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ABSTRACT Achromobacter denitrificans strain PR1 was isolated from an enrichment
culture able to use sulfamethoxazole as an energy source. Here, we describe the
complete genome of this strain sequenced by Illumina MiSeq and Oxford Nanopore
MinION.

Achromobacter denitrificans is a Gram-negative rod-shaped bacterium commonly
found in soil and occasionally in human infections (1, 2). Members of this species

have previously been linked to the degradation of xenobiotics (3–6), highlighting their
potential for bioremediation. Here, we describe the complete genome sequence of
A. denitrificans strain PR1, originally obtained from enriched activated sludge and able
to use sulfamethoxazole (SMX) as an energy source (7).

Strain PR1 was incubated overnight at 30°C in mineral medium B (8) with ammo-
nium sulfate (0.54 g/liter), succinate (0.83 g/liter), yeast extract (0.2 g/liter), and SMX
(0.15 g/liter). Genomic DNA extraction was performed with GenElute bacterial genomic
DNA kit (Sigma) and sequenced using MiSeq (Illumina) and MinION (Oxford Nanopore).
For MiSeq paired-end sequencing (2 � 300 bp), two libraries were independently
prepared from 1 �g of DNA with the TruSeq DNA LT sample prep kit (library 1 [lib1])
from Illumina or the Kapa HyperPrep kit (library 2 [lib2]) from Kapa Biosystems. The
MinION library was prepared from 1 �g of DNA, sheared into 5-kb fragments with a
g-TUBE (Covaris), prepared with the genomic DNA sequencing kit (SQK-MAP-103), and
sequenced using a flow cell with R7 chemistry (Oxford Nanopore). The library was
loaded in the beginning and after 24 h to coincide with the g1-to-g2 pore switch (9).

MiSeq sequencing generated 2.5 million (lib1) and 0.3 million (lib2) paired-end raw
reads. All reads were screened for PhiX contamination and adapter and quality trimmed
(�Q20) with the BBDuk tool (https://sourceforge.net/projects/bbmap). MinION se-
quencing generated 12,591 2D reads (10) (�Q9) that were converted to fastq format
with Poretools version 0.5.1 (11). Hybrid de novo assembly was done with SPAdes
version 3.10.0 (12) with the options -careful and -nanopore. Contigs with �1� cover-
age were removed from the assembly, resulting in a single scaffold. Circularization was
performed with PCR and Sanger sequencing, generating a single circular chromosome
of 6,929,205 bp with 46-fold average coverage and 67.4% G�C content.

Analysis with the Rapid Annotations using Subsystems Technology (RAST) server
version 2.0 (13) predicted 6,425 protein-coding sequences (CDSs), 4 copies of the rRNA
operon, and 59 tRNAs. Functional prediction of the CDSs was further refined by aligning
protein sequences against the Gene Ontology (GO) database (14) with InterProScan (15)
and BLASTp (16) in Blast2GO version 4.1 (17). Of the total CDSs, 5,210 (81.1%) had a
functional prediction, and, from these, 2,939 (45.7%) had catalytic activity (891 hydro-
lases and 746 oxidoreductases). ResFinder (18) analysis identified multiple antibiotic
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resistance genes (sul1, sul2, and tetC), with some (cmlA1h and aadA2) within the new
class I integron In1410 (19). Average nucleotide identity (ANI) analysis (20) and in silico
DNA-DNA hybridization (DDH) analysis (21, 22) with the A. denitrificans type strain
genome (GenBank accession number BCTQ00000000) showed that strain PR1 belongs
to the same species (ANI, 99.33%; DDH, 94.60%; difference in %G�C content, 0.19).

The genome of strain PR1 will provide further insights into sulfamethoxazole
metabolism in this microbial consortium and into the species versatility and potential
for xenobiotic degradation.

Accession number(s). This complete genome sequence has been deposited in
GenBank under the accession no. CP020917. The version described in this paper is the
first version.
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