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Pulmonary fibrosis is characterized by loss of normal alveoli, accumulation of pathologic

activated fibroblasts, and exuberant extracellular matrix deposition that over time can

lead to progressive loss of respiratory function and death. This loss of respiratory function

is associated with the loss of alveolar type 1 cells (AT1) that play a crucial role in gas

exchange and the depletion of the alveolar type 2 cells (AT2) that act as progenitor

cells to regenerate the AT1 and AT2 cell populations during repair. Understanding the

mechanisms that regulate normal alveolar repair and those associated with pathologic

repair is essential to identify potential therapeutic targets to treat or delay progression of

fibrotic diseases. The Hippo/YAP developmental signaling pathway has been implicated

as a regulator of normal alveolar development and repair. In idiopathic pulmonary fibrosis,

aberrant activation of YAP/TAZ has been demonstrated in both the alveolar epithelium

and activated fibroblasts associated with increased fibrotic remodeling, and there is

emerging interest in this pathway as a target for antifibrotic therapies. In this review,

we summarize current evidence as to the role of the Hippo-YAP/TAZ pathway in alveolar

development, homeostasis, and repair, and highlight key questions that must be resolved

to determine effective strategies to modulate YAP/TAZ signaling to prevent progressive

pulmonary fibrosis and enhance adaptive alveolar repair.

Keywords: pulmonary fibrosis (PF), idiopathic pulmonary fibrosis, Hippo YAP/TAZ, review, alveolar repair, alveolar

epithelial cell, fibroblast activation

INTRODUCTION

Interstitial lung diseases (ILDs) are characterized by progressive loss of respiratory function leading
to breathlessness, hypoxemia, and in many cases, death due to respiratory failure (1). Respiratory
failure results from the loss of functional alveoli to participate in gas exchange and their replacement
by a pathologic accumulation of extracellularmatrix. Idiopathic Pulmonary Fibrosis (IPF), themost
common of the idiopathic ILDs, is a rapidly progressing disorder of older adults with diagnosis
typically occurring between the 60-70th year (2, 3) and mean survival of 3-5 years after diagnosis.
While pirfenidone and nintedanib have been demonstrated to slow lung function decline and are
approved for the treatment of IPF, large impacts on patient survival and quality of life are yet to
be achieved by any IPF therapy (4, 5). Informed by human genetic studies and mouse models, the
prevailing hypothesis suggests that IPF is initiated by chronic alveolar injury and failure of normal,
adaptive repair mechanisms (6–10). Consistent with this hypothesis, several pathways involved
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in lung development have been implicated in normal lung
regenerative processes including Wingless (Wnt), mammalian
target of rapamycin (mTOR), transforming growth-factor beta
(TGFβ), and the Hippo/Yes-associated protein (YAP) (11–14)
pathway. Emerging data indicate that the Hippo/Yap pathway
plays a central and essential role in normal lung repair,
and dysregulation of this pathway is a prominent feature of
pathologic lung repair and pulmonary fibrosis.

THE HIPPO/YAP PATHWAY

The Hippo/YAP pathway consists of the core Hippo
components, the mammalian Sterile20-like 1 and 2 kinases
(MST1/MST2), also known as Serine-Threonine kinases 4 and
3 (STK4/STK3), respectively, interact with Salvador (SAV1) to
phosphorylate large tumor suppressor kinases LATS1/2, that
in turn phosphorylates YAP and its homolog TAZ to prevent
nuclear localization. In the absence of this phosphorylation
cascade, YAP/TAZ localizes to the nucleus where it complexes
with one or more of a repertoire of binding partners, most
prominently the TEADs 1-4, to regulate transcription of genes
associated with cell migration and proliferation (13, 15, 16).
YAP/TAZ signaling has increasingly been linked to regulating
cell behavior both independent of and in coordination with other
developmental pathways (15). In MCF10A breast cancer cells,
YAP interacts with the transcription factor KLF5 to regulate cell
proliferation (17). YAP has also been demonstrated to influence
signaling through several pathways that regulate epithelial
cell proliferation. Moreover, YAP has been shown to inhibit
phosphatase and tensin homolog (PTEN), which itself normally
inhibits the mTOR/Pi3K pathway (18). Similarly, mTOR activity
impaired the normal 14-3-3 ubiquitin regulated autophagic
degradation of YAP, thereby accumulating nuclear YAP and
increasing YAP activity in the kidneys of tuberous sclerosis
complex model mice (19). Wnt signaling is well-recognized to
regulate progenitor cell fate, and YAP and Wnt signaling have
been shown to activate and antagonize the other pathway in
different contexts regarding cell fate decisions. The mechanism
underlying these context-dependent divergent regulatory roles
are not yet well-understood (20–23). In breast and colon cancer
cells, as well as in skin fibroblasts, YAP/TAZ and SMAD, a core
component of TGFβ signaling, form complexes to direct cell
transcriptional activity to direct proliferation and differentiation
(24–26). To further complicate the role of YAP, recent findings in
the heart reveal that YAP/TAZ regulate chromatin accessibility
to regulate cardiomyocyte differentiation (27). These pathways
are all activated during development of the lung epithelium
and abnormally regulated during fibrosis. It is unlikely that
these pathways act independent of each other; therefore,
understanding the complex interactions between them may be
essential in determining treatment options for fibrosis (28).

YAP IN LUNG EPITHELIUM

During lung development, Yap is required for normal airway
branching (29–31), and available data suggest that precise spatial

and temporal regulation of Yap activity in the airway epithelium
is critical for normal development. For example, persistent
activation of Yap in airway basal cells leads to hyperplasia
and impaired terminal differentiation. In contrast, Yap deletion
results in accelerated terminal differentiation and depletion of
progenitor cells (29, 30, 32). Together, these data indicate that
in the airway epithelium, Yap activity is dynamically regulated to
maintain homeostasis.

Recent findings in the mouse lung have provided additional
insight into the normal function of Yap signaling in alveolar
development and homeostasis. Using the pan-lung epithelial-
specific Sonic hedgehog cre-recombinase (Shh-Cre) to activate
Yap via deletion of Lats1/2 starting around E9.5, Nantie
and colleagues demonstrated multiple striking defects in lung
development, including markedly reduced lung size, failure of
distal branching, near complete absence of Spc-expressing AT2
cells by E18.5, and near-complete effacement of the distal lung
epithelium with Hopx+ cells; unexpectedly, Hopx+ cells were
detectable as early as E11.5, suggesting that persist activation of
Yap signaling the developing lung epithelium promotes abnormal
and ectopic differentiation. In addition, conditional deletion of
Yap and Taz using an Sftpc-rtTA/tetO-Cre system starting at
E16.5 resulted in few Hopx+ cells by E17.5, while conditional
expression of a constitutively active Yap using the same system
resulted in an increased number of Hopx+ cells prior to
birth (33). Together, these data indicated that Yap signaling
is likely a critical factor in AT1 cell fate-commitment in the
developing lung.

Subsequent studies revealed that Yap interactions explain an
unresolved paradox in alveolar development. It has long been
recognized that the transcription factor Nkx2-1 is necessary
for lung epithelial fate specification, but puzzlingly, Nkx2-1
activation has been observed to promote both AT2 and AT1
cell differentiation. Profiling chromatin accessibility in lineage-
labeled AT1 cells (using a Wnt3a-Cre) and AT2 cells (using
the tamoxifen inducible Sftpc-CreER), Little and colleagues
identified distinct regions of open chromatin containing Nkx2-
1 motifs; in AT1 cells, these motifs were enriched for Tead
sites. As Teads complex with Yap and/or Taz, this suggested
Yap/Taz regulation of Nkx2-1 accessible sites to facilitate AT1
differentiation. Deletion of Yap/Taz in AT1 cells using a Wnt3a-
Cre led to a shift in Nkx2-1 accessible sites which more closely
resembled those seen in AT2 cells, implying unexpected plasticity
of AT1 cells in the absence of active Yap/Taz (34).

Similar findings have been observed in the context of neonatal
injury repair. In the neonatal period, hyperoxic lung injury
leads to loss of AT1 cells, and using this model, Penkala and
colleagues recently demonstrated that deletion of Yap/Taz using
a Hopx-CreER administering tamoxifen shortly after birth, led
to an increased number of AT2 cells. Using an elegant strategy
combining lineage labeling of Sftpc+ cells with doxycycline-
inducible expression of constitutively active Yap, they observed
cuboidal appearing cells co-expressing Hopx and Sftpc (35).
Consistent with both reports, our group has recently shown
that deletion of Yap in postnatal Sftpc+ AT2 cells resulted
in increased expression of mature AT2 cell markers including
Napsa, Sftpb, and Abca3. Yap activation, induced by deletion
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FIGURE 1 | Summary of role of YAP activity during normal and pathologic alveolar repair. YAP/TAZ activation during normal development enhances AT2 cell

proliferation and promotes AT1 cell differentiation while deletion of YAP/TAZ leads to increased expression of mature AT2 cell markers. During repair, YAP/TAZ is initially

activated, followed by a decrease in activity. However, in ILDs such as IPF, YAP/TAZ is aberrantly activated leading to abnormal differentiation of AECs and activation of

fibroblasts. Created using BioRender.com.

of Mst1/2 using the Sftpc-CreER at postnatal day 3, opened
broad regions of chromatin associated with promoters of genes
involved with alveolar epithelial cell differentiation by postnatal
day 14. Analysis of these opened promoter regions demonstrated
enrichment for Nkx2-1, Nfib, Klf and Tead binding sites. Studies
assessing the activity of the AT1 marker AGER demonstrated
these transcription factors interact with YAP to increase
expression of AGER. YAP activation also increased numbers of
Hopx+ cells and induced the presence of cells expressing both
AT1 and AT2 cell markers. Further, a subset of Yap-activated AT2
cells expressmarkers normally associated with conducting airway
epithelial cells (36), a phenotype consistent with incomplete
differentiation of a subset of AT2 cells reminiscent of those
found in the IPF lung. Together, these studies provide compelling
evidence that Yap activation is an early and essential event in
normal AT1 cell maturation and is required for maintenance of
the AT1 state, but alone is not sufficient to drive complete AT1
maturation. Further, persistent Yap activation in AT2 cells which
fail to complete AT1 differentiation is associated with abnormal
differentiation of AECs toward an airway-like phenotype.

More recently, it has become clear that YAP signaling also
plays a central role in normal alveolar epithelial development
and pathologic alveolar repair. Initial clues linking YAP to
the alveolar epithelium emerged from early single-cell RNA-
sequencing studies of IPF and control lungs. Comparing the
single-cell transcriptomes of HTII-280+ cells from IPF and donor
lungs, pathway enrichment analyses identified upregulation
of YAP target genes in IPF alveolar epithelial cells (AECs),
suggesting increased YAP transcriptional activity these cells
(37). Immunofluorescence analysis showed the presence of
nuclear YAP and AJUBA with a loss of MST1/2 in IPF AT2
cells, suggesting that in advanced disease, there is abnormal
and persistent YAP activation in AECs. The biological role
of YAP in the alveolar epithelium was not clear; however,
pathway analyses predicted that YAP interactions with Wnt
and mTOR signaling (38). Additionally, the mechanisms leading
to persistent YAP activation in the IPF epithelium have
not yet been well-established. Recent data indicate epithelial
barrier dysfunction may play a role. In the adult mouse
lung, Zhou and colleagues demonstrated that deletion of the
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junctional component claudin-18 (Cldn18) destabilized Yap
interactions with the Lats kinases, promoted nuclear Yap
accumulation (39).

There has been somewhat less work investigating the role
of Hippo/Yap signaling in repair of the injured alveolus during
adulthood. In a bacterial pneumonia injury model, LaCanna and
colleagues demonstrated that Spc+ cells underwent proliferation
and differentiation, which correlated with increased Yap/Taz
following lung injury. Deletion of Yap/Taz in these cells resulted
in prolonged inflammatory response and delayed alveolar repair
(12). This work also raises the possibility that Yap may play a role
in lung immune response, another process that is dysregulated
in the IPF lung. Deletion of Taz in adult mouse AT2 cells
resulted in reduced AT1 cells differentiation in organoids and
bleomycin induced lung injury (40). In the Hermansky Pudlak
Syndrome type 2 pearl mouse model that is associated with
markedly increased susceptibility to experimental fibrosis, the
Yap target Ajuba was increased in nuclei of AT2 cells, which
correlated with increased AT2 cell proliferation (41). These
findings, along with those in the embryonic and postnatal lung,
suggest that Yap/Taz regulation may be biphasic following injury,
with an initial increase in Yap activity that increases AT2 cell
proliferation, followed by downregulation of Yap/Taz in AT2 cells
to maintain the AT2 cell population. Understanding Yap/Taz
dynamics following injury, in both the epithelium and in other
cell types, will be essential to developing strategies to target the
pathway for treatment.

YAP ACTIVITY IN THE LUNG
FIBROBLASTS

While abnormal epithelial remodeling is a hallmark of IPF,
fibroblasts are the primary effector cells producing the
pathologic extracellular matrix that accumulates in disease.
Increasing evidence highlights a role of YAP/TAZ signaling
in fibroblast activation, and several studies have elucidated
upstream regulation and downstream effects of YAP/TAZ in the
context of lung fibrosis.

Initial findings by Liu and colleagues found that YAP/TAZ
were increased in the fibroblasts of IPF fibroblasts in regions
of fibrosis, whereas YAP/TAZ nuclear localization was largely
absent in the normal lung. Further analysis demonstrated that
IMR-90 fibroblasts cultured on matrices of various stiffness
revealed that nuclear YAP/TAZ increased on stiffer matrix.
In these studies, YAP/TAZ regulates TGFβ signaling through
SERPINE1 and plasminogen activator inhibitor 1 and was
associated with enhanced fibroblast activation. These data
indicated that YAP/TAZ signaling is central to matrix-stiffness
regulation of fibroblast activation, and highlighted YAP/TAZ as a
potential fibroblast therapeutic target (42). In follow-up studies,
this group unexpectedly observed exacerbation of bleomycin-
induced lung fibrosis when siRNA was administered intranasally
to globally inhibit Yap/Taz in the lung (43), suggesting a more
nuanced approach, either temporally or cell-type specific, to
targeting this pathway will be required.

To this end, several studies have shed further light on
the signaling mechanisms that mediate Yap/Taz activation in
fibroblasts. G-protein-couple receptors have been shown to
regulate Yap activity in response to TGFβ stimulation (44).
In the bleomycin injury model, the profibrotic effects of Yap
have been shown to be regulated by TGFβ via sphingosine-
1-phosphate (S1p), a signaling lipid, and use of an antibody
blocking S1p receptors reduced TGFβ-mediated YAP activation
(45). Aravamudhan et al. (46) showed that the TGFβ related
protein tank binding protein kinase-1 (TBK1), is regulated
by mechanosensing of the lung fibroblast and is upstream
of YAP activation. TBK1 was an attractive target as there
are readily available drugs to target it and it may provide a
potential way to specifically regulate YAP induced fibroblasts
activation associated with progression of pulmonary fibrosis.
Several findings by Sudhadevi et al. point to how changes
in the extracellular matrix can be directly linked to the
effects of YAP/TAZ. Constant expression of YAP/TAZ proteins
in immortalized fibroblasts lead to progressive hardening of
matrices and eventual fibrosis when transferred into murine
lungs, thereby indicating that YAP/TAZ localization to nuclei
can confer fibrogenic potential to fibroblasts. Surprisingly, IPF-
derived fibroblasts and normal lung-derived fibroblasts had
virtually indistinguishable levels of YAP/TAZ expression and
could reverse localization when cultured on soft matrices. This
suggests that either type of fibroblast retains the ability to
respond to their mechanical environment (42, 45). Altogether,
these findings imply that the dynamics of YAP/TAZ activity
in lung fibroblasts are more dependent on environment than
previously known. Understanding how to target YAP/TAZ
upstream of fibroblast activation may develop ways to delay
disease progression. Recent work used a high throughput
screen of YAP activated human primary fibroblasts to identify
that HMG-CoA reductase inhibitors (commonly referred
to as “statins”) inhibit nuclear YAP localization and that
simvastatin treatment reduced nuclear YAP and reduced
fibroblast activation markers in bleomycin induced lung fibrosis
mouse models (47).

The profibrotic mechanisms downstream of Yap have been
investigated to a somewhat lesser degree. It has been shown
that once Yap is activated in the fibroblasts, it upregulates
the transcription of Twist1, which interacts with Tead-1
to induce profibrotic expression of collagen-1, fibronectin,
and connective-tissue growth factor (Ctgf). In this same
study, miR-15a, a microRNA that is downregulated in IPF
patients, is shown to have potential in preventing fibrogenesis
by downregulating YAP expression (48). Noguchi et al.
(49) found that TAZ was specifically upregulated in IPF
fibroblasts, and utilizing HFL-1 human fibroblasts found
that TAZ specifically upregulate myofibroblast phenotypes
including increased expression of alpha-smooth muscle
actin (αSMA) in concert with activation of CTGF. Together,
this body of work builds a strong case that modulating
YAP activity offers promise for ameliorating pathologic
fibroblast activation and interrupting a feed-forward
cycle wherein fibrosis activates YAP which begets further
fibrosis (50).
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FUTURE WORK AND OPEN QUESTIONS

With increasing understanding of the complex roles YAP/TAZ
play in lung development, homeostasis, injury repair, and
pathologic fibrosis, it has become clear that approaching this
pathway in a therapeutic context will not be as simple as global
inhibition or activation, in contrast to other organs (51). While
aberrant YAP activation in the epithelium and mesenchyme
contribute to failure of repair, initial YAP activation in these
cells is likely beneficial for proliferation of progenitor populations
and signaling to immune cells (12). Several studies have found
that immune cell regulation plays a role in IPF pathogenesis
which are reviewed elsewhere (52–54), and defining the role
of YAP in immune response during lung injury may shed

further light onto the role of YAP in lung repair. Likewise,

the lung endothelium has been shown to recruit immune cells
and endothelial cells are aberrantly regulated in bleomycin
induced lung injury contributing to fibrotic repair (55, 56).
YAP activation in the endothelium was recently found to be
beneficial in protecting the lung from ventilator induced lung
injury, another form of lung injury that involves multiple cell

types (57). The recognition that YAP/TAZ are dynamically

regulated and active in multiple cell types makes detailed,
nuanced, context-specific understanding of the components that
regulate this pathway essential for targeting it for effective
therapeutic targeting (Figure 1). The concept that altered tight
junction activates YAP in AECs, combined with increased matrix
stiffness associated with increased collagen deposition induces
YAP in fibroblasts, and MST1/2-the inhibitors of YAP nuclear

localization are decreased in IPF AECs cells, indicates a system
in which YAP/TAZ is aberrantly activated in both the epithelium
and mesenchyme. Designing a system to attenuate YAP activity,
without completely blocking the apparent requirement of YAP to
regenerate the AT1 cells, will require a deeper understanding of
the YAP dynamics and epithelial/mesenchymal cell interactions.
Emerging organoid coculture systems hold promise for careful
mechanisms studies addressing these questions (14, 58–63).
While it seems likely that innovative cell-type targeting and/or
administration strategies may be required, pharmacologic
therapies targeting the YAP/TAZ pathway have intriguing
potential to prevent/reverse lung fibrosis and promote adaptive
lung repair.
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