
Klimaschewski, 2019). AKBA has been found to play an 
active role in repairing nerve injury and anti-glioma action 
by regulating the expression of the p-ERK protein. How-
ever, the specific mechanism of action and the reasons for 
the different effects need further investigation. Comparing 
the role of AKBA in the of different treatment diseases 
revealed that AKBA increased the expression of pERK1/2 
in Schwann cells and thus promoted nerve injury repair 
(Jiang et al., 2018), while AKBA reduced the expression 
of phosphorylated p-ERK/ERK protein in its anti-tumor 
actions (Li et al., 2020) and inhibited bone loss (Shi et al., 
2021). Here, we propose the hypothesis that this could 
have been due to different modes of action of AKBA in 
different microenvironments, producing different effects 
on ERK; however, the results of its action are to regulate 
homeostasis to maintain the homeostasis of normal func-
tion and life activities (Fig. 2).

The regulatory action of AKBA on the Nrf2/HO-1 sign-
aling pathway is summarized in Fig. 3. We hypothesize 

Fig. 1  The major central nervous system signaling pathways influ-
enced by AKBA. Inhibition of 5-LOX to prevent the formation of 
leukotrienes. 2. Inhibition of the NF-κB signaling pathway. 3. Promo-

tion of ERK pathway phosphorylation. 4. Cell cycle arrest at G2/M to 
induce cell apoptosis. 5. Upregulation of the expression of Nrf2 and 
HO-1
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that AKBA inhibits the inflammatory signaling pathway by 
means of the Nrf2/HO-1 axis.

The Nrf2/HO-1 axis plays a major role in reducing 
inflammation (Ahmed et  al., 2017). HO-1 is a limiting 
enzyme that catalyzes the degradation of hemoglobin to 
carbon monoxide, free ferrous iron, and biliverdin, and 
degrades biliverdin to bilirubin (Fig. 3.①) (Ahmed et al., 
2017; Naito et al., 2014). These products are considered to 
have important antioxidant and anti-inflammatory actions 
(Abraham & Kappas, 2008). In addition, HO-1 can also 
inhibit the production of Cx43 (Fig. 3.②) (Zhou et al., 2020) 
and TNF-α (Fig. 3.③) (Yu et al., 2009) to inhibit the inflam-
matory response. Excess ROS levels contribute significantly 
to the development and progression of many cerebrovascular 
and neurodegenerative diseases (Fig. 3.④) (Sivandzade et al., 
2019). Nrf2/HO-1 has been found to reduce ROS levels and 
thus inhibit apoptosis (Su et al., 2019). Therefore, AKBA 

can suppress the negative effects produced by ROS by acti-
vating Nrf2/HO-1.

Neuroinflammation is considered to be an important 
component of the pathogenesis of neurodegenerative and 
psychiatric disorders (Arioz et al., 2019). In diseases such as 
Alzheimer’s disease, cerebral ischemia, and amyotrophic lat-
eral sclerosis, we find that AKBA can play a role in reducing 
oxidative damage, preventing demyelination, and promoting 
remyelination by up-regulating the expression of Nrf2 and 
HO-1 (Minj et al., 2021a, 2021b).

Since Nrf2/HO-1 inhibits inflammation while tumors 
promote inflammation and coupled with the activation of 
Nrf2/HO-1 by AKBA, we propose that AKBA can inhibit 
the tumor-induced inflammatory response by activating the 
Nrf2/HO-1 pathway (Rojo de la Vega et al., 2018). However, 
there is no specific evidence to confirm this conjecture. It 
does, however, offer a direction to explore the relationship 

Table 1  Action mechanisms of AKBA in various nervous system diseases

The application of AKBA in vitro experiments is in units of mg/kg; in vivo experiments is in units of μM

The disease/symptom The effect of AKBA Action mechanism The dose of AKBA

Alzheimer's disease Anti-inflammation Inhibits 5-LOX to slow down 
aging;

100 mg/kg Bishnoi et al. (2005)

Inhibits the NF-κB inflammatory 
signaling pathway

100 mg/kg Wei et al. (2020)

Inhibit oxidative damage Upregulate the expression of Nrf2 
and HO-1

5 mg/kg Wei et al. (2020)

Reduce the neurotoxicity Play a role in the neuron injury 
induced by glutamate

10 μM Rajabian et al. (2016)

Cerebral ischemia Anti-inflammation Inhibits 5- LOX; 10 mg/kg Ding et al. (2016)
Inhibits the NF-κB inflammatory 

signaling pathway
10 mg/kg Ding et al. (2016)

Inhibit oxidative damage Upregulate the expression of Nrf2 
and HO-1

20 mg/kg Ding et al. (2014)

Reduce the neurotoxicity Play a role in the neuron injury 
induced by glutamate

10 μM Rajabian et al. (2016)

Neurotoxicity and oxidative dam-
age

Anti-neurotoxicity Inhibits 5-LOX 100 mg/kg Bishnoi and et al. (2007)

Glioma Anti-tumor Inhibits the NF-κB inflammatory 
signaling pathway

30-50 μM Conti et al. (2018)

Glioblastoma Inhibit glioblastoma proliferation Arrest the cell cycle in G2/M 100 mg/kg Li et al. (2018)
Dysfunction of cerebral endothe-

lial cells after glycosyl-oxygen 
stripping

Anti-inflammation Reduce inflammation factors and 
protein expression level

20 μM Ahmad et al., (2019)

Behavioral disorders caused by 
inflammation of the nervous 
system

Anti-inflammation Inhibits the NF-κB inflammatory 
signaling pathway

5 mg/kg Sayed et al. (2018)

Improve learning and memory 
disorders

Adjust inflammatory responses Establish a balance between 
inflammatory and pro-inflamma-
tory factors

5 or 10 mg/kg Marefati et al. (2020)

Nerve injury repair and nerve 
regeneration

Promote Schwann cell prolifera-
tion and myelination

Enhance the phosphorylation level 
of the ERK signaling pathway

10 mg/kg Jiang et al. (2020)

Amyotrophic lateral sclerosis Inhibit oxidative damage Upregulate the expression of Nrf2 
and HO-1

100 mg/kg Minj and et al. (2021a, 
2021b)
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between AKBA and Nrf2 in reducing oxidative damage, pre-
venting demyelination, and promoting remyelination.

In a mouse model of oxygen-induced retinopathy char-
acterized by pathological retinal angiogenesis, Matteo Lulli 
et al. found that AKBA had an anti-angiogenic effect and 
could inhibit vascular endothelial growth factor (VEGF) 
expression and VEGF-2 phosphorylation by inhibiting 

STAT3 in a dose-dependent manner, with the greatest effect 
at a dose of 10 mg/kg (Lulli et al., 2015). An additional 
study using injury to porcine aortic endothelial cells found 
that AKBA could promote angiogenesis at low concentra-
tions (3.8 ng/ml) (Bertocchi et al., 2018). From this, we 
speculate that the promotion and inhibition of angiogen-
esis by AKBA is largely related to the type of lesion in the 

Fig. 2  Different roles of AKBA in the ERK signaling pathway

Fig. 3  The regulatory action of AKBA on the Nrf2/HO-1 signaling 
pathway. 1. HO-1 catalyzes the degradation of hemoglobin to car-
bon monoxide, free ferrous iron and biliverdin, subsequently degrad-
ing biliverdin to bilirubin (Fig.  3.①); these products are considered 
to have an important role in anti-oxidation and anti-inflammation. 

2. HO-1 inhibits the production of Cx43 (Fig.  3.②) and TNF-α 
(Fig. 3.③) to reduce the inflammatory response. 3. ROS is one of the 
major leading factors in the development and progression of many 
cerebrovascular and neurodegenerative diseases, HO-1 inhibits ROS 
(Fig. 3.④)
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blood vessels. When the lesion includes hypervascularity, 
then high concentrations of AKBA have an anti-angiogenic 
effect, while in lesions characterized by blood vessel reduc-
tion due to damage, low concentrations of AKBA have a 
pro-angiogenic effect.

The hypoxic environments of tumors can lead to increased 
angiogenesis (Rojo de la Vega et al., 2018). Stable knockout 
of the Nrf2 gene has been found to reduce HIF-1α protein 
levels, thereby reducing the expression of VEGF and angi-
opoietin and, in time, inhibiting the continuous generation 
of blood vessels in tumors (Ji et al., 2014; Kim et al., 2011). 
These findings suggest that it would be fruitful to explore 
whether exogenous administration of low concentrations of 
AKBA after knockdown of the Nrf2 gene can increase vas-
cular endothelial production to antagonize the reduction of 
vascular endothelium induced by knockdown of the Nrf2 
gene.

Frankincense is a traditional medicine that has been used 
since ancient times in many countries, such as China, India, 
and the Middle East. As a main active ingredient in frank-
incense, AKBA is known to have multiple actions, includ-
ing anti-inflammatory, anti-infection, and anti-tumorigenic 
effects. In recent years, along with the discovery of the effect 
of AKBA on the amelioration in cognitive deficits (Wei 
et al., 2020) and the inhibition of neuronal apoptosis, the bio-
logical activity and application potential of AKBA in nerv-
ous system diseases has attracted attention. In this review, 
we summarized the research findings of AKBA in nervous 
system diseases. AKBA was found to play a critical role 
in the promotion of nerve regeneration, reduction of brain 
aging, inhibition of inflammation, improvement of memory, 
alleviation of neurotoxicity, suppression of gliomas, and 
the treatment of brain edema. AKBA in combination with a 
COX-2 inhibitor could enhance resistance to brain aging and 
the repair of oxidative stress-induced neuronal injuries. In 
addition, the data in a comparative toxicogenomic database 
indicated that there was significant evidence to confirm the 
therapeutic effect of AKBA in memory disorders (Bishnoi 
et al., 2005; Niu et al., 2007; Tanaka et al., 2011), seizures 
(Bishnoi et al., 2007; Zhang et al., 2006), and in movement 
disorders (Bishnoi et al., 2005). Thus, it is apparent that 
AKBA has great potential as a small molecule drug in the 
treatment of nervous system diseases in the future although 
further studies are required to elucidate its mechanism of 
action in detail.
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