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Abstract: Faraday instability has great application value in the fields of controlling polymer pro-
cessing, micromolding colloidal lattices on structured suspensions, organizing particle layers, and
conducting cell culture. To regulate Faraday instability, in this article, we attempt to introduce
an elastic polymer film covering the surface of a viscous fluid layer and theoretically study the
behaviors of the Faraday instability phenomenon and the effect of the elastic polymer film. Based
on hydrodynamic theory, the Floquet theory is utilized to formulate its stability criterion, and the
critical acceleration amplitude and critical wave number are calculated numerically. The results
show that the critical acceleration amplitude for Faraday instability increases with three increasing
bending stiffness of the elastic polymer film, and the critical wave number decreases with increasing
bending stiffness. In addition, surface tension and viscosity also have important effects on the critical
acceleration amplitude and critical wave number. The strategy of controlling Faraday instability
by covering an elastic polymer film proposed in this paper has great application potential in new
photonic devices, metamaterials, alternative energy, biology, and other fields.

Keywords: Faraday instability; viscous fluid; elastic polymer film; stability criterion; Floquet theory

1. Introduction

In 1831, Faraday observed that when a container containing liquid is placed on the
base of periodic vertical oscillation, a standing wave can be observed on the surface of the
liquid [1]. If the forced amplitude is greater than the critical threshold, the excitation will
lead to the formation of subharmonic with a response frequency of half of the excitation
frequency. Later, experiments by Lord Rayleigh in 1883 verified Faraday’s observational
conjecture [2]. The analytic solution of the linear stability analysis for ideal fluids was
provided by Benjamin and Ursell in 1954 [3]. Then, Rajchenbach and Clamond defined the
trigger of Faraday instability with critical driving force [4], which has been prescribed as a
hydrodynamic regime for ordering surface waves in the macroscopic realm [5,6].

Faraday instability has a wide range of applications in the field of fluid mechanics
and other fields. For example, Faraday instability can be used to make measurement
equipment or measure material parameters, such as measuring the surface tension of
soft materials [7], developing new photonic devices [8,9], metamaterials [10,11], etc. In
addition, it has potential applications in biology [12] and medicine, such as application in
cell culture patterns [13,14] and detecting physiological processes of organisms [15]. It can
also be used to monitor and control animal behavior such as earthworms [16], sense and
modify soil structure as well as to increase crop yields [17–19], medical examinations of
medical ultrasound and photoacoustic imaging modalities [20], Brillouin Light Scattering
spectroscopy [21], laser vibrometry [22] and develop new methods of eradicating viruses
and bacteria [23–25].
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In recent years, people have carried out in-depth research and exploration of Faraday
instability. For example, Lyubimova et al. studied Faraday waves on band patterns under
zero gravity conditions [26]. Lioubashevski et al. conducted Faraday instability studies
on highly dissipative fluids [27,28]. In response to the Faraday instability phenomenon
of viscous fluids, Kumar proposed a quantitative linear theory for viscous liquids and
concluded that subharmonic resonance dominates in the case of smaller viscosity; due
to the existence of a rigid substrate at the bottom, the viscosity effect is enhanced, and
the double critical points of two modes may be encountered in low height containers [29].
Further, Kumar and Bajaj conducted a linear stability analysis by considering the viscous
boundary conditions of the interface between two viscous fluids and concluded that the
advantages of the resonant mode over other modes were mainly controlled by the ratio
between the height of the container and the length of the viscous boundary on the free
surface [30,31]. Christiansen et al. further found that the existence of unbounded patterns
of nonlinear surface waves at a large aspect ratio has been reported in highly viscous
fluids close to the Faraday instability [32–35], where wave ordering is scaffolded upon
bulk frictional stresses [35,36]. Raynal et al. conducted experiments on non-Newtonian
liquids and observed that the instability threshold increases with the increase in driving
frequency, indicating that the viscosity of the solution will decrease instead [37]. For the
study of the Faraday instability of inviscid bounded fluids, container-bounded Faraday
waves have been employed to create standing patterns in inviscid liquids [11,38], in analogy
with the parametric excitations of quantum condensates [39,40] and the optical lattices able
to confine ultra-cold atom gases [41].

In addition, the Faraday instability phenomenon has been extended to elastic bodies as
well as living organisms. Müller et al. studied linear viscoelastic fluids and found that the
resonance modes become harmonics in the range where the elastic force is in the same order
of magnitude as the surface tension at the free boundary [34,42]. Giulia et al. conducted an
experimental analysis of soft elastic bodies and used Floquet theory to describe the Faraday
wave in soft elastic bodies. It was found that the Faraday wave in soft elastic bodies was
dominated by harmonic resonance modes, which provided a method for distinguishing
fluids from soft elastic bodies [43]. Maksymov and Pototsky excited Faraday wave in living
earthworms, which can be used to detect and possibly control important physiological
processes of organisms, providing a method for solving fundamental biological problems,
and developing new technology for detecting and controlling biological and physiological
processes in vivo [15].

The regulation of Faraday instability is very crucial for its applications. In recent
decades of research, people have explored some methods to regulate Faraday instabil-
ity, such as adjusting the viscosity of viscous fluid [30] and controlling boundary condi-
tions [44,45]. In addition, Douady and Fauve conducted an experimental study of paramet-
rically excited surface wave modes and found that the pattern wave number is fixed by the
excitation frequency, whereas the shape depends on the nonlinear interaction [46]. Wright
and Saylor found that Faraday waves can be used to generate linear particle patterns with
controllable length scales on glass substrates [47]. Mahr and Rehberg found that parametri-
cally driven surface waves in ferrofluids can be excited by an external oscillating magnetic
field, and the static magnetic field changes the restoring force and damping coefficients
of various surface waves [48]. Samanta performed Faraday instability experiments on
viscous liquids on the plane of the porous layer, and found that the critical amplitude for
Faraday instability decreases with increasing permeability values, and the presence of the
porous layer leads to a faster transition process from subharmonic instability to harmonic
instability in the wavenumber regime [49]. In addition, the conditions under which Faraday
instability of the surfactant-coated liquid layer occurs were investigated [50,51]. Kharbedia
et al. changed the stiffness of the fluid surface by adsorbing a rigid film of soluble surfactant
on the fluid surface and then found that the stiffness of the liquid surface has an important
influence on the Faraday wave formation [52]. Recently, in the field of solution of Janus
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colloidal particles in a solvent, by tuning the magnitude of anisotropic colloid–solvent
interactions, Faraday waves of different amplitudes are generated [53,54].

Inspired by the above works, we attempt to introduce an elastic polymer film covering
viscous fluids to control its Faraday instability. Through theoretical research, we obtained
the critical criterion of Faraday instability of the fluid surface covered with an elastic
polymer film. We also investigate the influence of the elastic polymer film on the critical
acceleration amplitude and the critical wave number of the Faraday instability so as to
provide guidance for its applications. Compared to existing methods such as changing
the viscosity, this strategy is simple to operate and cost-effective. The text of this paper
is structured as follows. Firstly, we establish the theoretical model of a viscous fluid
layer covered with an elastic polymer film and deduce the surface Faraday instability
criterion by using Floquet theory in Section 2. Secondly, we use MATLAB software to
numerically calculate the critical acceleration amplitude and the critical wave number.
Then we discuss the influence of the bending stiffness of the elastic polymer covering layer
on the Faraday instability in Section 3. Finally, we draw conclusions based on the numerical
analysis results.

2. Model and Formulation

In this section, we first establish the theoretical model of a viscous fluid layer covered
with an elastic polymer film and then deduce the stability criterion of surface Faraday
instability by using Floquet theory. Finally, the solution method for the critical magnitude
and critical wavenumber is presented.

2.1. Governing Equations

Figure 1 shows an incompressible viscous fluid layer covered with an elastic polymer
film, which is placed on a rigid substrate. We assume that the thickness H of fluid layer is
large enough so that the effects of the structure of substrate and the magnitude of fluid–
substrate and polymer–substrate interactions on the Faraday wave amplitude are negligible.
We assume that the density ρ and dynamic viscosity ν of fluid are constant, and the viscosity
of air is not considered. The system is affected by the vertical sinusoidal acceleration of
amplitude ε and frequency ω, which can drive the viscous fluid layer to move and lead
to the formation of standing waves. In the reference frame fixed with the vibrating rigid
substrate, the fluid dynamics are controlled by Navier–Stokes equation

ρ(∂tu + u · ∇u) = −∇p + ν∇2u + ρG(t)k, (1)

and continuity equation
∇ · u = 0, (2)

where, u is the velocity, and G(t) is the equivalent gravitational acceleration, i.e.,

G(t) = g− ε cos(ωt). (3)

Taking the curl of Equation (1) twice, we can obtain(
∂t − µ∇2

)
∇2w = 0, (4)

where the kinematic viscosity of the fluid µ = ν/ρ.
Next, we consider the boundary condition on the rigid plate. Since the fluid rests on

the rigid plate, the velocity field should be zero. Thus, we have

w|z=−H = 0, (5)

and
∂zw|z=−H = 0. (6)
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Free surface boundary conditions are further considered. The free surface is initially
horizontally stationary and lies in the plane of the coordinate at z = 0. When the rigid
substrate vibrates, the free surface is located at z = h(x, y, t), and subjects to kinematic
boundary condition [55],

[∂t + (u · ∇)]h = w|z=h. (7)

Through linearization, the kinematic condition Equation (7) can be simplified as

∂th = w|z=0. (8)

In addition, the stress tensor on the free surface can be written as

τjk = −pδjk + ν(∂juk + ∂kuj) + ρG(t)hδjzδkz, (9)

where the last term is the stress due to surface deformation under the equivalent gravita-
tional acceleration. We assume that there are no tangential stress components on the free
surface, i.e., τxz = τyz = 0. Since these stress components disappear at the free surface, we
can obtain that

ν(∂xτxz)|z=0 = ν(∂yτyz)|z=0 = 0. (10)

By substituting boundary condition Equation (10) into Equation (9) and using continu-
ity Equation (2), we can obtain

ν(∇2
H − ∂ZZ)w|z=0 = 0. (11)

Meanwhile, the normal component of the stress tensor on the free surface originates
from the contributions of both the surface tension and bending of elastic polymer film. For
the linear case at small curvatures, the contribution of surface tension is the free surface
tension γ times the curvature of the free surface. The contribution of elastic film bending
can be provided by the effective lateral pressure, which is B∇4

Hh with bending stiffness B
of the film [56]. Therefore, we can obtain

τzz

∣∣∣z=0 = γ∇2
H h− B∇4

Hh. (12)

By substituting Equation (9) of the stress tensor into Equation (12), the expression for
the normal pressure at free surface is obtained,

p
∣∣∣z=h = 2ν(∂zw)z=0 + ρG(t)h− γ∇2

H h + B∇4
Hh. (13)

Taking the horizontal divergence of Equations (1) and applying Equation (2), another
expression for pressure can be derived:

∇2
H p = (ν∇2 − ρ∂t)∇H · uH = (ρ∂t − ν∇2)∂zw. (14)

By eliminating p in Equations (13) and (14), we can obtain[(
ρ∂t − ν∇2

)
∂zw

]
z=0

= 2ν
(
∇2

H∂zw
)

z=0
+ ρG(t)∇2

Hh− γ∇4
Hh + B∇6

Hh, (15)

at the free surface, which is an additional boundary condition for Equation (4) and is the
only equation for which the external forcing G(t) appears explicitly.

The dynamic Equation (4), accompanied by boundary conditions (5), (6), (8), (11),
and (15), governs the Faraday instability of the fluid layer covered with the elastic polymer
film under the periodic excitation of the rigid substrate. The stability analysis will be
carried out below.
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Figure 1. Schematic illustration of Faraday instability of a viscous fluid layer covered with an elastic
polymer film. The length of container is L, and the thickness of viscous fluid layer is H. The bending
stiffness and thickness of the elastic polymer film are B and t, respectively. The container is placed
on a rigid substrate, and subjected to its own weight and a vertical sinusoidal acceleration with
amplitude ε and frequency ω.

2.2. Stability Analysis

To perform stability analysis, we first express the velocity u and surface deformation

h(x, y, t) in the normal modes sin(kxx + kyy) with the horizontal wave number k =
√

k2
x + k2

y.

We now replace w(x, z, t) with w(z, t) sin(kxx + kyy), h(x, y, t) with h(t) sin(kxx + kyy) and
the differential operator ∇2

H with the number −k2. By introducing the following dimen-

sionless parameters: ε̃ = ε
g , ω̃ = ω

√
H
g , υ̃ = υ

ρ
√

gH3
, µ̃ = µ√

gH3
, k̃ = kH, w̃ = w√

gH
,

h̃ = h
H , s̃ = s

√
H
g , t̃ = t

√
g
H , z̃ = z

H , γ̃ = γ
ρgH2 , B̃ = B

ρgH4 , κ̃n = κn H, and δ̃ = δ
√

H
g ,

Equations (4)–(6), (8), (11) and (15) can be further rewritten as[
∂t̃ − µ̃(∂z̃z̃ − k̃2)

]
(∂z̃z̃ − k̃2)w̃ = 0, (16)(

∂z̃z̃w̃ + k̃2w̃
)

z̃=0
= 0, (17)

w̃|z̃=−H = 0, (18)

(∂z̃w̃)z̃=−H = 0, (19)[(
∂t̃ − ν̃∂z̃z̃ + 3ν̃k̃2

)
∂z̃w̃

]
z̃=0

= −
[

G̃(t̃) + γ̃k̃2 + B̃k̃4
]
k̃2h̃, (20)

∂t̃ h̃ = w̃|z̃=0. (21)

The above set of Equations (16)–(21) describe the complete linear stability problem for
a viscous fluid layer covered with an elastic polymer film under parametric oscillations.

Next, we apply the Floquet theory to analyze the stability problems of Equations (16)–(21).
Considering that the equivalent gravitational acceleration G̃

(
t̃
)

in the vibrating coordinate
system is a periodic function, the solutions of Equations (16)–(21) are assumed to be in
Floquet form [30]. Then, the surface deformation h̃ can be expressed as:

h̃(t̃) = eδ̃t̃
∞

∑
n=−∞

h̃neinω̃t̃, (22)
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where, the Floquet exponent δ̃ can be expressed as

δ̃ = s̃ + iαω̃, (23)

where s̃ and α can take any real and finite values. The solutions h̃(t̃) corresponding to α = 0
and α = 1/2 are named as harmonic and subharmonic solutions, respectively.

Similarly, we assume that ω̃
(
z̃, t̃
)

can be expressed as:

w̃(z̃, t̃) = eδ̃t̃
∞

∑
n=−∞

w̃n(z̃)einω̃t̃. (24)

Substituting Equation (24) into Equation (16), we obtain the following Fourth-order
ordinary differential equation in z̃:

(∂z̃z̃ − k̃2)(∂z̃z̃ − κ̃2
n)w̃n(z̃) = 0, (25)

where,

κ̃2
n ≡ k̃2 +

[s̃ + i(α + n)ω̃]

µ̃
. (26)

In computing the κ̃n, we should use the root of Equation (26) having positive real part.
The general solution of Equation (25) is

w̃n(z) = F̃n cosh(k̃z̃) + Ẽnsinh(k̃z̃) + L̃n cosh(κ̃n z̃) + K̃nsinh(κ̃n z̃). (27)

Inserting Equation (27) in Equations (17)–(21) and using Equation (27) lead to

F̃n = µ̃(κ̃2
n + k̃2)h̃n, (28)

L̃n = −2µ̃k̃2h̃n, (29)

K̃n = −

[
k̃Fn + L̃n

{
k̃ cosh(κ̃n) cosh(k̃)− κ̃nsinh(κ̃n)sinh(k̃)}

]
[
κ̃n cosh(κ̃n)sinh(k̃)− k̃sinh(κ̃n) cosh(k̃)

] , (30)

Ẽn =
1

k̃

 L̃n

[
κ̃nsinh(κ̃n) cosh

(
k̃
)
− k̃ cosh(κ̃n)sinh

(
k̃
)]

−K̃n

[
κ̃n cosh(κ̃n) cosh

(
k̃
)
− k̃sinh(κ̃n)sinh

(
k̃
)] . (31)

Plugging Equation (11) into Equation (21) and using Equations (27)–(31), we obtain
the following recurrence relation:

Ãn h̃n = ε̃(h̃n−1 + h̃n+1), (32)

where,

Ãn = 2 + 2γ̃k̃2 + 2B̃k̃4 − 2µ̃2
4κ̃n k̃2

(
κ̃n

2 + k̃2
)
− S̃n cosh κ̃n cosh k̃ + T̃nsinhκ̃nsinhk̃

k̃κ̃n cosh κ̃nsinhk̃− k̃2sinhκ̃n cosh k̃
, (33)

With
S̃n = κ̃n

(
κ̃n

4 + 2κ̃n
2k̃2 + 5k̃4

)
, (34)

T̃n = k̃
(

κ̃n
4 + 6κ̃n

2k̃2 + k̃4
)

. (35)

When δ̃ + inω̃ = 0, ω̃0(z̃) = 0 for all z̃, and we can obtain that

Ã0(δ̃ + inω̃ = 0) ≡ ÃH
0 ÃH

0 = 2 + 2γ̃k̃2 + 2B̃k̃4. (36)
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2.3. Solution

Generally, the external forced coupling of different temporal modes makes accurate
stability analysis of arbitrary viscosities difficult. Here, to determine the stability of free
surface of the viscous fluid layer, we convert the recurrence relation Equation (32) into a
matrix equation M̃h̃ = ε̃Ñh̃, where M̃ is a diagonal square matrix with complex elements,
and Ñ is a banded square matrix with two sub-diagonals. Further, a common eigenvalue
problem can be easily constructed by inverting M̃:

(M̃
−1

Ñ)h̃ =
1
ε̃

h̃. (37)

For the case of harmonic, the matrix M̃
−1

Ñ reads

M̃
−1

Ñ =



...
...

...
...

...
...

...
· · · 0 1/Ã∗2 0 0 0 · · ·
· · · 1/Ã∗1 0 1/Ã∗1 0 0 · · ·
· · · 0 1/ÃH

0 0 1/ÃH
0 0 · · ·

· · · 0 0 1/Ã1 0 1/Ã1 · · ·
· · · 0 0 0 1/Ã2 0 · · ·

...
...

...
...

...
...

...


. (38)

For the case of subharmonic, the matrix M̃
−1

Ñ is shown as

M̃
−1

Ñ =



...
...

...
...

...
...

· · · 0 1
Ã∗1

0 0 · · ·
· · · 1

Ã∗0
0 1

Ã∗0
0 · · ·

· · · 0 1
Ã0

0 1
Ã0
· · ·

· · · 0 0 1
Ã1

0 · · ·
...

...
...

...
...

...


. (39)

For harmonic and subharmonic cases, we can obtain the eigenvalue of matrix M̃
−1

Ñ
by numerical calculation. Then, one can obtain the tongue-like neutral stability curves in
the ε̃-k̃ plane at a provided driving frequency. From the curve with the lowest acceleration
amplitude, the stability threshold and critical wave number can be predicted for a provided
set of problem parameters.

3. Results and Discussion

In this section, we first use MATLAB software to numerically calculate the critical
acceleration amplitude and the critical wave number for the Faraday instability and then
discuss the influence of the bending stiffness of the elastic polymer covering layer on the
Faraday instability.

3.1. Stability Criterion

The typical values of material properties and geometric parameters from accessible
experiments [29,30,51] are listed in Table 1, and the estimated values of dimensionless
parameters are listed in Table 2. Figure 2a,b draw the ε̃-k̃ marginal stability curves of the
subharmonic mode and harmonic mode of Faraday instability of viscous fluids covered
with an elastic polymer film. In the calculation, we set the dimensionless parameters
of driving frequency as ω̃ = 5.33, surface tension as γ̃ = 1.7, and kinematic viscosity as
µ̃ = 0.35. As can be seen from Figure 2, the tongue-shaped curve of subharmonic (SH) mode
and harmonic (H) mode appears alternately, and the three tongue-shaped curves all have
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the lowest point. This result is similar to the previous Faraday instability result of the fluid
without the elastic polymer film [29], and the viscous fluid covered with the elastic polymer
film can still trigger Faraday instability. Moreover, the lowest point increases successively;
that is, under the provided driving frequency ω̃ and surface tension γ̃, the lowest point of
SH mode is the smallest, which means that the Faraday instability of subharmonic mode
always occurs first in the viscous fluid. The acceleration amplitude ε̃ corresponding to the
smallest SH mode is the critical acceleration amplitude ε̃c of Faraday instability on the fluid
surface, and the corresponding critical wave number k̃c is the wave number of Faraday
instability surface morphology. The result means that when the amplitude ε̃ reaches ε̃c,
the Faraday instability of the fluid surface will be triggered, and the wave number of the
instability morphology is k̃c. If we further increase the acceleration amplitude, Faraday
instability in other modes may be triggered. The Faraday instability presented here can be
degraded to the case of viscous fluids without elastic polymer film, as shown in Figure 2b
for the case of B̃ = 0, and the results are consistent with those in Kumar’s paper [29].

Table 1. Material properties and geometric parameters.

Parameter Definition Value Units

H Thickness of viscous fluid layer 2 mm
t Thickness of the elastic polymer film 0.02 mm
γ Surface tension 10−5 N/m
ω Driving frequency 10 ∼ 100 Hz
µ Kinematic viscosity 1 ∼ 10 cm2/s
B Bending stiffness 10−8 ∼ 10−4 kg×m2/s2

Table 2. Dimensionless parameters.

Parameter γ̃ ω̃ µ̃ B̃

Value 0 ∼ 100 0.89 ∼ 8.9 0.125 ∼ 12.5 0 ∼ 90
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Figure 2. The marginal stability curves of subharmonic mode and harmonic mode for (a) B̃ = 1 and
(b) B̃ = 0, respectively. The dimensionless parameters are ω̃ = 5.33,γ̃ = 1.7, and µ̃ = 0.35. The three
tongue-shaped curves all have the lowest point, and Faraday instability in the viscous fluid covered
with the elastic polymer film can be triggered when ε̃ is above the lowest point.

Based on the critical amplitude ε̃c and the critical wavenumber k̃c obtained from the
marginal stability curve ε̃-k̃ in Figure 2, we further discuss the relationship between the
critical amplitude ε̃c and the driving frequency ω̃ when Faraday instability occurs. Figure 3
shows the variation of the critical amplitude ε̃c of SH mode and H mode with the driving
frequency ω̃ in the Faraday instability of the viscous fluid covered with the elastic polymer
film. We set the dimensionless parameter of surface tension as γ̃ = 1.7 and kinematic
viscosity as µ̃ = 0.35. As can be seen from Figure 3, the critical amplitude ε̃c increases
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as the driving frequency ω̃ increases for both H and SH modes. This result implies that
larger acceleration amplitudes are required to trigger Faraday instability of the viscous
fluid at higher driving frequencies. This is because when the driving frequency ω̃ becomes
larger, the viscous fluid generates more resistance and energy consumption, which makes
it difficult to trigger Faraday instability. This influence trend is different from that of soft
elastomers. In the case of soft elastomer layers, the larger the driving frequency, the smaller
the critical amplitude [43]. This result shows that people can increase the driving frequency
to prevent Faraday instability of viscous fluid from causing safety hazards. In addition,
we note that the critical amplitude of Faraday instability in SH mode is always lower than
that in H mode. This shows that under the same driving frequency and surface tension, the
critical amplitude of viscous fluid instability covered with the elastic polymer elastic layer
always corresponds to the critical value of SH resonance.
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Figure 4 shows the variation of the critical wave number k̃c of SH mode and H mode
with the driving frequency ω̃ in the Faraday instability of the viscous fluid covered with
the elastic polymer film. We set the dimensionless parameter of surface tension as γ̃ = 1.7
and kinematic viscosity as µ̃ = 0.35. As can be seen from Figure 4, the critical wave number
k̃c increases with the increase in driving frequency ω̃ for both H and SH modes. The results
show that when the driving frequency ω̃ increases, the wave number caused by Faraday
instability of the viscous fluid will increase when the surface tension is provided. This
is because the higher the driving frequency, the smaller the wavelength destabilization
patterns can appear on the surface of the viscous fluid. This result means that we can adjust
the Faraday instability morphology by changing the frequency to meet the needs of target
applications. In addition, the critical wave number of Faraday instability in H mode is
always higher than that in SH mode; that is, under the same frequency and surface tension,
the instability morphology of fluid surface always occurs at the instability wavelength of
SH mode.

3.2. Effect of Surface Tension and Bending Stiffness

For provided material and structure of the polymer film, its surface tension and
bending stiffness are usually interrelated [57]. In this work, we discuss the effects of surface
tension and bending stiffness on the critical value of Faraday instability, respectively, to
understand the effect of each parameter on Faraday instability. The effect of surface tension
γ̃ on Faraday instability is investigated next. Figure 5 shows the variation of the critical
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amplitude ε̃c of SH mode and H mode with the surface tension γ̃ in the Faraday instability
of the viscous fluid covered by the elastic polymer film. Here, we set the dimensionless
parameter of the drive frequency as ω̃ = 5.33 and kinematic viscosity as µ̃ = 0.35 during
the calculation. As can be seen from Figure 5, the critical amplitude ε̃c increases with the
increase in surface tension γ̃ for both H and SH modes. This result shows that the larger
the surface tension, the larger the amplitude required to trigger the Faraday instability
of the viscous fluid. This is because when the surface tension increases, the viscous fluid
consumes more surface energy when it is unstable, resulting in difficulty in instability,
which is in line with physical intuition. This result means that we can control the occurrence
conditions of Faraday instability by changing the surface tension to meet the application
requirements. Similarly, the critical amplitude of Faraday instability in H mode is always
higher than that in SH mode; that is, under the same surface tension, the critical amplitude
of viscous fluid instability covered with the elastic polymer film always corresponds to the
critical amplitude of the SH mode.
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Figure 6 shows the variation of the critical wave number k̃c of SH mode and H mode
with the surface tension γ̃ in the Faraday instability of the viscous fluid covered with the
elastic polymer film. During the calculation, we set the dimensionless parameter of the
drive frequency as ω̃ = 5.33 and kinematic viscosity as µ̃ = 0.35. As a result, it can be seen
from Figure 6 that the critical wave number k̃c decreases as the surface tension γ̃ increases
for both H and SH modes. The results show that when the surface tension γ̃ increases, the
wave number k̃c of Faraday instability of the viscous fluid will decrease. That is because
when the surface tension increases, the surface energy of the viscous fluid surface becomes
larger when it is unstable, resulting in a larger wavelength, and thus the wave number will
decrease accordingly. In addition, the critical wave number of Faraday instability of the
viscous fluid in H mode is higher than that in SH mode, indicating that Faraday instability
always occurs first in SH mode under the same surface tension.
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Next, we explore the influence of the bending stiffness B̃ of the elastic polymer film on
the critical amplitude ε̃c and critical wave number k̃c of the Faraday instability of viscous
fluid. In Figure 7, we draw the variation of the critical amplitude ε̃c of Faraday instability
with the bending stiffness B̃ of the elastic polymer film. In the calculation process, we set
dimensionless parameters of driving frequency as ω̃ = 5.33, surface tension as γ̃ = 1.7,
and kinematic viscosity as µ̃ = 0.35. As can be seen from Figure 7, the critical amplitude ε̃c
increases with the increase in bending stiffness B̃ for both H and SH modes. The results
show that when the bending stiffness increases, the critical amplitude of Faraday instability
on the viscous fluid surface covered with the elastic polymer film will also increase. This is
because when the elastic polymer film becomes thicker, the viscous fluid will become more
difficult to destabilize under the same provided parameters, and thus the critical amplitude
ε̃c will also increase. That is, it has a stabilizing effect when the bending stiffness becomes
larger. Therefore, we can control the occurrence of Faraday instability phenomenon by
covering the surface of the viscous fluid layer with an elastic polymer film. In this way, the
harm of Faraday instability can be avoided, and the Faraday instability phenomenon can
be exploited by using this regulation method.
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Figure 8 shows the variation of the critical wave number k̃c of Faraday instability on
the viscous fluid surface covered with the elastic polymer film with bending stiffness B̃.
Here, we set dimensionless parameters of driving frequency as ω̃ = 5.33, surface tension as
γ̃ = 1.7, and kinematic viscosity as µ̃ = 0.35. As can be seen from Figure 8, the critical wave
number k̃c decreases with the increase in bending stiffness B̃ for both H and SH modes.
The results show that when the bending stiffness B̃ increases, the critical wave number k̃c
of Faraday instability will decrease. This result means that when the elastic polymer film
becomes thicker, the viscous fluid surface is more difficult to vibrate and stand up. When
the viscous fluid surface is unstable, the surface energy is greater, resulting in an increase
in wavelength, and thus the wave number will be reduced. Therefore, we can adjust the
Faraday instability morphology by changing the bending stiffness of the elastic polymer
film to meet the needs of target applications.
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k̃c decreases with the increase in bending stiffness B̃.



Polymers 2022, 14, 2334 13 of 15

4. Conclusions

Faraday instability has great application value in the fields of polymer processing,
micromolding colloidal lattice on structured suspension, tissue and granular layer, and
cell culture. In this paper, we introduce an elastic polymer film covering a viscous fluid
layer and attempt to precisely and easily control the Faraday instability phenomenon of
the viscous fluid layer. Based on Floquet theory, we theoretically investigate the surface
Faraday instability of a viscous fluid layer covered with an elastic polymer film. The
numerical calculations show that the critical acceleration amplitude of Faraday instability
increases with the increasing bending stiffness of the film, and the critical wave number
decreases with the increase in the bending stiffness. In addition, the driving frequency and
surface tension also have some effects on the critical acceleration amplitude and critical
wave number. These variation trends are the same for both H and SH modes, for these
parameters always inhibit or promote the stability of the system. Compared with existing
methods such as changing the viscosity of the fluid, our strategy of covering an elastic
polymer film is simple to operate and cost-effective. The regulation methods proposed in
this paper also have great application potential in new photonic devices, metamaterials,
alternative energy, and the field of biology.
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