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Background: Evidence has shown that lactate, an immune signaling molecule,

is associated with hepatocellular carcinoma (HCC) progression and immune

suppression. Therefore, identifying lactate metabolism-related molecules is a

promising therapeutic strategy to inhibit the development of HCC and

overcome chemotherapy resistance. Long noncoding RNAs (lncRNAs) are

related to tumorigenesis and metastasis. Hence, verifying the molecular

subtypes of lncRNAs related to lactate metabolism will play a critical role in

managing HCC.

Methods: Based on HCC data in The Cancer Genome Atlas (TCGA), lactate

metabolic pathway-related genes were enriched by gene collection and

enrichment analysis (GSEA). Lactate metabolism-related lncRNAs

(LM_lncRNAs) were identified by correlation analysis, HCC molecular

subtypes were determined using nonnegative matrix factorization (NMF)

clustering, and the response of the three subtypes to chemotherapeutics

was further evaluated using the Genomic Tumor Sensitive Cell Line (GDSC)

dataset. LM_lncRNAs were examined via Lasso-Cox regression analysis to

determine prognosis for patients. A Nomagram plot was used to predict

patient survival time.

Results: Three molecular subtypes of HCC were identified. The survival rate of

patients with C1 subtype was higher than that of those with C2 and C3.

Additionally, patients with C3 subtype have higher levels of immune cell

infiltration and high expression of genes related to immune checkpoints.

The GDSC results indicated that patients with C3 subtypes were more

sensitive to chemotherapy drugs such as sorafenib and sunitinib. The

prognostic risk assessment model consisted of six risk factors (AC034229.4,

AC131009.1, MYOSLID, AC008667.1, AC012073.1, AC068025.1) and two

protective factors (LINC00402 and AC103858.1). Based on Kaplan-Meier

analysis, low-risk HCC patients had a high survival rate, and the receiver

operating characteristic curve (ROC), calibration curve, and C-index

confirmed good prediction ability.

Conclusion: In this study, the molecular subtyping method and prediction

model of lactate metabolism-related lncRNAs (LM_lncRNAs) were constructed
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for the prognosis of HCC patients. This work demonstrated the potential targets

of LM_lncRNAs and provided a novel perspective and therapeutic paradigm for

future clinical translation.
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Introduction

Hepatocellular carcinoma (HCC) ranks in the top six

malignant tumor incidences and the top three mortality

rates yearly, posing a severe threat to human health.

Globally, 821,700 liver cancer deaths occurred in 2020,

accounting for 8.3 percent of cancer cases (Siegel et al.,

2020; Sung et al., 2021). New HCC cases account for 55%

of the global total in China, and approximately

422,100 patients die from HCC each year (Chen et al.,

2016). The current clinical treatment of HCC mainly

includes surgery, chemotherapy, and immunotherapy

(Anwanwan et al., 2020). Because early-stage HCC is

usually asymptomatic, only 5–15% of patients may be

surgically removed, but they are prone to recurrence

after surgery. Most patients in the middle and late

stages have various degrees of vascular invasion. The

surgical resection rate is low, and the 5-year survival rate of

patients is below 20% (Maluccio and Covey, 2012). Targeted

therapies such as sorafenib are selected for advanced HCC

patients, but long-term use is prone to toxic side effects and

drug resistance (El-Serag et al., 2008). Although

immunotherapy for HCC has achieved some success, it still

has limitations, such as a low objective remission rate and side

effects.

As the most prominent metabolic organ in the human

body, the liver plays a vital role in many physiological

processes and maintaining metabolic homeostasis. The liver

stores the body’s glucose, either from glycogen or lactate

(muscle), glycerol (adipose tissue), amino acids (gut and

muscle), etc. (Trefts et al., 2017). The Warburg effect is one

of the characteristics of tumor metabolism. With sufficient

oxygen, tumor cells consume glucose to provide energy for

HCC cells and generate a large amount of lactate, resulting in a

low-glucose metabolic environment. Studies have confirmed

that an acidic tumor microenvironment (TME) is more

conducive to highly aggressive tumor cell subtypes and

ultimately promotes tumor development (Huang et al.,

2016). It was reported that lactate might induce vascular

endothelial growth factor expression and M2 polarization of

tumor-associated macrophages (Colegio et al., 2014). The

macrophage lactate/ATP6V0d2/HIF-2α axis is critical in

human patients’ signaling and tumor growth. In addition,

lactate accumulates on the membrane by activating

monocarboxylate transporters (MCTs), especially MCT4,

forming an acidic TME that inhibits antitumor immune

responses (Halestrap, 2012). Moreover, lactate may

modulate immune responses, affecting the function and

survival of NK and T cells and promoting immune escape

(Brand et al., 2016). These findings suggest that lactic acid

promotes the proliferation and invasion of tumor cells and has

an immunosuppressive effect. Thus, it is necessary to screen

critical molecules related to early diagnosis, survival

prediction, and lactate metabolism in the HCC TME and

develop novel and effective strategies for treating primary

and secondary HCC.

Recently, high-throughput sequencing technology has

gradually become an essential tool in identifying clinically

actionable biomarkers and regulators for predicting

monitoring and clinical stratification. Several researchers

have linked metabolomics to the genome, enabling studies

to discover and identify metabolites (Liu et al., 2021). Many

studies have developed prognosis prediction models based on

a variety of biomarkers, most of which focus on hypoxia’s

impact on immune responses (Kim et al., 2019; Zhang et al.,

2020a).

Long noncoding RNAs (lncRNAs) are a series of

transcriptional RNAs with over 200 nucleotides that have

no protein-coding ability (Iyer et al., 2015). They are

involved in tumorigenesis in various cancers, including

HCC (Ally et al., 2017). For example, lncRNA HULC is

upregulated and promotes HCC progression, metastasis,

and resistance (Klec et al., 2019). A lncRNA activated by

TGF-β (lncRNA-ATB) was associated with poor outcome in

metastatic HCC (Yuan et al., 2014). These studies have

demonstrated that lncRNAs have regulatory effects on the

metabolism of HCC. Therefore, lncRNAs are considered novel

drug screening targets showing promising research prospects

and may be used as one of the most sensitive and specific key

biomarkers to establish the prognosis of HCC. However, few

studies have addressed the impact and prognostic value of

lactate metabolism-related lncRNAs (LM_lncRNAs) in the

progression of HCC.

In the present study, by integrating bioinformatics with

potential LM_lncRNAs in HCC, three subtypes of patients

with different clinical characteristics were clustered and

evaluated. In this study, a prognostic model was developed to

differentiate between high- and low-risk HCC patients. The

results are promising and may be helpful in developing

comprehensive treatment modules for HCC patients.
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Materials and methods

Data acquisition

The Cancer Genome Atlas (TCGA) access policies and

guidelines were followed. HCC expression data were obtained

from the official TCGA website (https://portal.gdc.cancer.gov),

including 407 HCC and 58 normal samples. We excluded data

lacking survival information and data with a follow-up time of

fewer than 30 days to reduce the death of patients due to other

causes and finally retained a sample of 374 patients (Table 1).

First, the downloaded Fragments Per Kilobase Million

(FPKM) data were converted into Transcripts Per Million

(TPM) format, and all genes in the pathway with a p <
0.05 were selected. The lactate-related gene set (Hallmark-

lactate) was analyzed based on the Molecular Signatures

Database (MSigDB database, https://www.gsea-msigdb.org/

gsea/index.jsp) (Liberzon et al., 2015). Gene Set Enrichment

Analysis (GSEA) was used to determine the gene expression

in the HCC and normal groups (Subramanian et al., 2005).

Among the eight pathways, 4 with p < 0.05 were included as

significantly different pathways, including 243 genes.

Correlation analysis

Clinical information and lncRNA expression were combined

for downstream analysis. Gene ontology (GO) and Kyoto

Genome Encyclopedia analyses (KEGG) of lactic acid mRNAs

in HCC. Using Pearson correlation, a relationship between the

significantly lactate metabolism-related genes and all

differentially expressed lncRNAs was calculated. Correlations

were considered if |R2| > 0.3 and p < 0.001. Similarly, up- and

down-regulated differentially expressed lncRNAs were acquired

using limma (R package), and the lncRNAs were identified as

HCC LM_lncRNAs (Ritchie et al., 2015). The screening criteria

for differential analysis were false discovery rate (FDR) <
0.05 and |log2 Fold Change| > 1 (|log2 FC| > 1).

Non-negative matrix factorization (NMF)
clustering

To determine the subtypes of LM_lncRNAs in HCC, we

used an NMF clustering algorithm to select lncRNAs with

significant differences in expression (p < 0.05, |log2FC|>1)
through the “NMF” R package to cluster HCC samples

(Gaujoux and Seoighe, 2010). The NMF algorithm in

bioinformatics is an efficient method for reducing the

dimensionality of data such as gene expression microarrays.

As an efficient way of dimensionality reduction, The cluster k

value is between 2 and 10, and the optimal k value is three

according to the affinity coefficient. The principal component

analysis (PCA) was used to verify the validity of the

classification. In order to investigate the correlation

between genes that are related to lactate metabolism and

the TME, we further evaluated the relationship between

different LM_lncRNA molecular subtypes and immune cell

infiltration levels by CIBERSORT.

Development of the lactate metabolism-
related lncRNAs prognostic signature

The “survival” package investigated the correlations

between LM_lncRNA scores and overall survival. The R

software package limma explored differential lncRNA

analysis between HCC and non-HCC tissues, and the

screening conditions were p < 0.05 and |log2FC| > 1.

Univariate Cox analysis, least absolute shrinkage, and

selection operator (Lasso) Cox were successfully used to

reduce the selected genes to establish a survival risk

prediction model for HCC. We sampled the dataset with

2000 replacements and selected markers that recurred more

than 1,000 times for the Lasso-penalty Cox regression

selection operator. Multivariate Cox analysis was utilized to

optimize using the survminer software package for feature

selection, we assessed lncRNAs as independent prognostic

factors for patient survival by combining them with clinical

variables. A stepwise approach is used to select the optimal

model further. A prognostic risk score for eight LM_lncRNAs

was calculated through multiplying the multivariate Cox

regression model with its linear combination of expression

levels. The expression of the model is:

Risk score = @Expr of lncRNA 1) × coefficient of lncRNA

(1)] + @Expr of lncRNA 2) ×coefficient of lncRNA (2)] + . . .. . . +

@Expr of lncRNA (n) × coefficient of lncRNA (n)]

Riskscore � ∑
N

i�0
(Expipβi) (1)

Expi and βi are each prognostic lncRNA’s expression level

and coefficient, respectively.

Patients were divided into high- and low-risk groups based

on the median risk score. Lactic acid-related scores were also

determined, and a forest map was created. Using Kaplan-Meier

analysis, the receiver operating characteristic curve (ROC), and

the C-index, the rationality of the model under different

molecular subtypes were verified.

GSEA enrichment analysis and the
predictive nomogram

By using the Kyoto Gene and Genome Encyclopedia (KEGG)

pathway, GSEA was used to analyze the genes within the high/
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low-risk groups. Then, we searched the TCGA-HCC database for

these features. The survival of patients over the next 1, 3, and

5 years was predicted using RMS packages and calibration

statistics. An analysis of statistical data was conducted, as well

as calibration curves to verify the accuracy of 3-year and 5-year

patient predictions.

Immunity and gene expression

The CIBERSORT (Charoentong et al., 2017), ESTIMATE

(Yoshihara et al., 2013), single-sample gene collection and

enrichment analysis (ssGSEA), and TIMER (Li et al., 2017)

algorithms were widely used to evaluate the cellular

composition and cellular immune response between each

cell subtype. CIBERSORT is an analytical tool to impute

gene expression profiles and estimate the abundances of

member cell types in a mixed cell population using gene

expression data. ESTIMATE provides researchers with

scores for tumor purity, the level of stromal cells present,

and the infiltration level of immune cells in tumor tissues

based on expression data. With TIMER, the immune

infiltrates within cancers of diverse types can be

systematically analyzed. TIMER is used to estimate the

abundance of six immune cells (B cells, CD4+ T cells, CD8+

T cells, Neutrophils, Macrophages, and Dendritic cells). The

samples of each patient are scored based on the algorithm of

these websites to calculate the correlation with immunity.

Different algorithms produce different immune responses, as

shown by heatmaps. Additionally, CIBERSORT and ssGSEA

determined whether subtypes of tumor-infiltrating immune

cells were associated with high or low risk.

More sensitivity to chemotherapy for
C3 subtype

GDSC (Genomics of Drug Sensitivity in Cancer) database

was used to analyze chemotherapy response of HCC and various

subtypes (Yang et al., 2013). We selected sorafenib, an approved

chemotherapeutic drug, to predict the chemotherapy response to

treat metastatic HCC. The prediction process was carried out by

the R-packet “Prophet”, and the half maximal inhibitory

concentration (IC50) was acquired by ridge regression and

validation based on the GDSC training database (Geeleher

et al., 2014).

Statistical analysis

Kaplan-Meier curves and log-order tests were used to

calculate survival in this study using R software (version

4.1.0). The t-test and Wilcoxon test of nonpaired students

analyzed habitually and unusually distributed variables.

Prognostic features, as well as other clinicopathological

features, were assessed using ROC and C-index. A statistically

significant difference was defined as one that is less than

0.05(p < 0.05).

Results

Identification of significant enriched
lactate-related lncRNAs

In this study, we systematically analyzed critical roles and

predictive values of LM_lncRNAs in HCC using several

advanced computational methods. The flow chart describing

this work is shown in Figure 1.

MSigDB had eight GSEA datasets associated with lactate

metabolism, and four were significantly enriched in HCC tissues:

HP_INCREASED_SERUM_LACTATE,

HP_INCREASED_LACTATE_DEHYDROGENASE_LEVEL,

HP_INCREASED_CSF_LACTATE, and

HPABNORMAL_LACTATE_ DEHYDROGENASE_LEVEL

(Supplementary Figurs S1).

The database included 228 lactate mRNAs with significant

enrichment pathways. After correlation analysis, 715 lactate

pathway-enriched lncRNAs were retained after the

intersection with the whole expression dataset of the sample.

The screening criteria were Pearson coefficient >0.3 and p < 0.01.

The expression of lactate mRNAs in HCC tissues and adjacent

control tissues differed by 162, of which 159 were upregulated

while three were downregulated (Figures 2A,B). In HCC tissues

and adjacent control tissues, 429 lactate lncRNAs were

differentially expressed, with 355 upregulated and

TABLE 1 The clinical characteristics of patients in the TCGA dataset.

Variable Number of samples

Gender

Male/Female 246/128

Age

≤65/>65/UN 216/127/31

Stage

I/II/III/IV/UN 178/85/81/8/22

Grade

G1/G2/G3/G4 53/161/112/12/36

T

TX/T1/T2/T3/T4/UN 1/185/93/80/13

M

M0/M1/MX 271/6/97

N

N0/N1/NX/UN 263/7/103/1
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94 downregulated (Figures 2C,D). GO and KEGG analyses of

lactic acid mRNAs in HCC are as follows.

The biological process category was enriched for

mitochondrial respiratory chain complex I assembly,

oxidative energy generation of organic matter, aerobic

respiration, mitochondrial respiratory chain and

metabolism of precursor metabolites, and NADH

dehydrogenase complex. The cellular component was

mainly enriched for concentrates on the mitochondrial

respiratory chain, redox enzyme complex, and ADH

dehydrogenase complex. The molecular function was

mainly enriched for the NADH oxidase complex, REDOX

enzyme complex, and active transmembrane transporter

activity. KEGG analysis indicated that the upregulated

genes primarily focused on thermogenesis, oxidative

phosphorylation, reverse neural signaling, aminoacyl-tRNA

biosynthesis, myocardial contraction, carbon metabolism,

cofactor biosynthesis, tricarboxylic acid cycle, butyric acid

metabolism, dicarboxylic acid metabolism, propionic acid

metabolism, fatty acid degradation pathways, etc

(Supplementary Figure S2).

Identification of HCC molecular subtypes

In order to determine the relationship between potential

molecular subtypes and the prognosis of HCC, we examined the

following. First, according to the expression characteristics of

LM_lncRNAs, 429 lncRNAs with statistically significant

differences (p < 0.05, |log2FC| > 1) were constructed into a

matrix. Second, 407 samples from the TCGA cohort were

included in all lncRNAs for the NMF common set. In order

to determine k, the affinity coefficient was calculated, and the

value of three was selected (the previous point with the most

significant decline of the curve, cluster 1, cluster 2, and cluster

three are listed C1, C2, and C3, respectively, Figures 3A,B). In

FIGURE 1
Overall flowchart of this study.
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Figure 3C, LM_lncRNA expression levels differ among C1, C2,

and C3 subtypes. Most of the lncRNAwas highly expressed in the

C3 subtype and lowly expressed in the C2 subtype. Moreover,

each subtype’s boundary is evident, meaning the subtype is

robust and reliable. PCA was performed to distinguish the

three subtypes, and samples were well separated by this PCA

method (Figure 3D). We further evaluated the association

between three subtypes and prognosis. A significant difference

between three subtypes was found in the analysis. There was a

significant difference in the overall survival (OS) between

subtypes C1 and C2 (p < 0.001). However, the OS of subtype

C3 was better after 4 years, a bias of the small sample size

(Figure 3E).

A heatmap was developed to describe the relationship

between the expression of Lnc RNAs, molecular subtypes, and

clinical factors in HCC. The proportion of stage III-IV and grade

III-IV is 20.1 and 25.9% in the C1 group, respectively, both less

than the proportion of C2 and C3. On the other hand, the

proportion of T3-T4 in the C1 group is less than that in C2 and

C3 groups. Notably, the C3 subtype is related to more patients

with advanced stage disease and is prone to relapse or metastases,

suggesting that patients with the HCC C3 subtype progressed

rapidly (Figure 4A). Then, immune cell penetration levels,

including CD8 T cells, B memory cells, and γδ T cells, were

higher in the C3 subtype, whereas CD4memory cells andM1 and

M2 macrophages were significantly enriched in C1 (Figure 4B,

Figure 5A). This is consistent with the notion that immune

response suppresses cancer.

Predicting chemotherapeutic response

The responses of the three subtypes to three

chemotherapeutic drugs were assessed according to the GDSC

database. The figure indicates that the C2 subtype was the most

sensitive to the sorafenib, and the sensitivity of C3 subtypes to

sunitinib was higher than that of the C1/C2. Compared with C3,

C1 and C2 were more sensitive to erlotinib (Figure 5B).

Construction and multivariate
examination of the lactate-based lncRNAs
prognostic signature

For the purpose of determining prognostic risk models,

374 HCC patients were included in the TCGA-HCC cohort

and 249 LM_lncRNA sequences were analyzed. Using

univariate Cox regression analysis, 63 OS-related genes for

lactic acid metabolism were identified (p < 0.05). The Lasso

regression analysis was then used to remove LM_lncRNAs that

FIGURE 2
Screening for differentially expressed lactate genes. (A) Heatmap for differential lactate mRNAs. (B) Volcano plot for differentially expressed
lactate mRNAs. (C) Heatmap analyses for differential lactate lncRNAs. (D) Volcano plot for differentially expressed lactate lncRNAs.
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may be highly related to other LM_lncRNAs. Furthermore,

16 lncRNAs were modeled using the minimized λ method of

Lasso Cox analysis (Supplementary Figures S3A, B).

Furthermore, a prognostic signature model was constructed

based on multivariate Cox regression analysis. Finally, eight

lncRNAs were confirmed and applied to establish the lactic

acid metabolism-related signature (Supplementary Figure S3C).

The predictive risk score formula evaluated the prognosis of

each patient composed of eight LM_lncRNAs as follows:

Risk score = (0.0007423×Expr of AC034229.4) +

(0.000935×Expr of AC131009.1) +(0.000302×Expr of

MYOSLID) + (0.00209×Expr of AC008667.1)

+(-0.00212×Expr of LINC00402) + (0.000327×Expr of

AC012073.1) + (-0.00386×Expr of AC103858.1) +

(0.00179×Expr of AC068025.1).

Six of these lncRNAs, including AC034229.4, AC131009.1,

MYOSLID, AC008667.1, AC012073.1, and AC068025.1, all

showed positive coefficients in Cox regression analysis,

indicating that these six lncRNAs have high-risk

characteristics because their high expression means that the

patient has a shorter OS. The coefficients of LINC00402 and

AC103858.1 were negative, indicating that these lncRNAs were

protective.

Then, patients’ risk scores were calculated according to this

prognostic model. Based on the critical value of the median risk

score, patients were divided into high-risk (n = 187) and low-risk

(n = 187) groups for the LM_lncRNAs prognostic model. The

risk score and survival status of these prognostic LM_lncRNAs

are presented in Figure 6A. Kaplan-Meier test showed that the

mortality rate of the high-risk rating group was relatively high.

The survival time was relatively short (Figure 6B). A heatmap was

used to analyze the connection between prognostic features of

LM_lncRNAs and clinical pathology manifestations (Figure 6C).

We could observe that the high expression of AC034229.4,

AC131009.1, MYOSLID, AC008667.1, AC012073.1, and

AC068025.1 was concentrated in clinical features with poor

prognosis. In contrast, the LINC00402 and AC103858.1 were

concentrated in clinical features with good prognoses. In

addition, the area under the curve (AUC) of this characteristic

lncRNA was 0.793, the most reliable indicator in the survival

prediction of the model compared with age (AUC = 0.454),

gender (AUC = 0.506), grade (AUC = 0.474), or stage (AUC =

0.742) (Figure 6D). Based on the AUC values of the novel

lncRNAs, 1-, 3-, and 5-year survival rates were predicted to be

0.767, 0.767, and 0.72, respectively (Figure 6E). In addition, the

three different subtypes were used for the validation of the lactic

acid metabolism-related signature. Survival rates based on AUC

for C1, C2, and C3 groups were 0.756, 0.756, 0.722; 0.724, 0.724,

0.619; 0.716, 0.716, 0.773, respectively (Supplementary

Figure S4A). The high-risk OS rates of C1 and C3 were

FIGURE 3
Stratification of HCC patients based on the lactate lncRNA. (A) NMF clustering using 426 lactate lncRNAs (k = 2–10). (B) The consensus map
for k = 3. (C) The difference of LM-lncRNA expression in three groups was analyzed by Heatmap. (D) Principal components analysis (PCA) for
patients based on lactate lncRNA expression. Each dot represents a patient, and different colors represent different immune subtypes. (E)
Kaplan–Meier curves analysis for the three subtypes.
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significantly higher than those of the low-risk rating group for

these three subtypes (p < 0.05). Consistent with the results

derived from the TCGA HCC database. Because of the small

sample size, the C2 survival analysis results were not significantly

different (Supplementary Figure S4B), indicating that the model

has good stability.

TCGA cohort nomogram construction and
validation

In HCC patients, risk assessment could be an independent

prognostic factor, according to single-factor and multifactor

regression analyses (Supplementary Figure S5A, B). The

nomogram based on the eight lncRNAs was shown in

Supplementary Figure S5C. To predict the prognosis of

patients with HCC, an effective prognostic nomogram was

developed combining clinicopathological features with

LM_lncRNA prognostic factors (Supplementary Figure S5D).

5-year and 3-year calibration curves (Supplementary Figure S5E)

showed stable and accurate application in the clinical treatment

of HCC patients.

To predict the potential functions of the eight LM_lncRNAs,

we calculated the correlation value of lncRNAs and differentially

expressed lactate-related mRNAs based on Pearson-related

calculations. Moreover, |R2| > 0.3 and p < 0.001 were used as

relevant criteria to construct a coding-noncoding gene

coexpression network consisting of eight LM_lncRNAs and

48 mRNAs (Supplementary Figure S6A). The various

pathways of high-risk and low-risk groups were analyzed

FIGURE 4
Clinical characteristics of the three subtypes. (A) Heatmap for the lactate lncRNA prognostic signature and clinicalpathological manifestations.
(B) CIBERSORT for three subtypes.
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using GSEA (Supplementary Figure S6B). Therefore, the low-risk

group had the most prognostic LM_lncRNAs that can regulate

retinol, tryptophan, fatty acid metabolism, and other metabolic

pathways. Patients with high-risk characteristics are enriched in

cell cycles, spots, and meiosis, as well as steroid hormone

biosynthesis and PPAR signaling.

Genomic profiling and immune infiltration
levels by subtypes

An immune infiltration analysis is conducted using a risk

model that includes NK cells, B cells, and related functions in

order to determine the relationship between immunity and the

model. In CIBORSORT, M0, M1 macrophages, T cells, and

B cells showed significant differences. Furthermore, the low-

risk and high-risk groups showed significant differences in

T-cell function and type II IFN response based on single-

sample gene collection and enrichment analysis (ssGSEA)

(Figures 7A,B). After evaluating the differences in immune

checkpoint expression between the two groups, we found

significant differences in the gene expression of VIRMA,

WTAP, RBM15, RBM15B, YTHDF1, YTHDF2, and

HNRNPA2B1 between the two groups (Figure 7C). The

expression of m6A-related mRNA differed significantly

between the relatively high-risk and low-risk groups,

FIGURE 5
Analysis of immune status and chemosensitivity among the three subgroups. (A) Analysis of immune status. (B) Chemosensitivity analysis of
three common chemotherapy drugs.
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including ALKBH5, HNRNP, HNRNPA2B1, YTHDC,

IGF2BP1, IGF2BP2, and IGF2BP3 (Figure 7D).

Discussion

In addition to genetic and epigenetic changes in regulatory

genes, HCC is a multistep and complex process. The most

common clinical tumor markers used to diagnose HCC are

alpha-fetoprotein (AFP) and carcinoembryonic antigen (CEA).

Both of these markers are not particularly specific (Ching et al.,

2015), so researchers are now focusing on finding a more specific

HCC diagnostic marker. Identifying cancer-associated molecules

may lead to discovering novel therapeutic targets and biomarkers

(Shimizu et al., 2017). Considering the complex pathophysiology

of HCC, it is not likely that a single ideal biomarker can be

identified. An ideal approach would be to identify the specific

phenotype associated with a biomarker and its underlying

FIGURE 6
Lactate lncRNA signature based on TCGA. (A) Risk score distribution and survival status of the two risk groups. (B) Kaplan-Meier curve analysis
for the cohort. (C) Heatmap for the lactate lncRNA prognostic signature and clinicopathological manifestations. (D) Timedependent receiver
operating characteristic (ROC) analysis for 1-year overall survival (OS) based on eight lactate lncRNAswere compared to age, sex, grade, TNM stage, T
stage, N stage, and M stage. (E) ROC analysis of the lactate prognostic signature at the 1-, 3-, and 5-year nomograms.
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mechanism. A combination biomarker, consisting of several

markers, has additionally been demonstrated to improve

prediction accuracy. Despite aerobic conditions, malignant

tumor cells are known to consume more glucose and produce

more lactic acid, which results in an accumulation of lactate in

the HCC microenvironment. Previous studies have focused on

FIGURE 7
Immune infifiltration level analysis for the high- and lowrisk groups. (A)CIBERSORT. (B) ssGSEA. (C) Expression of immune checkpoints between
the high- and low-risk subgroups. (D) Expression of m6A genes between high- and low-risk subgroups (p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001,
****p < 0.0001).
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glycolysis-driven genes in tumor development, inflammation,

and immune regulation (Yuan et al., 2014; Pucino et al., 2019;

Zheng et al., 2020). The prognostic potential of LM_lncRNAs in

HCC has not been thoroughly investigated (Goetze et al., 2011).

According to our findings, single lncRNA was significant but

not strong enough to undertake personalized diagnosis, while

LM_lncRNAs combination markers improved the diagnostic

accuracy.

In this work, we constructed a novel high-efficiency eight

LM_lncRNA signature based on the TCGA dataset to evaluate

HCC lactate subtypes. The results of ROC analysis on the TCGA

dataset confirmed that our model has a high prognostic value.

Because the risk signature relies on the expression levels of eight

LM_lncRNAs, it is more economically and clinically feasible than

whole-genome sequencing. Based on LM_lncRNAs, the NMF

algorithm was used to perform consistent clustering of HCC

patients. The three molecular subtypes (C1, C2, and C3) have

already passed TCGA rank evaluation and verification. Therefore,

depending on the molecular subtype, there is a noticeable difference

in OS and immune levels. The Kaplan–Meier curve results showed

that in patients with advanced-stage disease, subtype C1 was

associated with prolonged survival, while subtype C3 was

associated with shortened survival. However, C3 samples were

more sensitive to sunitinib chemotherapy. In addition, the model

is significantly correlated with clinical factors, which further

supports the reliability of its prognostic value. Studies have

shown that LM_lncRNAs can be used as independent predictors

for OS. The nomogram constructed from staging, grading, and

signature shows good predictability over 1, 3, and 5 years, whichmay

help facilitate individualized treatment of HCC patients. The

application of nomograms that integrate gene signatures with

clinicopathological parameters can help clinicians evaluate the

prognosis of individual patients with greater accuracy. As a

result, C-index, ROC curve, and standard curve indicate that the

risk model constructed in this study has a high level of robustness

and reliability. Moreover, the construction of the lactic acid model

can also help the clinical design of drugs with lactic acid lncRNA as a

target and improve the survival rate of patients.

Lactate metabolism has been associated with the immune

microenvironment further to explore the relationship between

the TME and subtypes. A comparison of the infiltration of

24 immune cell types (including 18 T-cell subtypes) in C1, C2,

and C3 with six other immune cell types showed that macrophage

levels ofM0,M1, andM2 in C2 andC3were significantly lower than

in C1. Clinical and experimental evidence suggests that tumor-

associated macrophages (TAMs) are central to immunosuppressive

cells and cytokine networks and are associated with the development

andmetastasis of tumors and immune escape (Pollard, 2004). TAMs

have multiple functions during tumorigenesis depending on their

activation state, polarizing from an M1 phenotype to an

M2 phenotype. The M2 phenotype is mainly used for tissue

repair and remodeling, immunomodulation, and tumor-

promoting roles (Mills et al., 2000). Through innate signals such

as TGF-β and IL-10, T cells are induced to switch to Treg without

anticancer activity (Mantovani and Sica, 2010). This may partly

explain why C2 and C3 survived less than C1. Our findings are very

similar to recent findings that included hypoxia and immune genes.

OS was significantly better in the high hypoxic/immune-low group

(p < 0.01) than that in the hypoxic/immune-high group (p < 0.01)

(Zheng et al., 2020).

Among the eight lncRNA signatures, MYOSLID, AC012073.1,

and LINC00402 were associated with progression in various cancer

types, but there is hardly any information reported on HCC.

MYOSLID was identified as a lncRNA that promotes invasion

and metastasis by modulating a partial epithelial-interstitial

transformation procedure for head and neck squamous cell

carcinoma (Xiong et al., 2019). Furthermore, this lncRNA is

associated with autophagy genes and is critical for osteosarcoma

progression and the occurrence and development of gastric cancer

(Han et al., 2019). In addition, autophagy-related lncRNAs are

known to be prognostic indicators of head and neck squamous

cell carcinoma (Zhou et al., 2021). Based on the above reports, this

lncRNA is associated with cancer initiation and spread, can predict

cancer prognosis reasonably and may become a potential molecular

target. The results show that AC012073.1 has a critical prognostic

value in esophageal squamous cell carcinoma (Zhang et al., 2021).

LINC00402 and other lncRNAs enhance PHLPP2 expression by

competing with the endogenous RNA network and exerting

repression in colon cancer pathogenesis (Wu et al., 2020). A

similar result has shown that this lncRNA is involved in the

regulation of ceRNAs in metastatic melanoma and affects the

prognosis of patients (Wang et al., 2019).

The N6-methyladenosine (m6A) modification mechanism is

closely related to tumorigenesis, protein translation, and drug

response (Deng et al., 2018). For future translational research in

cancer therapy, this work also explored the relationship between

aberrant expression of the m6A regulator mRNA profile and

prognostic features of HCC and its potential role in cancer

therapy. The m6A methyltransferase complex comprises

METTL13, METTL14, and WTAP. It may also include

VIRMA and RBM15, acting as m6A writers, demethylases

acting as erasers, and m6A-binding protein (YTHDF1/2/3,

METTL3) readers, which determine the fate of the target

mRNA transcription of m6A modifications (Zhang et al.,

2020b). This study includes VIRMA, WTAP, RBM15,

RBM15B, ALKBH5, HNRNPC, METTL3, YTHDF1, YTHDF2,

HNRNPA2B1, YTHDC1, IGF2BP1, IGF2BP2, and

IGF2BP3 were upregulated in the high-risk group. The

expression of METTL3 and METTL14 in m6A writers and

the development of HCC have been examined in recent

studies (Ma et al., 2017; Chen et al., 2018). Some functions of

METTL3 were not related to m6A because of the opposite effect

of METTL3 and METTL14 on HCC cell migration. A high level

of METTL3 indicates a poor prognosis, while the level of

METTL14 mRNA shows an opposite trend, which is in

accord with a previous report (Ma et al., 2017). According to
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a previous study, downregulation of 14 is a poor indicator of

recurrence-free survival in HCC, and its expression level

correlates closely with tumor spread. By regulating the

microprocessor protein DGCR8, METTL14 promotes the

maturation of PRI-mir126 into mature mir126, a tumor

suppressor of HCC metastasis (Chen et al., 2018).

More recently, lncRNAs have also been shown to have

essential roles in tumor-intrinsic mechanisms for immune

suppression (Tang et al., 2019). Future studies must explore

the function of these LM_lncRNAs in tumor immunity and as

predictive immune checkpoint inhibitors for immunotherapy.

Conclusion

A novel and efficient LM_lncRNAs signature and model

were established, confirmed to have high prognostic value by

ROC analysis, and may be used as independent predictors of OS.

Finally, some critical LM_lncRNAs were significantly clustered

in oxidative respiration pathways, such as aerobic respiration and

NADH oxidation, which should facilitate the ongoing effort to

understand the role of lncRNAs in the lactate metabolism

immune response. The present findings may provide a rationale

for designing novel lactate metabolism-related targeted therapies by

optimizing promising therapeutic markers and targets.
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