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Abstract

Introduction

Schizophrenia is a genetically heterogeneous disorder that is associated with several com-

mon and rare genetic variants. As technology involved, cost advantages of chip based gen-

otyping was combined with information about rare variants, resulting in the Infinium

HumanExome Beadchip. Using this chip, a sample of 493 patients with schizophrenia or

schizoaffective disorder and 484 healthy controls was genotyped.

Results

From the initial 242901 SNVs, 88306 had at least one minor allele and passed quality con-

trol. No variant reached genomewide-significant results (p<10-8). The SNP with the lowest

p-value was rs1230345 in WISP3 (p = 3.05*10−6), followed by rs9311525 in CACNA2D3

(p = 1.03*10−5) and rs1558557 (p = 3.85*10−05) on chromosome 7. At the gene level, 3

genes were of interest: WISP3, on chromosome 6q21, a signally protein from the extracellu-

lar matrix. A second candidate gene is CACNA2D3, a regulator of the intracerebral calcium

pathway. A third gene is TNFSF10, associated with p53 mediated apoptosis.

Introduction
Schizophrenia is a psychiatric disorder characterized by the presence of psychotic and negative
symptoms and has a heterogeneous presentation and prognosis. Combined with schizoaffec-
tive disorder, it has an estimated lifetime prevalence of approximately 1%.[1,2] Schizophrenia
has a high heritability (estimated between 65 and 81%),[3,4] and evidence suggests a polygenic
inheritance, with an established role of both rare variants with large effects, as well as common
Single Nucleotide Polymorphisms (SNPs) with small effects.[5,6] Given this complexity, early
genetic studies failed to replicate previous associations, leading to a pessimistic outlook on
schizophrenia genetics.[7]
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Technological advances such as chip-based genotyping made large-scale studies using
genome-wide information affordable and technically possible. Genome-wide association stud-
ies (GWAS) use tagging SNPs to identify common risks alleles, based upon the principle of
linkage disequilibrium. Thus, by using only between 250 000 and 1 million SNPs, the whole
genome is scanned for risk loci.

Although initial GWAS studies had limited (less than 500 cases) sample sizes and power,[8]
subsequent studies with increasing sample sizes led to several common SNPs associated with
schizophrenia.[9–22] Due to the nature of GWAS studies, incorporating many common vari-
ants, a stringent correction for multiple testing has to be applied (typically, Bonferroni correc-
tion with genome-wide significance defined as a p-value below 10−8), as well as independent
replications.[23] The most recent study by the Psychiatric Genomics Consortium found 108
loci that obtained sufficiently low p-values to be associated with schizophrenia.[22]

A second technology that contributed to the knowledge of the genetic architecture of schizo-
phrenia was next generation sequencing, which enables the identification of rare variants with
minor allele frequencies below 5%. Sequencing allows for SNP genotyping, as well as for the
detection of copy number variants,[24] but is expensive, slower than chip genotyping and
requires additional techniques for data analysis. An increased burden of rare mutations has
been found in schizophrenia.[25] Due to the high cost associated with sequencing studies, sev-
eral studies were limited to either specific target regions,[26,27] or whole exome sequencing.
[25,28–32]

The Human Exome consortium, incorporating researchers from different research domains
such as schizophrenia and autism genetics,[33] jointly developed a SNP chip incorporating
>240 000 putatively functional variants within the human exome. This chip was then marketed
by Illumina, as the HumanExome Beadchip.[34] This chip was designed to be efficient towards
genotyping cost and analysis burden, yet incorporating a large number of rare SNPs without
adding the need for sequencing.

The current study used the HumanExome beadchip to detect rare variants in a sample
of 484 patients with schizophrenia or schizoaffective disorder and 493 healthy volunteers
recruited from the general population.

Methods

Sample
The current investigation uses samples from three sources: two different patient sets were used,
and one set of controls. The patient sample consisted of 650 patients with psychotic spectrum
disorder. Part of this sample was previously used for pharmacogenetic research [35–40]. Initial
inclusion in this sample was based upon clinician diagnosis, and diagnosis was confirmed
using the OPCRIT v4 questionnaire before inclusion in the current study.[41] These patients
come from five different hospitals in Belgium (UPC St. Jozef, Kortenberg; Psychosociaal cen-
trum St. Alexius, Elsene; UPC St. Kamillus, Bierbeek; Broeders Alexianen, Tienen and
St. Amedeus, Mortsel).

A healthy control sample of both mentally and physically healthy plasma donors of Cauca-
sian descent. They have never had any mental illness, have not been treated for mental illness
and have never taken medication for mental disorders. This sample was obtained in collabora-
tion with the Belgian Red Cross Flanders.

All patients and healthy controls gave written informed consent for genetic testing. After
obtaining approval by the “Commissie medische ethiek” of the UZ Leuven, Leuven, Belgium,
the study was approved by the local ethics committees of the coordinating and sampling
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hospitals and the Red Cross Belgium. The study was conducted in accordance with the current
revision of the Helsinki declaration [42].

DNA analysis
DNA was extracted from peripheral blood lymphocytes using a ChemagenMSMI (Perkin
Elmer–Chemagen). Samples were genotyped using the Illumina HumanExome v1.1 chip. Extrac-
tion, storage and analysis was conducted in the Center for Human Genetics in Leuven, Belgium.

DNA quality control was done following the manufacturers' guidelines using GenomeStu-
dio software (v2010.3).[43] Genotypes were called using the supplied cluster file, with auto-
matic re-clustering of all genotypes with a call rate below 100%. After this re-clustering, all
remaining genotypes with call rates below 100% were manually verified. All samples with
exactly 12 rare allele homozygote or 12 heterozygote cases (12 equals the number of samples
per chip) were manually checked to exclude chip effects. All SNPs on the X and Y chromosome
were manually verified. Genotypes were automatically clustered using the OPTICALL soft-
ware, and Single Nucleotide Variants (SNV, both SNP and indels or deletions) with major dif-
ferences in call rates between both methods were manually verified and excluded when after
manual verification, no consensus calling was obtained.[44]

Further quality control was done using PLINK v1.07.[45] Ethnicity and relatedness was ver-
ified using the MDS algorithm in the KING software v1.4, as with the build-in functions of
PLINK.[46] Based upon the eigenvalues, the 3 first principal components were retained. The
08/2010 release of the 1000-genomes project was used to check population membership, and
samples of non-Caucasian descent were excluded.

Analysis of autosomal SNPs was done using logistic regression with the first 3 principal
components (PCA) generated by KING as covariates. A combined analysis of rare
(MAF<0.03) and common variants was done using the CommonRare function implemented
in SKAT version 0.91.[47] A multilevel logistic regression, using sex and the first three princi-
pal components generated by KING as covariates was used to assess associations on the X-
chromosome.

Results

Sample descriptive
A sample of 1023 volunteers consisting of 525 cases with DSM-IV schizophrenia or schizoaf-
fective disorder and 496 healthy controls was genotyped.

After exclusion of samples with call rate below 98% (n = 2), duplicate samples (n = 6), sam-
ples related up to the second degree (n = 11), sex errors (n = 6), samples with excess heterozy-
gosity (n = 2) and samples of non-Caucasian descent or other problems (n = 29), a total of 977
samples consisting of 493 cases and 484 controls remained. S1 Fig plots the ethnicity of the cur-
rent sample compared with the 1000 genomes database. An overview of the first and second
principal component of the MDS algorithm is given in S2 Fig.

There was no significant difference in mean age between patients and controls (resp.44.8 vs.
44, t = -1.1341, p = .26), but there were significantly more males amongst the patients than con-
trols (resp. 70.2 vs. 57.9% male, χ2 = 15.6, p = 7.82�10−05).

DNA quality control
From the initial 242901 markers, a total of 242,401 SNVs (99.8%) passed all quality control
measures. 129,453 (53.3%) SNVs were re-clustered using the built-in tool of GenomeStudio,
resulting in 159,523 (65.7%) SNVs with 0 missing SNVs. The remaining 83,378 SNVs were
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manually verified. After this stage, QC according to Illumina’s guidelines was applied. In a final
stage all SNVs on the X-chromosome were manually verified. In this QC phase, 282 SNPs were
excluded from further analysis.

Using PLINK, we excluded 401 SNVs with> 2% missing alleles, 84 SNPs due to Hardy-
Weinberg deviation (p< .0005), with 242,416 (99.8%) SNVs remaining for further analysis. Of
these, 88,306 (36.4%) had at least one minor allele in one or more participants and were used
in the subsequent analysis. S1 Data contains the cleaned PLINK data files after quality control.

Single SNP analysis
No SNP reached genomewide significance (all p> 10−8). Three SNPs had p values lower than
5�10−5 in the corrected logistic regression. Table 1 lists all SNPs that obtained a p-value below
10−4. Fig 1 shows the Manhattan plot of the logistic regression. The QQ plot of the PCA cor-
rected logistic regression is shown in S3 Fig.

A primary SNP, the missense variant rs1230345 in theWNT1-inducible-signaling pathway
protein 3 (WISP3) gene at 6q21 had the smallest p-value (n = 977, OR = 1.64, β = 4.67,
p = 3.05�10−6). A second SNP was an intronic variant in the Calcium Channel, Voltage-Depen-
dent, Alpha 2/Delta Subunit 3 (CACNA2D3) gene, rs9311525. (n = 976, OR = 0.66, β = -4.41,
p = 1.03�10−5). The last SNP found was in non-coding RNA at chromosome 7, rs1558557
(n = 977, OR = 0.67, β = -4.116, p = 3.85�10−05).

On the X-chromosome, a single SNP (rs41503949), an intergenic variant near Patatin-Like
Phospholipase Domain Containing 4 (PNPLA4) reached a p-value below 10−4 (β = 0.68,
SE = 0.17, p>5.56�10−6). When only males were concerned, the p value kept below nominal
significance (β = 0.89, SE = 0.23, p>0.0001), but not when only females were considered (β =
0.28, SE = 0.299, p = 0.34).

Additionally, SNPs investigated in previous GWAS and present on the current chip are
reported in Table 2. Only five of these SNPs reached nominal significance: an intronic variant
in the vaccinia related kinase 2 (VRK2) gene, rs2312147 on chromosome 2.[48] A second SNP
was also intronic in Neurogenic locus notch homolog 4 (NOTCH4) on chromosome 6
(rs2071286). A single intronic SNP, rs7914558 on chromosome 10 in cyclin M2 (CNNM2) also
reached nominal significance. On chromosome 10, 2 SNPs reached nominal significance. The
first one is the intergenic rs1602565, and finally rs12807809 near neurogranin (NRGN).

Combination of rare and common variation
When analysing the combined effect of common and rare variation using the CommonRare
function implemented in SKAT, one gene resulted in a p value below 10−5. Using one common

Table 1. Autosomal SNPs that had a p-value below 10−4 after logistic regression using the first 3 principal components.

SNP CHR BP n OR β P major/minor FreqCases FreqControls Gene

rs1230345 6 112382313 977 1.639 4.668 3.05E-06 C/A 0.330 0.237 WISP3

rs9311525 3 54183550 976 0.663 -4.411 1.03E-05 G/A 0.372 0.470 CACNA2D3

rs1558557 7 8308993 977 0.688 -4.103 4.08E-05 G/A 0.394 0.489

rs838759 10 22498468 977 0.654 -3.929 8.54E-05 G/A 0.217 0.293

rs2512276 11 124115370 975 0.692 -3.918 8.92E-05 C/G 0.406 0.494

rs2106261 16 73051620 977 0.616 -3.912 9.15E-05 G/A 0.140 0.206 ZFHX3

rs4669131 2 7232478 977 0.697 -3.902 9.56E-05 A/G 0.374 0.464

rs231983 3 172236440 977 0.689 -3.900 9.63E-05 A/C 0.334 0.421

rs6825176 4 150990695 977 0.696 -3.896 9.77E-05 A/G 0.443 0.531

doi:10.1371/journal.pone.0150464.t001
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SNP and 2 rare SNPs in WISP3 on chromosome 6, a p-value of 4.34�10−6 was obtained. The
second best p-value is obtained by the tumor necrosis factor (ligand) superfamily,member 10
gene (TNFSF10, p = 3.49�10-5), followed by CACNA2D3 (p = 1.29�10−4). The top 5 genes with
at least 3 SNPs contributing to the results are displayed in Table 3.

Discussion
The current study evaluated exonic variation in a group of patients with schizophrenia and
schizoaffective disorder. No SNP reached genome-wide significance levels (p< 10−8). At the
level of genes, no gene reached genome-wide significance. These results are comparable to
those of the Swedish Schizophrenia Cohort, who were also unable to find genome-wide signifi-
cant results using the HumanExome Beadchip in 13000 individuals.[49] Although none of the
currently investigated SNPs reached genome-wide significance, several SNPs obtained low p-
values, which, combined with data from previous research, warrants further investigation.

Fig 1. Manhattan plot of the autosomal chromosomes after logistic regression corrected for differences in ethnicity.Names of the top 9 SNPs were
included in the plot.

doi:10.1371/journal.pone.0150464.g001
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WISP3
The rs1230345 in the WISP3 gene had the smallest p-value of all SNPs tested. As a gene,
WISP3 also had the smallest p-value from a combination of one common and 2 rare common
SNPs. The WISP3 gene lies within the 6q21 region, within a larger region on chromosome 6
previously associated with schizophrenia or bipolar disorder.[50–54] Although neither WISP3
nor the neighbouring TUBE1 or LAMA4 genes, have been associated with schizophrenia, the
more distant FYN gene was.[55]

Table 2. Replication of previously reported autosomal SNPs associated with schizophrenia in GWAS studies.[9–22]. p-values were obtained using
logistic regression with the first 3 principal components as covariates.

SNP CHR BP n OR β p major/minor FreqCases FreqControls Gene

rs4846033 1 11788564 977 1.058 0.121 0.904 G/A 0.010 0.009

rs1625579 1 98502934 976 0.870 -1.162 0.245 A/C 0.164 0.184 MIR137

rs10911902 1 186632317 977 0.952 -0.424 0.672 G/A 0.183 0.191

rs2312147 2 58222928 977 0.828 -2.037 0.042 G/A 0.361 0.407 VRK2

rs1344706 2 185778428 976 0.924 -0.859 0.391 A/C 0.410 0.429 ZNF804A

rs17662626 2 193984621 974 0.910 -0.571 0.568 A/G 0.086 0.094

rs10520163 4 170626552 977 1.023 0.253 0.801 A/G 0.501 0.496 CLCN3

rs13194053 6 27143883 977 0.988 -0.092 0.927 A/G 0.165 0.174

rs6932590 6 27248931 976 1.116 1.019 0.308 A/G 0.269 0.257

rs928824 6 30224889 977 1.060 0.329 0.742 G/A 0.074 0.068 HCG17

rs2071286 6 32179896 977 0.780 -2.100 0.036 G/A 0.237 0.267 NOTCH4

rs10503253 8 4180844 977 0.843 -1.514 0.130 C/A 0.192 0.219 CSMD1

rs1155204 8 13334842 977 0.994 -0.037 0.970 A/G 0.089 0.091 DLC1

rs7004633 8 89760311 976 1.143 1.137 0.255 A/G 0.190 0.171

rs7914558 10 104775908 976 0.803 -2.410 0.016 G/A 0.387 0.440 CNNM2

rs11191580 10 104906211 977 0.833 -1.069 0.285 A/G 0.075 0.087 NT5C2

rs1602565 11 29162136 977 1.355 2.155 0.031 A/G 0.137 0.105

rs12807809 11 124606285 977 0.771 -2.144 0.032 A/G 0.156 0.193

rs548181 11 125461709 977 0.848 -1.145 0.252 G/A 0.096 0.114 STT3A

rs1006737 12 2345295 977 1.123 1.194 0.232 G/A 0.333 0.307 CACNA1C

rs11064768 12 119818509 977 0.770 -1.726 0.084 A/G 0.088 0.111 CCDC60

rs7336332 13 28058404 977 0.975 -0.206 0.837 A/G 0.150 0.156

rs915071 14 32433858 977 0.960 -0.453 0.651 A/G 0.486 0.496

rs8042374 15 78908032 977 0.914 -0.821 0.412 A/G 0.222 0.238 CHRNA3

rs7192086 16 13061611 975 1.106 0.927 0.354 T/A 0.256 0.237 SHISA9

rs12966547 18 52752017 977 1.038 0.397 0.692 G/A 0.403 0.395

rs17512836 18 53194961 977 1.041 0.158 0.875 A/G 0.034 0.033 TCF4

doi:10.1371/journal.pone.0150464.t002

Table 3. Top 5 genes with at least 3 SNPs per gene from the SKAT CommonRare analysis, using the first 3 principal components as covariates.

Gene CHR BP p ntotal ntest nrare ncommon

WISP3 6 112375275–112392171 4.719E-06 3 3 2 1

TNFSF10 3 172223298–172241297 3.492E-05 3 3 2 1

CACNA2D3 5 54908632–54935282 1.285E-04 10 10 8 2

EBLN1 10 22497743–22498950 2.253E-04 3 3 1 2

CD97 19 14491313–14519537 2.283E-04 5 5 4 1

doi:10.1371/journal.pone.0150464.t003
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The WISP3 gene belongs to the CCN family of extracellular matrix associated signalling
proteins. It is mainly known for its contribution to progressive pseudo-rheumatoid dysplasia
and poly-articular juvenile idiopathic arthritis. It has been linked to the intracellular accumula-
tion of reactive oxygen species in connective tissues.[56]

Animal models have not highlighted further evidence for WISP3 as a schizophrenia candi-
date gene: Although WISP3 is expressed in the developing midbrain of zebrafish,[57] altering
the expression of WISP3 does not affect the phenotype of mice.[58] No association of WISP3
with schizophrenia has so far been described in the current literature. Further research is
needed to confirm the possible role of this gene or variant in schizophrenia.

CACNA2D3
The CACNA2D3 gene forms a subunit of the L-type gated calcium channel, where it influences
the trafficking and kinetic or voltage-dependent properties.[59] CACNA2D3 lies within the
3p14.3 region. The 3p14 region has been associated with schizophrenia in a single study,[60]
and another study found an association the 3p14 region and the antisaccade endophenotype in
schizophrenia.[61]

As one of the regulators in the calcium pathway, CACNA2D3 is an interesting candidate
gene for schizophrenia as the calcium pathway is thought to be a major contributor to the
genetic risk of schizophrenia or bipolar disorder,[62–64] with several studies linking genes of
this pathway to both disorders.[19,21,22,65–67]

Several studies of the CACNA2D3 gene reported associations with symptoms of schizo-
phrenia. The CACNA2D3 gene has been shown to alter pain sensitivity in both animals and
humans.[68] Patients with schizophrenia display a diminished pain sensitivity, as was shown
in a meta-analysis of experimental studies, independent of treatment status.[69] Knockout
mice for CACNA2D3 have a decreased startle reflex. [70] The startle reflex modulation, as
measured by prepulse inhibition, is a putative endophenotypes of schizophrenia.[71] In an
exome sequencing study of autism, a single subject suffering from autism also had a mutation
in CACNA2D3.[72] Given the evidence for members of the calcium pathway in schizophrenia,
this variant could be of interest for further research.

TNFSF10
Although no single SNP emerged from the TNFSF10 gene, a joint analysis of rare and common
variants resulted in a gene with the second lowest gene-wide p-value. The TNFSF10 gene plays
a role in the p53-mediated programmed cell death, which is activated after cells get exposed to
DNA damage.[73] Previous research has implicated modulations in cell apoptosis in schizo-
phrenia,[74,75] but no direct link between the current gene, apoptosis and schizophrenia was
found.

Only a single reference of this gene was found in connection with schizophrenia. In a study
based on the dataset of the Stanley Neuropathology Consortium, comparing gene expression
in bipolar disorder and schizophrenia versus controls, TNFSF10 had a significant contribution
to the support vector machine algorithm for classification of schizophrenia or bipolar versus
controls.[76].

Replication of previous findings
Table 2 contains the results of SNPs previously associated with schizophrenia in large GWAS
studies.
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Limitations
The current study has a moderate sample size. This disadvantage is partially offset by using
samples with clear diagnosis of schizophrenia and schizoaffective disorder, and having an eth-
nically homogeneous sample. DNA was of high quality, and quality control resulted in 99.8%
of designed SNVs available for analysis.

Conclusion
The current investigation of 493 patients with schizophrenia or schizoaffective disorders versus
484 healthy controls did not reveal any variant with genome-wide significant p-values.
Amongst the lowest p-values were 2 genes that might be of theoretical interest: CACNA2D3,
directly involved in regulating the intracerebral calcium homeostasis, and TNFSF10, a gene
that is involved in apoptosis in schizophrenia. However, given the limited sample size and thus
limited power, these results are preliminary at best and should be treated with caution.

Supporting Information
S1 Data. The raw_data.zip file contains the tplink files of the current analysis, after all qual-
ity checks were done.
(DOCX)

S1 Fig. MDS plot of ethnicity compared with 1000 Genomes. Comparison of ethnicity of the
current sample with the 1000 genomes August 2010 release. Study subjects are colored black
(code OUR), and lie within the Caucasian cluster together with the Utah residents (CEU), Brit-
ish subjects (GBR) and Italians (TSI). The upper right cluster is formed by Americans of Afri-
can descent (ASW), Puerto Rica (PUR) and Nigerians (YRI). In the lower cluster, Han Chinese
(CHS and CHB) and Japanse (JPT) subjects cluster together. Lastly, Finns (FIN) are between
the European and Asian clusters. Based upon this figure, 3 additional samples to the right were
removed. (final n = 977).
(TIF)

S2 Fig. MDS plot of ethnicity. First and second principal component generated by the MDS
algorithm of KING in the current dataset.
(PNG)

S3 Fig. QQ plot of the PCA corrected logistic regression.
(TIF)
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