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With the rapid economic growth and the continuous increase in population, cars have
become a necessity for most people to travel. The increase in the number of cars is
accompanied by serious traffic congestion. In order to alleviate traffic congestion, many
places have introduced policies such as vehicle restriction, and intelligent
transportation systems have gradually been put into use. Due to the chaotic
complexity of the traffic road network and the short-term mobility of the population,
traffic flow prediction is affected by many complex factors, and an effective traffic flow
forecasting system is very challenging. This paper proposes a model to predict the
traffic flow of Wenyi Road in Hangzhou. Wenyi Road consists of four crossroads. The
four intersections have the same changing trend in traffic flow at the same time, which
indicates that the roads influence each other spatially, and the traffic flow has spatial
and temporal correlation. Based on this feature of traffic flow, we propose the IMgru
model to better extract the traffic flow temporal characteristics. In addition, the
IMgruGcn model is proposed, which combines the graph convolutional network
(GCN) module and the IMgru module, to extract the spatiotemporal features of
traffic flow simultaneously. Finally, according to the morning and evening peak
characteristics of Hangzhou, the Wenyi Road dataset is divided into peak period
and off-peak period for prediction. Comparing the IMgruGcn model with five baseline
models and a state-of-the-art method, the IMgruGcn model achieves better results.
Best results were also achieved on a public dataset, demonstrating the generalization
ability of the IMgruGcn model.

Keywords: traffic flow prediction, deep learning, graph convolutional network, gated recurrent unit, temporal and
spatial correlations

INTRODUCTION

The number of motor vehicles is rising with the rapid development of technology and economy and
caused more serious traffic congestion. How to relieve traffic congestion effectively has become a hot
topic of concern (Hou et al., 2019). In order to relieve traffic pressure and improve the smoothness of
travel, various solutions have emerged, such as increasing road width, traffic flow limiting according
to single and double license plates, using public transportation, and developing traffic management
systems.
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The main strategy to solve traffic congestion in the early days
was to enhance road construction and increase the traffic capacity
of the roads to meet the traffic demand. Since the rate of road
construction was far from keeping up with the increase in vehicles
and the limitation in urban area (Yu et al., 2019), this led to severe
traffic jams during the peak hours of travel to work. The research
focus has shifted to how to make the best use of urban roads by
improving the utilization of existing roads. Intelligent
transportation systems (ITS) have also emerged (Do et al.,
2019), to manage vehicles intelligently and direct traffic flow,
to change the spatial and temporal distribution of vehicles in the
road network and equalize traffic flow.

Early traffic flow detection mainly relied on manual survey
records, and with the development of computer and electronic
information technology, detection techniques were gradually
improved. Domestic and foreign researchers proposed
automatic acquisition methods, such as parameter threshold
method, pattern recognition method, and numerical analysis
method. The latter turned to the use of GIS technology to
locate and collect data such as vehicle travel time and speed,
with travel time as the main metric parameter. However, the lack
of proper understanding and grasp of the mechanism of urban
road congestion and spatiotemporal characteristics of traffic flow
led to the recurrence of traffic congestion, and sudden traffic
accidents has caused episodic traffic congestion problems. It
cannot make a correct early warning of the place, time, radius
of the traffic congestions, and duration of occurrence. Therefore,
the existing strategies on controlling traffic congestion also tend
to stay at the level of theoretical analysis, lacking systematic and
real-time operational measures, which require intelligent traffic
control and guidance.

Traffic control and guidance system are the main direction of
ITS research, and the main problem of traffic control and
guidance is traffic flow prediction (Tang et al., 2013). Urban
roads are composed of intricate road sections and various
intersections. The composition of traffic flow varies from time
to time and place to place. The causes of traffic congestion, the
location of occurrence, and the radius of the traffic congestions of
influence are also different, and traffic flow shows obvious
characteristics of temporal and spatial distribution. Figure 1
shows the obvious cyclical changes of traffic flow during a

week. Figure 2 shows the variation of traffic flow during a
day, and it can be seen that there is a peak period in the
morning and one in the afternoon.

Traffic flow prediction is one of the ways of data collection and
processing in intelligent transportation systems. How to use
effective traffic information to predict the traffic flow
conditions in the next few minutes or hours so that drivers
can better choose smooth roads and, thus, effectively reduce
traffic congestion is one method called short-time traffic flow
prediction method (Liu and Guan, 2004). Short-time traffic flow
prediction methods are divided into three main categories (Luo
et al., 2019): prediction models based on linear statistical theory,
prediction models based on nonlinear theory, and prediction
models based on artificial intelligence theory. There are also some
hybrid predictionmodels (Guan and Chen, 2006), such as wavelet
analysis models combined with ARIMA models (Dou et al.,
2009), in order to give full play to the advantages of each
prediction model, while having the characteristics of
integration and complementarity between models so that the
road traffic flow can be predicted accurately and
comprehensively, and the prediction accuracy can be
improved effectively.

With the continuous development of the artificial intelligence
theory, traffic flow prediction has also started to adopt deep
learning methods. The essence of deep learning is artificial neural
network. Neural network is a mathematical or computational
model that mimics the structure and function of a biological
neural network (the central nervous system of animals, especially
the brain) for estimating or approximating a function. The neural
network consists of a large number of artificial neurons linked for
computation and is capable of simple decision-making abilities
and simple judgments similar to those in humans.

Domestic and foreign scholars have used deep learning as the
focus of their research (Yi et al., 2017) and achieved certain
results. Huang et al. (2014) proposed a deep architecture model,
which consisted of a deep belief network (DBN) at the bottom
and a multi-task regression layer at the top, to predict traffic flow.
Yi et al. (2019) studied the implementation of a deep long short-
term memory recurrent neural network (LSTM-RNN) in a
highway system. These methods confirmed the effectiveness
and feasibility of deep learning in the direction of traffic flow

FIGURE 1 | Visualization of traffic flow in 1 week at the Yile intersection of
Wenyi Road.

FIGURE 2 | Visualization of traffic flow in 1 day at the Yile intersection of
Wenyi Road.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org February 2022 | Volume 10 | Article 8044542

Zhao et al. IMgru Combined With GCN Model

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


prediction, but did not fully consider the spatiotemporal
characteristics of traffic flow. Wu et al. (2018) proposed a
DNN-based traffic flow prediction model (DNN-BTF) to
improve the prediction accuracy, using convolutional neural
networks to mine spatial features and recurrent neural
networks to mine temporal features of traffic flow. Wang and
Xu proposed an LSTM-RNN-based time series prediction model
for urban highway traffic flow in a deep learning framework,
which reconstructed the traffic time series by the integrated
spatiotemporal correlation of traffic flow, so that the LSTM-
RNN gains and enhances data mining capability. Zhene et al.
(2018) proposed a deep learning model based on CNN and RNN,
using matrix traffic as input, extracting traffic features using
CNN, predicting feature evolution using RNN, and mixing the
two models to achieve traffic flow prediction. Although these
methods considered spatiotemporal correlation, they did not
address the long-term memory problem and the gradient
problem in backpropagation.

This paper studied the prediction of traffic flow from both
spatial and temporal aspects, combining the temporal feature
extraction module and the spatial feature extraction module.
First, we obtained the spatial characteristics of traffic flow by
graph convolutional network and then predicted the future traffic
flow based on the spatiotemporal correlation of traffic flow. The
IM module was also proposed in the temporal feature extraction
module, to enhance the connection of traffic flow between input
and hidden state, and improve the traffic flow prediction
capability.

When extracting temporal features of traffic flow, it is
necessary to predict the next moment by remembering the
information of the previous moment, but it is difficult to
remember the input information that is too far apart.
Therefore, the problem of long time dependence needs to be
solved. The GRUmodel is used to obtain the temporal features of
traffic flow because it has a simpler structure and less
computation, which can reduce the risk of overfitting. For the
traditional GRU model, the inputs and the hidden states passed
down from the previous moment are independent of each other
until they enter the model interior. They only interact with the
information inside the GRU. This may lead to the loss of valid
information. We proposed the IMgru model with a richer
interactive representation of the inputs and hidden states,
which enhances the significant information, reduces the
secondary information, and enhances the modeling capability
of the model.

In addition, since the traffic flow at the four crossroads of
Wenyi Road interact with each other spatially. It is not accurate to
predict traffic flow only by the temporal characteristics of traffic
flow. Therefore, a combination of spatial and temporal
characteristics is needed to predict the traffic flow.

In this paper, the traffic flow dataset of Wenyi Road in
Hangzhou was collected, and the prediction effect was affected
by the dense flow of people and vehicles during the peak hours of
weekdays in Hangzhou, which was very prone to traffic accidents
and was affected by weather and other factors. Therefore, the
Wenyi Road dataset was divided into peak period and off-peak
period for separate prediction. In order to achieve better results in

the off-peak period, the model proposed in this paper was applied
to Wenyi Road dataset and two public datasets. The experiments
showed that the IMgruGcn model can mine the spatiotemporal
correlation of traffic flow, and the prediction results are better
than other models.

RELATED WORK

Traditional traffic flow forecasting methods are mainly based on
linear statistical models and nonlinear theory-based models.
Linear statistical-based models use mathematical statistical
theory to analyze historical traffic and predict future traffic,
including autoregressive sliding average (ARIMA) models
(Williams et al., 1998), historical average (HA) models (Chang
et al., 2011), Kalman filter prediction models (Kalman and R,
1960), and support vector regression classifier (SVR) models
(Smola and Scholkopf, 2004). The historical averaging model
is a simple method and can solve the problem of traffic flow
variations at different times to some extent, but its prediction is
static and cannot solve sudden traffic accidents and
unconventional traffic conditions. Although the equipment
used in the linear statistical model is relatively simple and low
cost, the real-time performance is poor.

Nonlinear theoretical models to predict traffic flow by finding
the original features of the traffic system in high-dimensional
space through phase space reconstruction include wavelet
analysis models (Ouyang et al., 2017), chaos theory models
(Jieni and Zhongke, 2008), and mutation theory-based models.
Nonlinear models have some advantages in the processing of time
series, but there are disadvantages, such as more complex models
and large computational effort.

The current mainstream models are neural networks, deep
learning models, etc. (Yi et al., 2017), and the commonly used one
is the BP neural network. Using deep learning long short-term
memory neural networks (LSTM) (Kang and Zhang, 2020), MF-
CNN (Yang et al., 2019), etc., traffic flow features are extracted
from the temporal perspective for prediction. DMVST networks
(Yao et al., 2018), ST-ResNet (Zhang et al., 2017), and traffic flow
features are mined from the spatial perspective using
convolutional neural networks (CNN). Currently, more and
more researchers are studying the characteristics of traffic flow
from both spatial and temporal perspectives to make more
accurate predictions. For example, the ASTGCN model (Guo
et al., 2019), an attention-based spatiotemporal graph
convolutional network, consists of three independent
components that model three temporal characteristics of traffic
flow: current dependence, daily cycle dependence, and weekly
cycle dependence. The STGCN model (Yu et al., 2017) is where
STGCN effectively captures comprehensive spatiotemporal
correlations by modeling multiscale traffic networks. The
DCRNN model (Li et al., 2017) models traffic flow as a
diffusion process on a directed graph and introduces a
diffusion convolutional recurrent neural network (DCRNN)
that captures spatial correlation using bidirectional random
wandering on the graph, and captures temporal correlation
using an encoder–decoder architecture with scheduled sampling.
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Traditional convolutional networks, such as CNNs, have
strong feature extraction and integration capabilities. CNNs
are able to learn the pixel arrangement patterns in images by
iterative updates of the convolutional kernel parameters to learn
different shape features and spatial features. However, CNNs
process data with very regular structured networks, i.e., very
neatly arranged matrices, which are difficult to process for data
with topological graph structure. The traffic flow data we study
has a lot of irregular data structure, which requires the use of
graph convolutional network to process, and the essence and
purpose of the graph convolutional network is to mine the spatial
features of the topological graph. In real life, there are many
irregularly shaped data structures. Graph structures that are more
typical, such as traffic road networks, social networks, chemical
structures, and so on, do not have a regular internal structure like
pictures or language. Graph structures are generally irregular;
each node in the graph is unique around the structure, for this
structure of data. With the use of traditional CNN, RNN network
cannot be solved, or the effect is not ideal.

Inspired by the above research, this paper used both graph
convolutional network (GCN) (Kipf and Welling, 2016) and gate
recurrent unit (GRU) (Cho et al., 2014) to mine the
spatiotemporal characteristics of traffic flow, and improved the
GRU network by proposing the IM module, which enables a
richer interactive representation between the input of the current
moment and the hidden state passed down from the previous
moment. This model is called the IMgru model, which enhances
the significant information and weakens the secondary
information, and enhances the modeling capability to better
predict the traffic flow in the next moment.

In addition, we also found that the traffic flow at the four
intersections in the Wenyi Road dataset has the same trend at
the same moment, which is due to the interaction of traffic flow
between upstream and downstream roads, indicating that the traffic
flow is spatially correlated, so the IMgruGcn model was proposed,
which combined the GCNmodule and the IMgru module to obtain
the spatial and temporal characteristics of traffic flow, making the
traffic flow prediction resultsmore accurate. Comparing theGruGcn
model with the IMgruGcn model proved the effectiveness of our
proposed IM module, and comparing the IMgru model with the
IMgruGcn model proved the effectiveness of combining the spatial
module with the temporal module. According to the temporal and
spatial correlation of the traffic flow, it is more effective to predict the
traffic flow at the next moment.

DATA

The dataset for this experiment was collected from the traffic flow
data of Wenyi Road in Hangzhou, Zhejiang Province. Figure 3
shows the channelization map of the four crossroads of Wenyi
Road. The collection time was from August 1, 2020 to August 30,
2020. Detectors were placed at each of the four crossroads, and
data were collected every 3 min. The collected data mainly
include road code, lane code, collection time, and traffic
volume. This experiment collected the time and the
corresponding traffic volume of these two key data as the

main content of the dataset. At the Gudun intersection, there
are nine lanes on the north–south road 271 and road 278, and 10
lanes on the east–west road 269 and road 272. The sum of the
number of vehicles passing in all these lanes at the same moment
was taken as a sample. A sample was collected every 3 min. The
same method was used in the other three intersections. A total of
480 × 4 samples were collected for 24 h per day. Due to a restarted
sensor or some unpredictable errors, the value of traffic flow may
be less than zero, and these data were removed. A total of
14,047 × 4 samples were collected in 30 days.

Vehicles are dense during peak periods and more susceptible
to weather and traffic accidents, so the prediction is less effective.
In order to predict off-peak traffic flow more effectively, this
experiment divided the traffic flow into peak period and off-peak
period for separate prediction. The traffic peak period in
Hangzhou is divided into morning peak and evening peak.
The morning peak time is 7:00–9:00, the evening peak time is
16:30–18:30, and the other time is recorded as off-peak time. A
total of 80 samples were collected per day during the peak period.
A total of 2,400 samples were collected in 30 days. During the off-
peak period, a total of 11,660 samples were collected in 30 days.
For each dataset, the first 80%, which is the first 3 weeks of traffic
flow data, was selected as the training set, and the last 20%, which
is the last week of traffic flow data, was used as the test set.

The adjacency matrix and feature matrix, constructed based
on the Wenyi Road dataset, were used to represent the spatial
relationship and temporal connection of roads, respectively. The
adjacency matrix represents the spatial adjacency between the
roads. Each row of thematrix represents a road, and there are four
roads in the Wenyi Road dataset. So, the adjacency matrix
dimension is 4 × 4. The matrix contains only two values of 0
and 1, and 1 means two roads are adjacent, and 0 means two
roads are not adjacent. The feature matrix represents the number
of vehicles passing on the four roads at different times. Each
column is one road, and each row represents the traffic flow on
the road at different time periods. The traffic flow was collected
every 3 min, and the feature matrix dimension is 14,047 * 4. The
value in the matrix indicates the traffic flow samples collected at
different time periods, with a total of 14,047 * 4 samples.

The adjacency matrix and feature matrix were used as the
input data of the model. The normalized feature matrix was input
into the graph convolutional network to mine the spatial
characteristics of traffic flow. Then a matrix of the same
dimension was output as the input matrix of the IMGRU
module, and the IMgru module extracted the temporal
characteristics of traffic flow to predict the traffic flow at the
next moment. The output matrix of the model was inverse
normalized and compared with the real traffic flow data.
Finally, the prediction capability of the model was calculated
by evaluating the metrics.

METHODOLOGY

Temporal module
Traffic flow data are a time series, so they are considered to be
solved by using recurrent neural network (RNN), which is effective
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for data with sequence characteristics and can mine the temporal
information as well as semantic information in the data. However,
the traditional RNN is prone to the gradient disappearance
problem and cannot solve the long-term dependence problem.
The Gated Recurrent Unit (GRU) (Cho et al., 2014) can solve this
problem and has a simpler structure and faster operations.
However, the inputs and of the traditional GRU model are
independent of each other before they are input into the
interior of the GRU model. They only interact with information
inside the GRU to obtain the output of each gate, whichmay lead to
the loss of valid information. Drawing on the application of LSTM
model in natural language processing, MOGRIFIER LSTM,
improves the generalization ability of language model (Melis et
al., 2019). This paper proposes the IMgru model, which makes the
input and the hidden state of the upper and lower moments have a
richer interactive representation, enhances the significant
information, weakens the secondary information, and enhances
the modeling capability of the model.

The structure of the conventional GRU model is shown in
module B in Figure 4. ht−1 denotes the hidden state at time t − 1,
xt denotes the traffic information at time t, rt denotes the reset
gate, zt denotes the update gate, and ht is the output state at time

t. GRU takes the hidden state at time t − 1 and the current traffic
information as input, and obtains the prediction result and
hidden state at time t.

The reset gate decides how much of the information of the
hidden state ht−1 of the previous moment to reset, combining the
new input with the previous memory. The update gate controls
the hidden state ht−1 of the previous moment, balancing it with
the input information of the current moment, forgetting some
information in ht−1 passed down from the previous moment, and
adding some information from the input of the current moment.

The overall process of the gating mechanism of GRU is as
follows:

zt � σ(Wz · [ht−1, xt ]) (1)
rt � σ(Wr · [ht−1, xt ]) (2)

~ht � tanh(W · [rt p ht−1, xt ]) (3)
ht � (1 − zt) p ht−1 + zt p ~ht (4)

The input of the GRU model consists of two parts, the current
input xt and the hidden state ht−1 passed down from the previous
node, which contains the information related to the
previous node.

FIGURE 3 |Channelization diagram of four intersections onWenyi Road. (A)Channelization map of the Gudun intersection. (B)Channelization map of the Fengtan
intersection. (C) Channelization map of the Jingzhou intersection.(D) Channelization map of the Yile intersection. Wenyi Road is an east–west road; there are four
crossroads on this road: from west to east are Gudun Road, Fengtan Road, Yile Road, and Jingzhou Road.
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Theoretically, the current input should be related to the hidden
state of the previousmoment, but Figure 4 shows that the inputs xt

and ht−1 of the GRU model are independent of each other before
they are input into the interior of the model. They only exchange
information in the gating mechanism inside the GRU to obtain the
output of each gate, whichmay lead to the loss of valid information
allowing the current input to fully interact with the previous hidden
state before inputting into the GRU may improve the results.

Due to the abovementioned shortcomings of the GRUmodel, we
proposed an improvement method. The improved part is shown in
Figure 4module A. The improvedmodel is called the IMgrumodel.
By introducing additional gating operations, the current input xt

and the hidden state ht−1 passed down from the previousmoment to
be computed inmultiple interactions before being input to the GRU.
Eqs. 5 and 6 are their calculation methods.

xi � 2σ(Qihi−1) ⊙ xi−2 for odd i ∈ [1 · · · r] (5)
hi � 2σ(Rixi−1) ⊙ hi−2 for even i ∈ [1 · · · r] (6)

where x−1 � x, h0 � h, and r refers to the number of rounds of
interaction, which controls how xi and hi should interact. When i
is odd, Eq. 5 is operated, and when i is even, Eq. 6 is operated.
When r � 0, the whole model becomes the original GRU
network. Q and R are the weight matrices.

Each formula is multiplied by a constant 2 because after a
sigmoid operation, the values are distributed in the interval (0, 1).
By repeatedly multiplying, the value will become smaller and
smaller, and finally reaches zero; therefore, multiplying by 2
ensures the stability of its value.

From Eq. 1 to Eq. 4, we know that the output hidden state ht at
moment t is related to the input xt and the hidden state ht−1
passed down from the t −moment. The hidden state calculated at
the current moment is related to the input at the next moment.
Thence, the hidden state passed down from the previous moment
is also related to the input at the current moment.

However, the current moment input xt and the hidden state
ht−1 passed down from the previous moment are independent of
each other before input into the GRU model. Just do a little
calculation in the gating structure, which may lose some useful
information. This paper decides to do some interaction operation
on the input xt and the hidden state ht−1 from the previous

moment before the gating structure of the GRU model. The
interaction way is shown in module A in Figure 4; the values of xt

and ht−1 are updated alternately by the value of i.
This improved approach allows a richer interactive

representation of the input and the hidden state, enhancing
the salient information, diminishing the secondary
information, and enhancing the modeling capability of themodel.

Spatial module
After visualizing the traffic flow of the four roads in the Wenyi Road
dataset for 30 days, as shown in Figure 5, it was found that there was a
strong similarity in the changing trend of traffic flow of the four roads
at the same time, which may be due to the spatiotemporal correlation
of traffic flow, and the four roads affect each other spatially; thus, the
traffic flow has similar changes at the same moment.

After discovering this spatial correlation of traffic flow, it is not
accurate enough to rely on temporal correlation alone to predict
traffic flow. In order to obtain more effective prediction results, the
spatial module was combined with the temporal module to extract
both spatial and temporal features of traffic flow. In order to obtain
more effective prediction results, the spatial module (as shown in
Figure 6) was combined with the temporal module to extract both
spatial and temporal features of traffic flow (Zhao et al., 2019).

The spatiotemporal module was combined in the way shown
in Figure 7, which combined graph convolutional networks

FIGURE 4 | IMgru model structure. (A) IM module. (B) GRU module.

FIGURE 5 | Mean visualization of the traffic volume of the four roads on
Wenyi Road in 30 days.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org February 2022 | Volume 10 | Article 8044546

Zhao et al. IMgru Combined With GCN Model

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


(GCNs) and the IMgru model to extract the spatiotemporal
features of the traffic flow simultaneously. Graph
Convolutional Networks (Kipf and Welling, 2016) were used
to extract the spatial features of the traffic flow, as shown in
Figure 6. For each node, feature information of all its neighboring
nodes was extracted, including the own features of the node. Then
the average values obtained from these calculations are input to
the neural network. Thus, the features of the graph structure data,
which are the spatial features of the traffic flow, were extracted,
and then the traffic flow data were input into the IMgru model to
predict the traffic flow at the next moment based on the spatial
and temporal correlation of the traffic flow.

There are two methods for extracting spatial features from
graph convolutional networks: the spatial domain method and
the frequency domain method (spectral method). The spatial
domain method needs to find out the neighbors adjacent to each
vertex, but the size and number of the neighbors of each vertex is
inconsistent, so the computational processing must be specific to
each node, which is more difficult to handle. The spectral method
is to change the original graph from the node domain to the
spectral domain and then define the convolution kernel in the
spectral domain. Therefore, the graph convolution network in
this paper uses the spectral method.

The traffic road network is abstracted as an undirected graph
with N nodes in the graph. Each node has its own features. The
features of these nodes are summarized as an N × D-dimensional
feature matrix X (N is the number of nodes, D is the number of
input features), and then the relationship between each node will
also form an N × N-dimensional matrix called the adjacency
matrix A. Feature matrix X and adjacency matrix A are the inputs
to the model.

Each hidden layer in the graph convolution can be represented
by a nonlinear function.

H(l+1) � f(H(l), A) (7)
where the input layer H(0) � X, H(l) � Z, and l denotes the
number of layers. The propagation between layers is given by
Eq. 8.

f(H(l), A) � σ(AH(l)W(l)) (8)
where W(l) is the weight matrix of the lth layer, and σ is the
activation function of the nonlinear regression. This experiment
uses a two-layer graph convolution with the following procedure:

f(X,A) � σ( ~A relu(AXW0)W1) (9)
where W0 denotes the weight matrix from the input layer to the
hidden layer,W1 denotes the weight matrix from the hidden layer
to the input layer, relu is the activation function, and

FIGURE 6 | Graph convolutional network structure.

FIGURE 7 | IMgruGcn model structure.
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f(X,A) ∈ RNpT represents the output of prediction time length
of T. The multiplication of matrix A and matrix H in Eq. 8
indicates that the features of the neighboring nodes of each node
are added to get the input of the next layer, but the features of its
own nodes are not included. The features of the neighboring
nodes are obtained, while ignoring the information of its own
nodes. Hence, by adding the adjacency matrix with the identity
matrix, ~A � A + I is obtained, so that it includes the features of its
own nodes. In general, the graph convolution operation is to
obtain the weighted average of the features of each node and its
neighbors, and then propagate them to the next layer to obtain
spatial features. The process is shown in Figure 6.

After extracting the spatial characteristics of the traffic flow
through GCN, the IMgru model is used to extract the temporal
characteristics of the traffic flow. According to the temporal and
spatial correlation of the traffic flow, the GCN module and the
IMgru module are combined to predict the traffic flow in the next
moment more effectively.

Overall structure of the model
Figure 7 shows the total network structure. The input on the left
side of the figure is the raw data of traffic flow, including the
adjacencymatrix and the feature matrix. Since the feature data are
large, and the model converges slowly, the feature matrix needs to
be linearly transformed from the input to the spatial feature
extraction part, and the min–max normalization method is used
to map the result to the interval (0, 1). The specific formula is as
follows:

x � x −min

max −min
(10)

where min denotes the minimum value in the traffic flow data,
and max denotes the maximum value in the traffic flow data. The
normalized data are easier to handle and can speed up the
convergence of the model.

The input xt−n at the current moment is processed by the
graph convolution network, and the spatial features of the traffic
flow are extracted. Then the traffic flow data with spatial features
are input to the IMgru module. The IMgru module consists of the
IM module and the GRU module. The data of x’t−n link are the
traffic flow data with spatial features obtained by GCN and will be
input into the IMgru module. The top-to-bottom links in the
IMgru module are the hidden state passed down from the
previous moment of the GRU unit.

Since the first GRU unit does not have the hidden state passed
down from the previous moment, the first hidden state is
initialized, which is the first longitudinal link h’t−n−1 in the
IMgru module, as a zero matrix with the same dimension as
the feature matrix. After the current input and the hidden state
passed from the previous moment are interacted by the IM
module for multiple rounds, they are input to the GRU
module to mine the time characteristics of the traffic flow.

By combining the GCN module and IMgru module to obtain
both spatial and temporal characteristics of traffic flow, the IM
module was proposed to mine temporal features, making the
input and the hidden state of the upper and lower moments have

a richer interactive representation, enhancing the significant
information, diminishing the secondary information, and
enhancing the modeling capability of the model to better
predict the traffic flow in the next moment.

EXPERIMENTS AND RESULTS

Measurement indexes
This experiment uses the root mean square error (RMSE) and the
mean absolute error (MAE) as the evaluation index of the model,
which are commonly used to measure the accuracy of the
variables. The calculation formula is:

RMSE �
��������������
1
m
∑m

i�1(yi − ŷi)2
√

(11)

MAE � 1
m
∑m

i�1
∣∣∣∣yi − ŷi

∣∣∣∣ (12)

where yi represents the true value of traffic flow, which is a
sample collected, i.e., the sum of the number of vehicles passing in
the four directions of east, west, north, and south at each
intersection; ŷi represents the predicted value of traffic flow;
and m represents the number of observed traffic flow samples.

The root mean square error (RMSE), which can also be called
standard error, measures the average size of the error. It is the
square root of the mean of the squared deviation of the predicted
value from the true value. The mean absolute error (MAE) is the
average of the absolute errors of the predicted and true values.
Therefore, the smaller the values of RMSE and MAE, the better.

Environment settings
All experiments in this paper were programmed in the framework
of the PyTorch environment, using the Python language and the
PyCharm editor, and trained and tested on Intel(R) Core(TM) i5-
7500 CPU @3.40 GHz processor, GPU: NVIDIA GeForce
GTX 1070.

RESULTS AND ANALYSIS

In order to compare the ability of the models proposed in this
paper to predict traffic flow, this experiment was trained and
tested on the peak period, off-peak period, and complete dataset
of Wenyi Road. Each dataset consisted of adjacency matrix and
feature matrix as input. The three models proposed in this paper,
IMgru, GruGcn, and IMgruGcn, were compared with other
traditional models including HA, SVR, ARIMA, GCN, and
GRU for traffic flow prediction results. The model was also
compared with the state-of-the-art method ASTGCN (Guo
et al., 2019). The output was the predicted traffic flow matrix,
which was compared with the feature matrix of the real traffic
flow. The root mean square error (RMSE) and mean absolute
error (MAE) were used as evaluation indexes to calculate the
error between the predicted and real values. The prediction
performance of each model was evaluated in Table 1 and
Table 2. Table 1 compared the prediction performance of
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each model on the training set of Wenyi Road dataset, and
Table 2 was the prediction performance on the test set of each
dataset. From Table 1 and 2, it is obvious that the value of MAE is
smaller than that of RMSE, which is because RMSE is the
accumulation of the square of the error before opening the
square, and it actually magnifies the gap between larger errors.
TheMAE, on the other hand, responds to the true error. Thus, the
smaller the value of RMSE in the measurement, the greater its
significance because its value reflects that its maximum error is
also relatively small.

The batch size was set to 32, which was too small to converge.
Increasing the batch size will increase the processing speed, but
the memory capacity will also increase.

The results in Table 1 and 2 all showed that our proposed
models IMgru, GruGcn, and IMgruGcn improved the prediction
results over other baseline networks, among which, the
IMgruGcn model performed the best. The ARIMA model
performed the worst due to its lack of spatiotemporal data
processing capability, and the traditional statistical methods
and machine learning methods had no effect of deep learning
methods. On the peak dataset, the prediction effect of the
ASTGCN model is better than the IMgruGcn model.
However, the prediction effect of IMgruGcn model is better
than the ASTGCN model on all the other four datasets.

Dividing the datasets into peak and off-peak periods to predict
them separately, Table 1 and 2 showed that the prediction effect
of the off-peak dataset was significantly better than that of the
peak dataset. This was because the peak period was the time when
people travel to work, and the traffic flow was intensive and
vulnerable to weather and traffic accidents. The traffic flow
during off-peak period was relatively stable, so the prediction
effect was better. It can be seen that the traffic flow not only had
spatial and temporal correlation but also was susceptible to
external factors such as weather and traffic accidents. In order
to see more clearly the traffic flow prediction effect of our
proposed model, the prediction results of the three models,
IMgru, GruGcn, and IMgruGcn, on the test set for four roads
were visualized as shown in Figure 8, Figure 9, Figure 10,
Figure 11, Figure 12, Figure 13, Figure 14, Figure 15, Figure 16

Figure 9 is a visualization of the prediction results of the
GruGcn model. Obviously, the GruGcn model can only predict
the general trend of traffic flow, and the predicted value was far
from the real value. However, the prediction result of the IMgru
model in Figure 8 is relatively better, whichmay be because road2
and road3 were less affected by the space of other roads. The
spatial feature extraction of the graph convolutional network did
not play a better role. In the visualizations of Figures 8 and 10, the
pink ellipse in road1 and road3 showed that the prediction effect

TABLE 1 | The prediction results of the training set of peak period, off-peak period, and Wenyi Road complete dataset on each model.

Model Off-peak Peak Complete
dataset

Losloop Shenzhen

Root
mean
square
error

(RMSE)

Mean
absolute
error
(MAE)

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

HA 18.90 14.94 38.14 29.39 28.36 21.04 20.30 19.58 6.80 4.74
SVR 17.64 13.75 39.78 29.37 30.81 23.96 12.56 10.49 6.82 4.62
ARIMA 59.46 41.76 101.98 95.58 79.40 68.77 59.28 58.29 14.34 12.12
Graph convolutional network (GCN) 10.97 8.66 34.49 27.68 22.46 16.89 6.16 4.42 5.54 4.15
GRU 10.99 8.67 32.64 27.06 22.56 17.79 6.70 3.83 5.58 4.27
ASTGCN 8.91 6.67 28.64 21.32 19.11 15.07 10.95 6.72 7.68 5.14
IMgru (ours) 9.53 7.18 30.98 24.99 18.66 14.91 6.13 3.50 4.11 2.52
GruGcn (ours) 8.99 7.67 31.15 24.64 18.81 15.80 6.13 4.29 4.06 2.65
IMgruGcn (ours) 8.29 6.47 29.35 22.24 18.84 14.26 5.52 2.77 3.62 2.46

The bold values are represent the best prediction result of all models.

TABLE 2 | The prediction results of the test set of peak period, off-peak period, and Wenyi Road complete dataset on each model.

Model Off-peak Peak Complete dataset Losloop Shenzhen

RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

HA 20.42 15.74 49.04 42.11 42.75 30.86 20.02 19.07 6.98 5.71
SVR 19.76 15.41 47.45 40.52 40.06 28.61 13.09 11.03 8.26 6.53
ARIMA 54.36 37.65 103.83 98.21 90.11 78.98 58.94 57.87 13.67 11.56
GCN 14.11 10.49 40.68 33.76 29.19 20.13 8.65 6.08 6.01 4.48
GRU 14.21 10.45 39.99 32.86 27.46 20.95 8.84 5.96 5.64 3.26
ASTGCN 11.06 7.87 35.02 28.83 27.69 19.98 13.35 8.34 4.72 3.32
IMgru (ours) 11.83 8.50 38.69 32.05 26.54 20.28 5.64 3.36 4.20 2.92
GruGcn (ours) 12.19 9.45 39.22 32.96 27.21 20.73 7.42 5.16 4.27 2.98
IMgruGcn (ours) 10.74 7.59 38.12 31.88 26.05 19.28 5.59 3.26 4.18 2.91

The bold values are represent the best prediction result of all models.
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FIGURE 8 | Visualization of IMgru model prediction results on off-peak dataset. (A) road 1means Gudun Road. (B) road 2 means Fengtan Road. (C) road 3means
Yile Road. (D) road 4 means Jingzhou Road.

FIGURE 9 | Visualization of GruGcn model prediction results on off-peak dataset. (A) road 1 means Gudun Road (B) road 2 means Fengtan Road. (C) road 3
means Yile Road. (D) road 4 means Jingzhou Road.
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FIGURE 10 | Visualization of IMgruGcn model prediction results on off-peak dataset. (A) road 1 means Gudun Road. (B) road 2 means Fengtan Road. (C) road 3
means Yile Road. (D) road 4 means Jingzhou Road.

FIGURE 11 | Visualization of IMgru model prediction results on peak dataset. (A) road 1 means Gudun Road. (B) road 2 means Fengtan Road. (C) road 3 means
Yile Road. (D) road 4 means Jingzhou Road.
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FIGURE 12 | Visualization of GruGcn model prediction results on peak dataset. (A) road 1 means Gudun Road. (B) road 2 means Fengtan Road. (C) road 3means
Yile Road. (D) road 4 means Jingzhou Road.

FIGURE 13 | Visualization of IMgruGcn model prediction results on peak dataset. (A) road 1 means Gudun Road. (B) road 2 means Fengtan Road. (C) road 3
means Yile Road. (D) road 4 means Jingzhou Road.
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FIGURE 14 | Visualization of IMgru model prediction results on the complete dataset. (A) road 1 means Gudun Road. (B) road 2 means Fengtan Road. (C) road 3
means Yile Road. (D) road 4 means Jingzhou Road.

FIGURE 15 | Visualization of GruGcnmodel prediction results on the complete dataset. (A) road 1means Gudun Road. (B) road 2means Fengtan Road. (C) road 3
means Yile Road. (D) road 4 means Jingzhou Road.
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of the IMgru model was obviously not as well as that of
IMgruGcn. It indicated the effectiveness of combining the
IMgru model with the GCN model. Simultaneous extraction
of spatiotemporal features of traffic flow is more effective than
using temporal features alone to predict traffic flow.

From the visualization of the prediction results of the three
models on the peak period, it can be seen that the prediction effect
of the GruGcn model was much lower than that of IMgru and
IMgruGcn. The GruGcnmodel can only predict the general trend
of the traffic flow, and the prediction effect at the extreme values
was poor. This showed the effectiveness of the IM module. The
hidden state of the previous moment and the input of the current
moment were made to interact continuously, enhancing the
salient information and weakening the secondary information.
The differences in the visualization also affected the results in
Table 2. The value of RMSE for the GruGcn model was 0.5338
and 1.1077 higher than IMgru and IMgruGcn, and the value of
MAE was 0.9037 and 1.0795 higher than IMgru and IMgruGcn.
As can be seen in the pink ellipse of road2 in Figure 11, the IMgru
model has slightly worse prediction results than the IMgruGcn
model, which indicated the effectiveness of combining spatial
module with the temporal module. The results in the
visualizations above also affected the values in Table 2. The
RMSE value and MAE value of the IMgru model were 0.5739 and
0.1758, respectively, higher than those of the IMgruGcn model.

In the visualization of the prediction results for the complete
dataset, zoom in on the part of the region near the peak. The

prediction results of the GruGcn model in Figure 15 show a
smooth trend with no obvious extreme values. In contrast, the
IMgru model with the IM module, as shown in Figure 14, had a
more pronounced prediction at the extreme values. This gap in
the visualization affected the values of the evaluation indicators in
Table 2. The values of RMSE and MAE of the IMgru model were
lower than those of the GruGcn model by 0.6699 and 0.4455. In
the pink ellipse of road1, road2, and road3 in Figure 14, the
difference between the predicted value and the true value was
larger than in the IMgruGcn model. This also made the RMSE
value and MAE value of IMgruGcn model lower than IMgru by
0.4907 and 1.0039. It indicated that extracting the spatiotemporal
characteristics of traffic flow can be more effective for prediction.

Figures 6–8 show the visualization results of the true values
and predicted values for the four roads in Wenyi Road. The
horizontal axis is the time step, and the vertical axis is the traffic
flow, showing the difference between the predicted and true
values. They were tested separately using the peak period
dataset, the off-peak dataset, and the complete dataset. In this
way, the prediction performance of the three models, IMgru,
GruGcn, and IMgruGcn, was compared. According to the results
in Table 1, Table 2 and from the visualizations, the IMgruGcn
model performed better than the other networks on the three
datasets. It proved the effectiveness of our proposed IM module
and the effectiveness of combining the spatiotemporal module to
predict traffic flows. In addition, the off-peak dataset predicted
better than the other datasets, which also proved the necessity of

FIGURE 16 | Visualization of IMgruGcn model prediction results on the complete dataset. (A) road 1 means Gudun Road. (B) road 2 means Fengtan Road. (C)
road3 means Yile Road. (D) road 4 means Jingzhou Road.
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dividing the dataset into peak and off-peak periods for prediction
separately.

DISCUSSION

Due to the increasing real-time nature of the data, the change
pattern is also becoming less obvious and subject to stronger
disturbances. Short-time traffic flow prediction is more
influenced by random factors, more time varying and
uncertain, and the difficulty of prediction is increasing. We
use neural network models GRU and GCN, which can
establish good input and output mapping models as long as
there are large numbers of input and output samples, which are
automatically adjusted by neural networks. It can guarantee the
reliability of the prediction results, and has the characteristics of
strong fault tolerance and robustness.

By visualizing the traffic flow of the four roads in Wenyi Road,
it was found that the four roads had strong similarity in the
changing trends of traffic flow at the same moment. This
indicated that the traffic flow of the four intersections was
spatially influenced by each other. It is not accurate to predict
traffic flow only by the temporal characteristics of traffic flow.
Therefore, the spatial characteristics of the traffic flow were added
for more accurate prediction.

In putting the spatial feature module after the temporal feature
module, the prediction performance became worse instead. It
might be caused by the influence among the four crossroads. The
traffic flow may change at different moments because of the
spatial relationship of the crossroads. For example, at time t, the
increase in the number of vehicles on Gudun road may lead to an
increase in vehicles on Fengtan road at moment t + 1. Thus, the
spatial features should be considered first and then the temporal
features, to capture the spatiotemporal characteristics of the
traffic flow, and when the spatial module was applied before
the temporal module, a better prediction result was obtained,
which indicated that there is a correlation between spatial and
temporal, and the correlation can predict more effectively.

In predicting the temporal characteristics of traffic flow, first
consider the use of the recurrent neural network, which passes the
data from different moments into the recurrent neural network
sequentially predicting the next moment by remembering the
information of the previous moment. However, the input
information that is too far apart is difficult to memorize.
Thus, it cannot solve the long-term dependence problem, and
may produce gradient disappearance or explosion problem. The
long-term dependency problem can be solved by using variants of
RNN networks, LSTM and GRU. Since the GRU model has a
simpler structure, less computation, and can reduce the risk of
overfitting, we chose to use the GRU model to obtain the
temporal characteristics of the traffic flow.

For the traditional GRU model, the input at the current
moment and the hidden state passed down from the previous
moment are independent of each other until they enter the model
interior. They only interact with information inside the GRU.
This may lead to the loss of valid information. Therefore, some
interaction operations were done on xt and ht−1 before the gating

structure of the GRU model, to make a richer interaction
representation between the input and the hidden state, to
enhance the modeling capability.

When combining spatiotemporal networks, convolutional
neural networks (CNNs) were first considered to extract
spatial features. It was found that CNN was not effective in
extracting spatial features of traffic flow, which was because the
pixel points in the image or video data processed by CNN were
arranged into a very neat matrix with regular internal structure.
Since the traffic road network was intricate, and each road has a
unique surrounding structure, the traffic road network can be
abstracted into a graph structure with irregular shape. With such
structured data, it would be difficult to select a fixed convolutional
kernel to accommodate the irregularity of the whole graph using
traditional CNNs, such as the uncertainty of the number and the
uncertain order of neighboring nodes. Graph convolutional
networks (GCNs) can apply the convolutional neural networks
used in deep learning for images to graph data and can solve the
spatial structures with irregular shapes that cannot be handled by
CNN networks. So this paper used GCN to extract the spatial
features of traffic flow. Based on the spatiotemporal correlation
characteristics of traffic flow, the GCN and the IMgru model were
combined to extract the spatial and temporal characteristics of
traffic flow for better prediction.

The model was experimented on a public dataset. The results
showed that the proposed model outperformed the other models
on the public dataset, which indicated the better generalization
ability of our proposed model.

CONCLUSION

To alleviate traffic congestion and facilitate drivers to choose
roads reasonably, this paper proposed an effective traffic flow
prediction method, which combined GCN with an IMgru model
to extract the spatial and temporal features of traffic flow,
respectively.

In this paper, the traffic flow dataset of four intersections of
Wenyi Road in Hangzhou was collected. Due to the existence of
rush hour in Hangzhou on weekdays, the traffic was very
congested during this period. Traffic flow was highly
susceptible to external factors such as weather and traffic
accidents. Therefore, the prediction of traffic flow during peak
hours was not very satisfactory. The dataset was divided into peak
period and off-peak period to predict separately. It was expected
that the off-peak dataset will have better prediction results.
Experiments showed that the off-peak dataset had significantly
better predictions than the peak dataset, and in the prediction
effect of the complete dataset between the peak period and the off-
peak period dataset.

Since traffic flow is a time-series data, the gated recurrent unit
(GRU) was used to predict the traffic flow at the next moment by
remembering the information of the previous period, keeping the
valid information and discarding the useless information through
the gating mechanism. Before the traffic flow data was input to
the GRU model, this method made an improvement by doing
some interaction operations between the input xt and the hidden
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state ht−1 passed down from the previous time, so that the input
and the hidden state had a richer interaction representation and
prevented the loss of significant information. Then the features of
the traffic flow information of the previous time were extracted,
and the traffic flow of the next time period was predicted
effectively.

The traffic flow of four crossroads in the Wenyi Road dataset
had strong similarity changing trends at the same time, as shown
in Figure 6, which might be due to the spatiotemporal correlation
of traffic flow. The interdependencies were caused by the traffic
flow effect between upstream and downstream roads. Thus, the
traffic road network was abstracted as an undirected graph in the
paper, and the features of the graph structure data were extracted
by graph convolutional network (GCN). Then the spatial features
were input into the IMgru model. The spatial and temporal
characteristics of the traffic flow were extracted separately to
predict the traffic flow at the next moment. The strategy not only
improved the temporal feature extraction ability of the model but
also mined the temporal–spatial characteristics of traffic flow.

In the training set of the off-peak dataset, the RMSE and MAE
of the IMgru model were 1.4566 and 1.4838, respectively, lower
than those of the GRU model. In the test set of the off-peak
dataset, the RMSE andMAE of the IMgru model were 2.3678 and
1.9561, respectively, lower than those of the GRU model. This
illustrated the effectiveness of our proposed IM module.

On the peak dataset, the prediction effect of the ASTGCN
model is better than that of the IMgruGcn model. This may be
due to the dense vehicles during the peak period and the more
serious time variation and uncertainty of traffic flow. The
ASTGCN model is able to capture this characteristic of the
traffic flow better. However, the prediction effect of IMgruGcn
model is better than the ASTGCN model on all the other four
datasets. This indicates that the traffic flow prediction
performance of IMgruGcn model is stronger.

In the training set of the off-peak dataset, the RMSE and MAE
of the IMGruGcn model were 1.2417 and 0.7194, respectively,
lower than those of the IMgru model. In the test set of the off-
peak dataset, the RMSE and MAE of the IMGruGcn model were
1.0923 and 0.902, respectively, lower than those of the IMgru
model. The effectiveness of combining spatiotemporal modules
to extract spatiotemporal features of traffic flow was illustrated.
IMgruGcn is a model that combines the IMgru module and the
GCN module, which can effectively extract the spatiotemporal

characteristics of traffic flow. The experimental results showed
that the IMgruGcn model has the best prediction results on the
four datasets.

In the future, external factors such as weather and traffic
accidents are considered to be added to the prediction model to
improve the prediction capability, and the network structure is
optimized to achieve real-time prediction capability for better
performance.
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