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T hese are exciting times, with a plethora of new
technologies that are expediting discovery of the genetic

underpinnings of human disease. Comprehensive resequenc-
ing of the human genome is now feasible and affordable,
allowing each person’s entire genetic makeup to be revealed.
The major focus of attention in genetics studies has been the
small portion (1%) of the human genome that comprises
the protein-coding sequences in genes (the “exome”), and the
majority of causal disease-associated variants identified to
date have been located in these regions.1 A remarkable extent
of genetic variation in the protein-coding regions has been
found, with at least 20 000 single-nucleotide polymorphisms
(SNPs) present even in normal healthy subjects.2,3 Half these
SNPs are nonsynonymous changes that result in an amino
acid substitution that could potentially affect protein function.
The greatest challenge now facing investigators is data
interpretation and the development of strategies to identify
the minority of gene-coding variants that actually cause or
confer susceptibility to disease. To address this problem,
bioinformatics tools have been developed to predict the
likelihood of pathogenicity. A bewildering array of options is
available, and users need to be aware of the programs most
suited to their needs as well as the strengths and weaknesses
of the various methods employed.

Here, we provide an introductory overview of some
commonly used pathogenicity prediction programs as well
as a set of illustrative cardiac examples. This article is tailored
for readers who are not bioinformatics experts and is relevant

to cardiovascular researchers undertaking human genetics
studies as well as to clinicians performing genetic testing. For
comprehensive reviews of available methods,4–8 detailed
technical explanations of the bioinformatics and validation
of individual programs,9–21 and comparative analyses in large
variant data sets,22–28 we refer the reader to excellent articles
published elsewhere. The important “take-home” message is
that although bioinformatics prediction programs are extre-
mely useful, the results cannot necessarily be taken at face
value because all programs have inherent limitations, and
additional supporting evidence is required to confirm that
predicted deleterious variants have a role in disease
processes.

Importance of Gene Coding Sequence
Variants in Human Disease
The Human Gene Mutation Database (HGMD)1 currently lists
more than 120 000 variants in more than 4400 genes that
have been associated with human diseases. Disease-associ-
ated variants include nonsense variants (amino acid changes
that result in a stop codon), variants that create or abolish
splice donor or acceptor sites, and insertions or deletions
(indels) that shift the protein reading frame. All these types of
variants have a high probability of altering protein function.
Interpretation of missense SNPs (that change an amino acid
but do not result in a stop codon) is far less straightforward
and more difficult to predict because of the range of effects
they can impart. Missense SNPs in critical residues can have
disastrous consequences on protein function or structure.
However, missense SNPs may be benign when the amino
acid is substituted for another with similar biochemical
properties, if the substitution occurs in an evolutionarily
nonconserved position, or when the residue is not in a critical
structural or functional domain of the protein. The average
white individual has �10 000 missense SNPs in their exome,
of which �200 are novel.3 Experimentally elucidating the
consequences of each variant using in vitro studies and
animal models is the best way to demonstrate functional
effects, but this is impractical on a large scale. Reliable and

From the Molecular Cardiology Division, Victor Chang Cardiac Research
Institute (M.O., R.O., D.F.); Cardiology Department, St Vincent’s Hospital (D.F.);
and Faculty of Medicine, University of New South Wales (D.F.), Sydney, New
South Wales, Australia.

Correspondence to: Diane Fatkin, MD, Victor Chang Cardiac Research
Institute, Lowy Packer Building, 405 Liverpool St, PO Box 699, Darlinghurst
New South Wales 2010, Australia. E-mail d.fatkin@victorchang.edu.au

J Am Heart Assoc. 2012;1:e002642 doi: 10.1161/JAHA.112.002642

ª 2012 The Authors. Published on behalf of the American Heart Association,
Inc., by Wiley-Blackwell. This is an Open Access article under the terms of the
Creative Commons Attribution Noncommercial License, which permits use,
distribution and reproduction in any medium, provided the original work is
properly cited and is not used for commercial purposes.

DOI: 10.1161/JAHA.112.002642 Journal of the American Heart Association 1

BASIC SCIENCE



high-throughput methods for evaluating missense SNPs are
clearly required.

Steps in Sequence Analysis
A number of different strategies may be used in genetics
studies, and the choice of method depends on the population
under investigation and the specific questions being
addressed. Studies of Mendelian traits in large family kindreds
have traditionally involved linkage analysis to define a
chromosomal disease locus, followed by resequencing of
candidate genes that are located within the interval. In
cohorts of small families in which linkage is unable to be
done, resequencing of selected candidate genes is often
performed. These approaches have led to the discovery of
numerous disease genes for a wide range of cardiac (and
extracardiac) disorders and have provided a basis for
commercial genetic testing (discussed in a later section).
Whole-genome and whole-exome massive parallel sequencing
platforms are now rapidly gaining popularity for discovery of
new disease genes and for identification of variants in known
disease genes in families. In cohorts of unrelated patients,
resequencing of single genes and genome-wide association
studies with SNP arrays have been used to look for rare and
common variants that affect disease risk. Although cost is still
a factor in large cohort studies, next-generation sequencing
will undoubtedly be used increasingly in this setting.

Irrespective of the sequencing method used, the principles
of sequence analysis are essentially the same (Figure 1). First,
the sequencing output needs to be aligned to a human
reference assembly to determine whether there are any
differences with the “normal” sequence and to determine the
location of variations (gene exon, gene intron, intergenic).
Second, the potential effects of variants on the encoded
protein need to be determined (eg, nonsynonymous or
synonymous amino acid substitution, splice variant, indel,
etc). Third, a search is made of publicly available databases,
such as dbSNP, 1000 Genomes, and the Exome Sequencing
Project, and in some cases, a cohort of healthy control DNA
samples may be genotyped to determine whether variants are
novel or have been previously reported and the prevalence of
the variant allele. Some inferences then need to be made
about potential functional effects. For cardiovascular dis-
eases, variants in genes that are expressed in the heart or
vasculature and that have relevant functions for the trait
under study can be prioritized. However, it is important not to
disregard the possibility that cardiac expression or function of
some genes may not be recognized. Even after these filtering
methods are employed, a long list of “suspicious” variants is
likely to remain, and prediction tools have a key role in short-
listing these for further analysis. Bioinformatics tools are
heuristic, that is, they combine various types of parameters

from multiple sources to infer likely pathogenicity when
detailed experimental evaluation of individual variants is
unavailable.

Prediction Methods Available
In this review, we have looked at 8 of the currently available
prediction tools for nonsynonymous variants to highlight
aspects of how these types of programs work and their
relative performance. The methods used and parameters
assessed in these 8 programs are summarized in Table 1,
with some useful notes about inputs and outputs in Table 2.

Genome sequences that are highly conserved during
evolution are thought to be important for protein function,
and disease-associated mutations tend to be abundant at
these sites.4,5 Many programs, including PANTHER (Protein
Analysis Through Evolutionary Relationships)9,10 and SIFT
(Sorts Intolerant From Tolerant amino acid substitutions),11–13

rely primarily on the extent of sequence conservation of a
specific residue, which is assessed by looking at an alignment
of the sequences of this region of the protein across a wide
range of different species, that is, multiple sequences
alignment (MSA). Many programs take factors in addition to
evolutionary conservation into consideration. Align-GVGD14,15

Sequencing output

Align to reference 
sequence

Classify variants based on
functional class

Compare variants with control 
populations/databases

Obtain gene-specific 
information

Determine predicted 
effects of variants

Is there a variant?
Where is it located?

Nonsynonymous, synonymous
indel, frameshift, splicing etc.

Are the variants reported or are 
they novel? (dbSNP, 1000G, ESP)
How common are the variants?

Is the gene expressed in the heart?
Does it have a known role in disease?

What is the predicted pathogenicity
of the variants? Benign? Deleterious?

Followup suspected
pathogenic variants 

Do the variants segregate with 
disease in the family?
Do experimental studies 
demonstrate altered functions?

Figure 1. Flow chart showing steps for DNA sequence analysis.
ESP indicates Exome Sequencing Project; 1000G, 1000 Genomes
project.
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also looks at the effects of differences that an amino acid
substitution would have on the biochemical properties of a
residue, such as changes in volume, polarity, and charge. The

Grantham Variation (GV) score component of Align-GVGD
reflects the extent of biochemical variation among amino
acids at a given position within an MSA, whereas the

Table 1. Characteristics of 8 Commonly Used Gene Variant Functional Prediction Programs

Programs Web Site Method Parameters Used Training Data Reference

PANTHER http://www.
pantherdb.org/

Hidden Markov
Model

Evolutionary conservation
across multiple
protein families

Disease-associated
mutations from HGMD;
presumed neutral
variants in dbSNP

9, 10

SIFT http://sift.
jcvi.org/

Conservation
of protein
homologues

Evolutionary conservation 1 Retroviral+2 bacterial
mutagenesis data sets;
5218 human
disease-associated
SNPs in Swiss-Prot;
3084 SNPs in dbSNP

11–13

Align-GVGD http://agvgd.
iarc.fr/

GV, GD Evolutionary conservation+
biochemical
properties (amino
acid composition,
polarity, volume)

Concurrence of unclassified
variants with deleterious
mutations in BRCA1;
1514 nonsynonymous
SNPs in TP53 gene

14, 15

PMut http://mmb2.pcb.
ub.es:8080/PMut/

Neural network Evolutionary conservation+
structural effects
(secondary structure
and solvent accessibility)

9334 human disease-
associated mutations
in 811 proteins from
Swiss-Prot; 11 372 neutral
variants from Escherichia coli
mutagenesis data set+811
mutation-associated proteins

16

SNPs3D http://www.
snps3d.org/

Support vector
machine

Evolutionary conservation
+structural effects
(protein folding)

Monogenic disease
data from HGMD;
10 263 disease SNPs
in 731 genes; 16 682
control SNPs

17, 18

PolyPhen-2 http://genetics.bwh.
harvard.edu/pph2/

Naive Bayes
classifier

Evolutionary conservation+
structural effects*

2 Training models: Hum Div
(3155 Mendelian
disease-causing variants
in UniProt; 6321 presumed
nondamaging SNPs) and
Hum Var (13 032 human
disease-causing mutations
from UniProt; 8946 common
human nsSNPs with no
link to disease)

19

MutPred http://mutpred.
mutdb.org

Random forest Evolutionary conservation†+
structural effects‡+
predicted functions

26 655 Disease-associated
mutations in HGMD; 23
426 presumed neutral
SNPs in Swiss-Prot

20

SNPs&GO http://snps-and-go.
biocomp.unibo.it/
snps-and-go/

Support vector
machine

Evolutionary conservation+
local sequence+gene
ontology score

16 330 Disease-associated
SNPs from Swiss-Prot; 17
432 presumed neutral
SNPs from Swiss-Prot

21

GD indicates Grantham deviation; GV, Grantham variation; HGMD, human gene mutation database1; MSA, multiple sequence alignment; SNP, single-nucleotide polymorphism.
*PolyPhen2 uses 8 sequence-based and 3 structure-based features, including position-specific independent count score of wild-type allele, differences in this score between the wild-type
and variant alleles, number of residues observed at the position in the MSA, residue side-chain volume change, variant position with respect to a protein domain defined by Pfam, variant
allele congruency to MSA, sequence identity with closest homologue deviating from wild-type allele, normalized accessible surface area of amino acid residue, crystallographic b-factor,
and change in accessible surface area propensity for buried residues.
†SIFT score, Pfam profile score, and transition frequency (likelihood of observing a given SNP in the UniRef80 database and Protein Data Bank).
‡Predicted secondary structure, solvent accessibility, transmembrane helices, coiled-coil structure, stability, B-factor, and intrinsic disorder.
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Grantham Deviation (GD) score reflects the biochemical
distance between variant and wild-type amino acids at a
given residue. Several programs, including PMut,16

SNPs3D,17,18 and PolyPhen-2,19 use varying combinations of

sequence-based and protein structure-based features, such as
the effect of a variant on protein folding and accessible surface
area of the amino acid residue. MutPred20 is an extension of
SIFT that differs most significantly from other programs by its

Table 2. Input and Output Characteristics for 8 Common Prediction Algorithms

Programs Input
Access to Intermediate
Information Output

Program-Recommended
Pathogenicity Criteria

PANTHER WT protein sequence
(FASTA or plain format),
variant/s of interest;
MSA is program generated

MSA (and phylogenetic tree) subPSEC score: 0
(benign) to �10
(most deleterious);
Pdel: 0 (0%) to 1.0 (100%)

subPSEC score: <�3
(50% likelihood of
deleterious effects);
Pdel >0.5

SIFT WT protein sequence
(FASTA format) or Clustal-
formatted MSA (WT query
sequence must appear first
in MSA), variant/s of interest;
MSA is program- or user
generated

MSA (if single query
sequence inputted)

Scaled probability score: 0
(most deleterious) to 1
(benign); no. sequences
at position; median
sequence conservation

Scaled probability score:
<0.05

Align-GVGD FASTA-formatted MSA* (WT
query sequence must appear
first in MSA), variant/s of
interest

No Combined GV+GD risk estimate:
C0 (lowest risk) to C65
(highest risk); individual GV
and GD scores

Incremental risk estimates:
1.0- (C0) to >4.0-fold (C65)

PMut WT protein sequence
(FASTA or plain format),
or FASTA-formatted MSA
(WT query sequence must
appear first in MSA),
variant/s of interest

PSI-BLAST raw output
(protein family analysis),
MSA (FASTA format),
PHD raw output
(secondary structure
and accessibility
predictions)

Qualitative prediction: neutral or
pathogenic; pathogenicity
index: 0 (low) to 1.0 (high);
reliability: 0 (low) to 9 (high)

Pathogenicity index: >0.5;
reliability: >5

SNPs3D dbSNP, RefSNP or sequence
accession number (if variant
not present in results list,
select protein accession and
enter mutation manually);
MSA is program generated

MSA SVM score: positive
(nondeleterious) or
negative (deleterious)

Negative SVM score

PolyPhen-2 WT protein sequence (FASTA
format) or protein identifier,
variant position, WT and
variant amino acids; MSA is
program generated unless
downloaded stand-alone
version used to input
user-generated MSA

MSA, 3D visualization
(if protein structure
information available)

Qualitative prediction: benign,
possibly damaging, probably
damaging; Hum Div/Hum
Var scores: 0 (benign) to
1.0 (most deleterious);
sensitivity: 0 (low) to 1.0
(high); specificity: 0 (low)
to 1.0 (high)

Probably damaging
prediction; HD/HV scores:
closer to 1

MutPred WT protein sequence in
FASTA format, variant/s
of interest; MSA is program
generated

No “g” score: 0 (low) to 1 (high);
“p” score: 0 (low) to 1 (high)

Possibly deleterious (g>0.5),
probably deleterious
(g>0.75)

SNPs&GO UNIPROT accession number,
variant position, WT and
variant amino acids; MSA
is program generated

No Qualitative prediction: neutral
or disease related; reliability
index: 0 (unreliable) to 10 (reliable)

Disease prediction;
reliability index: >5

General (“g”) score indicates probability that an amino acid substitution is deleterious; MSA, multiple sequence alignment; property (“p”) score, statistical likelihood (P value) that structural
and functional properties will be altered; Pdel, deleterious probability; PHD, Profile fed neural network systems from Heidelberg; PSI-BLAST, Position-Specific Iterated Basic Local Alignment
Search Tool; subPSEC, substitution position-specific evolutionary conservation score, estimated from the negative logarithm of the probability ratio of wild-type and mutant amino acids at
a specific position; WT, wild type.
*Except for 7 tumor-related genes in program library.
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incorporation of predicted functional sites, including DNA-
binding residues, catalytic residues, calmodulin-binding targets,
and predicted posttranslational modification (phosphorylation,
methylation, ubiquitination, glycosylation) sites. A broad range
of additional parameters are also included in SNPs&GO,21

with evaluation of evolutionary data from PANTHER, the
sequence environment of a residue (including 18 residues on
either side of the variant residue), and a gene ontology (GO)
score that derives information about the biological processes,
cellular components, and molecular functions of gene prod-
ucts in different species from the GO database. These
prediction tools have been benchmarked on large mutation
data sets, and although developed for use in classifying
human mutations, some of these programs can be applied to
bacteria, plants, and other organisms.29

Example Variants
To further illustrate some of the features of these programs,
we used them to make predictions about 18 missense
variants that we selected as examples, including 9 rare
variants that have robust genetic or functional evidence to
implicate them as disease causing in various cardiomyopa-
thies and arrhythmias,30–37 and 9 common variants impli-
cated in disease susceptibility (Table 3).38–46 The results of
these predictions are shown in Table 4. For the 9 rare
variants, the number of variants that were accurately
predicted as likely to be deleterious ranged from 2 using
PANTHER (22%, although predictions were able to be made for
only 4 variants) to 8 (89%) with SIFT, PolyPhen-2, MutPred,
and SNPs&GO. The greatest variability was seen with 2
programs, PANTHER and Align-GVGD, and 3 variants, R403Q
MYH7, R92Q TNNT2, and D175N TPMI. For the 9 common
variants, with a few exceptions, predictions were overwhelm-
ingly neutral. A closer examination of the factors on which the
predictions are based helps to explain these results.

Key Role of Amino Acid Conservation
in Predicting Pathogenicity
As noted above, sequences that are highly conserved across
species are often functionally important, and high prediction
success has been achieved for algorithms that predominantly
use evolutionary-based information.9–13 Sequence-based
methods do have their limitations,47 and this is demonstrated
by the predictions generated by PANTHER and Align-GVGD.
Although PANTHER is generally reliable when predictions are
obtained,26 it failed to generate predictions for 6 of the 18
variants in our example data set. This may occur if the
sequence alignment is poor or when a variant is located at a
residue that is not present in a majority of species and hence

is unable to be modeled in a Human Markov Model. In
Align-GVGD, we found wide discordance between sequence
conservation (GV) and biochemical change (GD) components
for several variants that resulted in a neutral prediction.
Sequence conservation appeared to have relatively less
weighting than biochemical change because neutral
predictions were more likely to be obtained when the GV
scores were high and the GD scores were zero (eg, R403Q
MYH7, S532P MYH7), rather than the converse situation with
low GV and high GD scores (eg, N195K LMNA, Y315S
KCNQ1). As a general concept, adding protein structural or
functional parameters should provide greater predictive
accuracy than consideration of sequence conservation
alone,27 but this only applies when protein structure or
function is known and the relevant databases are up to date.
Quite commonly, this information is incomplete or lacking,
and the predictions have to rely predominantly on the
evolutionary conservation component.

The Importance of MSAs in Predictions
The number of species in an MSA and the evolutionary
distance between them heavily influence algorithm accuracy.
Evolutionary depth in MSAs is recommended because this
potentially provides more information about the extent of
conservation. If sequences in the MSA are too similar (eg,
dog, pig, human), then variants not normally imparting a
functional consequence on the protein will tend to be
classified as pathogenic. On the other hand, comparing a
broader range of species, such as small rodents (rat, mouse),
zebra fish, fly, and worm, may strengthen the case for a
variant in a highly conserved residue being pathogenic, but
may also produce false negatives if there is divergence in the
protein sequences and biological functions of more distantly
related species.7 Similarly, there are no clear indications
about whether inclusion of different protein isoforms and
different members of the same protein family will strengthen
or weaken predictions. In 1 comparative study, PolyPhen-2
appeared to be least susceptible to differences in the MSAs,
whereas Align-GVGD was highly susceptible and had a
propensity to call variants as neutral when large numbers of
sequences were utilized.27 It has been noted that programs
do not always perform best with their own program-generated
MSA and can have more accurate results with gene-specific
MSAs that have been optimized by the user.

PANTHER, SNPs3D, MutPred, and SNPs&GO generate
MSAs internally and do not allow the option of users creating
and submitting their own MSAs. SIFT and PMut internally
generate an alignment but also permit user-generated align-
ments. The Web-server version of Polyphen-2 has its own
alignment pipeline, but user-generated alignments can be
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submitted to the stand-alone software version, which can be
downloaded onto a local computer. Align-GVGD has a very
limited set of alignments, so users mostly need to supply their
own. This enables greater control of user-defined sequences
in the alignment and flexibility of adding or removing
sequences in the MSA, but entails considerable additional
work to obtain and align the relevant protein sequences.
There is also the real possibility of skewing the results by
variations in the numbers and types of species selected to be
included in the MSA.

MSAs can be obtained from the Pfam (protein families)
database48 or manually curated and then aligned using freely
available online alignment tools such as the more widely used
programs ClustalW2,49 MAFFT,50 MUSCLE,51 PROMALS,52

and T-Coffee.53 Alignments produced by the different pro-

grams for specific regions can differ, however, and it has been
suggested that more than 1 MSA program may be required,
particularly for sequences that contain deletions or insertions.
A number of scoring systems have been devised to assess the
quality of MSAs, with the overall conclusion that, like the
protein prediction programs available, a single flawless
method is not available.54–56

Location, Location, Location
Significant discrepancies between bioinformatics predictions
and experimentally validated effects often arise because the
functional characteristics of the region in which a variant is
located are inadequately taken into account. Amino acid
changes that have modest pathogenicity predictions may

Table 3. Nonsynonymous Variants Associated With Cardiac Disorders

Gene Protein Variant Location
Clinical
Association Genetic Evidence

Functional
Evidence Reference

Rare variants

LMNA Lamin A/C N195K Coiled-coil rod domain DCM Family Yes 30

MYH7 b-Myosin heavy chain R403Q Myosin head, interacts
with actin

HCM Family Yes 31

MYH7 b-Myosin heavy chain S532P Actin-binding domain DCM Family Yes 32

TNNT2 Cardiac troponin T R92Q a-Tropomyosin-binding
domain

HCM Family Yes 33

TNNT2 Cardiac troponin T R141W a-Tropomyosin-binding
domain

DCM Family Yes 34

TPMI a-Tropomyosin D175N Troponin T–binding domain HCM Family Yes 35

KCNQ1 KCNQ1 S140G S1 transmembrane domain AF Family Yes 36

KCNQ1 KCNQ1 Y315S Pore-forming domain LQTS Family Yes 37

KCNH2 HERG G628S Pore-forming domain LQTS Sporadic Yes 37

Common variants

MYH6 a-Myosin heavy chain A1101V Coiled-coil rod domain HR, PR Case–control No 38

AGT Angiotensinogen M235T Polypeptide chain HT Case–control Yes 39

NOS3 Endothelial NO
synthase

E298D NOSIP interaction region AF, CAD Case–control Yes 40

KCNH2 HERG K897T Intracellular C-terminal
domain

LQTS, AF Case–control Yes 41, 42

KCNE1 KCNE1 S38G Extracellular N-terminal
domain

AF Case–control Yes 43

SCN5A Cardiac sodium channel H558R Intracellular repeat I/II linker AF Case–control Yes 44

ADRB1 b1-adrenergic receptor S49G Extracellular N-terminal
domain

HR, DCM Case–control Yes 45

ADRB1 b1-adrenergic receptor G389R Intracellular C-terminal
domain

HF, AF Case–control Yes 45

CYP2C9 Cytochrome P450 2C9 I359L Substrate recognition site 5 Warfarin dose Case–control Yes 46

AF indicates atrial fibrillation; CAD, coronary artery disease; DCM, dilated cardiomyopathy; HCM, hypertrophic cardiomyopathy; HF, heart failure; HR, heart rate; HT, hypertension; LQTS,
long QT syndrome; NO, nitric oxide; NOSIP, eNOS interacting protein; PR, PR interval.
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Table 4. Predicted Effects* of Rare and Common Nonsynonymous Variants

Continued
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nevertheless have a substantial impact if they occur in critical
regions of a protein, such as those involved in protein–protein
interactions or posttranslational modification. Conversely,
variants predicted to be pathogenic because of extensive
biophysical modification of a residue may have no effects if
this occurs in a relatively unimportant region. Although these
issues are addressed in part by MutPred and SNPs&GO, which

incorporate some functional parameters, lack of consideration
of gene-specific functional effects is a universal limitation.

Examples of the importance of the protein “neighborhood”
are provided by the R403Q MYH7, R92Q TNNT2, and
D175N TPMI variants. The Arg403Gln mutation in the gene
encoding myosin heavy chain (MYH7) causes hypertrophic
cardiomyopathy in humans and in mice.31 The R403 residue is

Table 4. Continued

GD indicates Grantham deviation; GV, Grantham variation; HD, HumDiv; HMM, hidden Markov model; HV, HumVar; Pdel, probability of deleterious effect; sens, sensitivity; spec, specificity;
SVM, support vector machine; subPSEC, substitution position-specific evolutionary conservation.
*Probability of deleterious outcome is indicated by cell color: high, red; intermediate, orange; low, green. Predictions were obtained using the web browsers Firefox 5.0.1 (or Safari 5.0.5
for Align-GVGD) using all default settings of the programs. For PANTHER, SIFT, PMut, SNPs3D, PolyPhen-2, MutPred, and SNPs&GO, where MSAs are program generated, WT protein
sequences were submitted. For Align-GVGD, alignments were user generated. Alignments for Align-GVGD were manually curated using the T-Coffee Advanced tool and the program’s
specifications for an appropriate MSA.
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located in the myosin head adjacent to the actin-binding site
and is invariant in myosin heavy chains in the heart and other
tissues across a range of species from human to amoeba.31

Although this high degree of sequence conservation and the
biophysical effects of loss of an arginine are able to be
assessed in the prediction algorithms, none of the programs
would have considered the key role of the 403 residue in
actin–myosin interaction, calcium sensitivity, and energy
utilization. A similar argument can be made for the R92Q
TNNT2 variant, which is in the elongated tail domain of cardiac
troponin T at the site where the tropomyosin monomers
overlap. This variant has been shown to have distinct effects
on calcium sensitivity and thin filament sliding speed in vitro
and results in a hypertrophic cardiomyopathy phenotype in
mice,32 yet only 4 of the 8 programs used predicted it to be
probably (n=3) or possibly (n=1) deleterious. The D175N TPMI
variant, located in the troponin T–binding site in tropomyosin,
was also only identified by 5 of the 8 programs as probably
(n=4) or possibly (n=1) deleterious despite robust genetic and
in vivo functional evidence of pathogenicity.35

Rare Versus Common Variants
Genetic variation is being recognized increasingly to play a
role in many cardiovascular disorders.57,58 At one end of the
spectrum, single-gene variants that have a large functional
effect have been considered sufficient to cause disease in
families with Mendelian patterns of inheritance. These
variants are typically rarely present in the general population,
and many are “private” mutations seen only in 1 family. Single
rare variants have been associated with numerous heritable
cardiomyopathies and arrhythmias, including familial hyper-
trophic cardiomyopathy, familial dilated cardiomyopathy,
arrhythmogenic right ventricular cardiomyopathy and long
QT syndrome. In contrast, commonly occurring genetic
variants have been associated with complex traits such as
hypertension, coronary artery disease, diabetes, and atrial
fibrillation (the common disease, common variant hypothesis).
Common SNPs can be identified by genome-wide association
studies in large cohorts of affected and unaffected individuals.
These types of variants are potentially important because of
their relatively high-population frequencies, although the risks
associated with each variant may only be modest. Recently,
human genome sequencing studies have heightened interest
in the potential role of rare variants in common diseases.3,59–
63 A new paradigm has been proposed in which the
cumulative burden of unique personal combinations of rare
variants may contribute substantially to the heritable compo-
nent of complex disease.

These perspectives on the role of genetics need to be kept
in mind when considering the performance of gene variant
functional predictions. A striking finding in our example

variants was the differences between predictions for rare and
common variants. Whereas the known functional rare variants
were correctly predicted by a majority of programs as
deleterious, the common variants were mostly predicted as
nondeleterious. There are several factors that might explain
this discrepancy. First, it is important to note that common
SNPs that show significant associations with disease in
genomewide association studies are almost always not the
causal variants themselves but are markers for a pathogenic
SNP that is coinherited in the same haplotype. For example,
A1101V MYH6 was significantly associated with heart rate,
and to a lesser extent with PR interval, in a study of more than
20 000 individuals.38 The uniformly neutral predictions for
A1101V MYH6 may in fact be correct if the trait is not directly
attributable to this SNP. Patients carrying the M235T AGT
SNP have increased plasma angiotensinogen levels and
increased risk of hypertension.39 Although 1 program,
SNPs3D, had a pathogenic prediction, the same argument
can be made that M235T AGT might only be a marker of a risk
allele. In contrast to the A1101V MYH6 and M235T AGT SNPs,
several of the variants in genes encoding cardiac ion channels
have had direct experimental validation of deleterious effects.
For example, K897T KCNH2 changes the biophysical proper-
ties of the IKr current and also creates a new phosphorylation
site for Akt protein kinase that inhibits channel activity.41,42

Despite these findings, only 2 of the 8 programs (SIFT, PMut)
predicted pathogenic effects. Even MutPred, which includes
posttranslational modification site prediction, did not call this
SNP as pathogenic. S38G KCNE1 has loss-of-function effects
on IKs,

43 whereas H558R SCN5A is a potent modifier of INa,
with effects that vary with different genetic backgrounds.44

SNPs&GO predicted S38G KCNE1 as pathogenic, but all other
programs predicted both variants to be neutral. These
differences between predictions and experimental data for
ion channel variants may be a result of the locations of these
variants in gene-specific functional domains that are not taken
into consideration by prediction algorithms (as noted above).
Alternatively, these findings may indicate that bioinformatics
tools are relatively better at predicting pathogenic rare
variants that have large functional effects than common
variants that have more modest functional effects.

Which Method Is Best?
Most of the prediction programs have been benchmarked by
their curators using large variant data sets and have been
shown to perform well (Table 1). However, there are relatively
few studies that have systematically compared the predictive
accuracy of different programs in the same test data set. This
can be a difficult exercise because the various types of
outputs may not be readily standardized. In addition, because
each of the programs obtains sequence and/or structural
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information from different databases, there may be confound-
ing factors of conflicting or missing information. Also, if a data
set for testing a program’s accuracy is similar to its training
data set, bias occurs, and misleading inferences of a
program’s superior performance can arise. The creators of
PMut even state that its algorithm was trained using
alignments in the Pfam Database, so better prediction
performance is expected toward Pfam alignments.16

The results of 5 comparative studies are shown in Table 5.
Chan and colleagues22 evaluated 254 missense variants using
SIFT, PolyPhen, Align-GVGD, and the BLOSUM62 matrix. The
overall accuracies (algorithm based on the sum of true-
positive and true-negative rates) for single programs were not
dissimilar, ranging from 73% (Align-GVGD) to 82% (SIFT). It
was noted that the programs with higher sensitivity detected

more deleterious variants but had lower specificity, whereas
programs with lower sensitivity but high specificity better
predicted neutral variants and had fewer false positives for
deleterious variants. Wei and colleagues24 looked at 204
variants with 6 programs and concluded that SIFT and
PolyPhen were the overall top predictors, followed by
nsSNPAnalyzer. Hicks and colleagues27 found that SIFT,
Align-GVGD, PolyPhen-2, and Xvar had similar overall accu-
racy when optimal MSAs were provided for each program.
Align-GVGD had a very low median sensitivity (10%) and high
median specificity (>95%), but these results were considered
unreliable, given the bias for negative predictions with large
MSAs. Because Align-GVGD performed best with a manually
curated MSA, it was considered less suitable for use in large-
scale sequencing analyses. The speed of the program and the

Table 5. Studies Comparing Performance of Different Prediction Algorithms

Programs Tested Variants Evaluated
Sensitivities
(True-Positive Rates)

Specificities
(True-Negative Rates) Overall Accuracy* Reference

SIFT, PolyPhen,
Align-GVGD,
BLOSUM62

254 Missense
variants in 5
genes involved
in familial cancer
syndromes and
noncancer genetic
disease

SIFT (84%),
Polyphen (83%),
BLOSUM62 (75%),
Align-GVGD (69%)

BLOSUM62 (85%),
Align-GVGD (84%),
SIFT (77%),
PolyPhen (58%)

SIFT (82%),
BLOSUM62 (78%),
PolyPhen (76%),
Align-GVGD (73%)

22

SIFT, PolyPhen,
PMut, SNPs3D,
PhD-SNP,
nsSNPAnalyzer

204 Variants in the
human cystathionine
b synthase gene

SIFT (89%), PolyPhen
(87%; if “possibly
damaging” variants
were grouped as
deleterious), SNPs3D
(82%), nsSNPAnalyzer
(80%), PhD-SNP (70%),
PMut (44%)

PMut (79%),
PolyPhen (70%; if
“possibly damaging”
variants grouped as
neutral), nsSNPAnalyzer
(59%), PhD-SNP (53%),
SIFT (52%),
SNPs3D (47%)

PolyPhen (71%; if
“possibly damaging”
variants grouped as
neutral),
nsSNPAnalyzer (67%),
PMut and SIFT (66%),
SNPs3D (61%),
PhD-SNP (59%)

24

SIFT, Align-GVGD,
PolyPhen-2, XVAR

267 Variants in 4
cancer-susceptibility
genes

Median sensitivities: Xvar
(98%), PolyPhen-2
(90%), SIFT (85%),
Align-GVGD (10%)

Median specificities:
Align-GVGD (>95%),
SIFT (52%), PolyPhen-2
(40%), Xvar (33%; if
TP53 gene excluded)

Align-GVGD, PolyPhen-2,
and Xvar (79%),
SIFT (77%)

27

MutationTaster,
PolyPhen,
PolyPhen-2, SNAP,
PANTHER, PMut

1000 Disease-associated
mutations and 1000
polymorphisms

MutationTaster (86%),
PolyPhen and
PolyPhen-2 (78%),
SNAP (69%)
PMut (68%),
PANTHER (50%)

MutationTaster (86%),
PolyPhen-2 (83%),
PolyPhen (74%),
SNAP (69%),
PMut (63%),
PANTHER (52%)

MutationTaster (86%),
PolyPhen (76%),
PolyPhen-2 (72%),
PMut (65%),
SNAP (60%),
PANTHER (35%)

25

MutPred,
nsSNPAnalyzer,
PANTHER,
PhD-SNP,
PolyPhen,
PolyPhen-2,
SIFT, SNAP,
SNPs&GO

More than 40 000
variants from dbSNP,
PhenCode, LSDBs,
IDbases

SNAP (88%), PolyPhen-2
(86%), MutPred (85%),
PANTHER (77%),
PolyPhen (74%),
SNPs&GO (71%),
SIFT (68%),
PhD-SNP (63%),
nsSNPAnalyzer (61%)

SNPs&GO (92%), PolyPhen
(85%), PhD-SNP (79%),
MutPred (78%), PANTHER
(76%), PolyPhen-2 (70%),
SIFT (62%),
nsSNPAnalyzer (58%),
SNAP (56%)

SNPs&GO (82%),
MutPred (81%),
PANTHER (76%),
SNAP (72%),
PhD-SNP and
PolyPhen-2 (71%),
PolyPhen (70%),
SIFT (65%),
nsSNPAnalyzer (60%)

26

IDbases indicates LSDBs for immunodeficiency-causing mutations; LSDB, locus-specific databases.
*Estimate of true positives and true negatives, some variations in formulas used in different publications.
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number of variants that can be inputted are other criteria that
limit the suitability of most programs for use in next-
generation sequencing analysis. To meet these needs,
Schwarz and colleagues have developed MutationTaster.25

When compared with PANTHER, PolyPhen, Poly Phen-2, PMut,
and SNAP, in a training set of 1000 disease-linked variants
and 1000 SNPs, MutationTaster was found to have the
highest accuracy (86%) and was substantially faster than the
other programs studied. In the most comprehensive analysis
to date, Thusberg and colleagues26 utilized 9 programs to
evaluate more than 40 000 variants in several databases,
including dbSNP. PhenCode, LSDBs (locus-specific mutation
databases), and IDbases (LSDBs for immunodeficiency-caus-
ing mutations). These authors concluded that no single
method could be rated as best by all parameters but that
SNPs&GO and MutPred were overall superior to other
programs tested.

Consensus Predictions
Several groups have proposed that using the consensus
predictions of a number of programs may be more reliable
than using a single program.22–24 For example, in the analysis
by Chan and colleagues,22 the 4 programs tested gave
concordant results for only 63% of the variants. However,
when this occurred, the overall predictive value increased to
88%. Similarly, Wei and colleagues24 found that when different
combinations of programs were used, the consensus of 5
programs (SNPs3D excluded) gave the best total accuracy
(73%). In our example variants, we found that no program
predicted all rare variants as pathogenic. Seven of the 9 rare
variants had consensus predictions by SIFT and PolyPhen-2,
and all 9 rare variants were identified correctly as deleterious
when other combinations of 2 methods were used, for
example, SIFT and PolyPhen-2 or MutPred or SNPs&GO. For
the 9 common variants, with the exception of G389R ADRB1,
the combined predictions of multiple programs did not
increase the number of positive predictions.

Although confidence in a result may be increased if
concordant results are obtained with a number of programs,
some pathogenic variants may be missed. On the other hand,
having less stringent criteria, such as requiring any 1 program
to be deleterious, will increase the chances that all the true
positives will be detected but may also result in more false-
positive results. A further consideration is that output
similarities may be consequences of the similarity of inputs
for some combinations of programs and do not necessarily
equate with greater prediction accuracy.

The comparative studies outlined above have been bench-
marked using variants that have been predetermined to be
deleterious or benign. The performance of these methods on a
genomewide scale in which there are many thousands of

variants of unknown function has been less extensively
evaluated. Chun and Fay compared SIFT and PolyPhen with
their likelihood ratio test (LRT) in an evaluation of 3 human
genomes.23 Surprisingly, 76% of variants were predicted as
deleterious by only 1 program, and only 5% of variants were
predicted as deleterious by all 3 programs. These authors
proposed that it was the small proportion of variants with
consensus predictions that was most likely to be functionally
significant. This is a very important point that warrants further
validation. Although using multiple prediction programs for
each variant is desirable, this is time consuming and
impractical on a large scale. To address this issue, Liu and
colleagues have recently developed dbNSFP (database for
nonsynonymous SNPs’ functional prediction).28 This method
integrates pathogenicity predictions from SIFT, PolyPhen-2,
LRT, and MutationTaster into a single application.

Recommendations
The selection of pathogenicity prediction programs depends
very much on the situation and the type of data being
interrogated. When there are only a small number of specific
variants under consideration, for example, in a family that has
undergone linkage analysis and sequencing of candidate
genes in a disease interval or with a family in which genetic
testing of known disease genes has been performed, a
detailed analysis is warranted, and it is highly recommended
that a number of prediction programs be used. We have
routinely used SIFT, PolyPhen-2, PMut, and SNPs&GO and
have recently added MutationTaster to our suite of preferred
programs. The selection of programs is probably less critical
than looking at consensus predictions (when all programs
agree) or majority predictions (when most programs agree). At
present, only a subset of programs (including SIFT, PolyPhen-
2, and MutationTaster) have batch modes that allow multiple
variants to be simultaneously inputted and are suitable for
analyzing large next-generation sequencing data sets. In the
next few years, it is likely that many more programs will be
adapted for this use.

Use of Gene Variant Prediction Programs
in Genetic Testing
Genetics studies in families have generally been performed by
research groups seeking to decipher molecular mechanisms
of disease. As a result of these studies, lists of disease genes
have been established for many of the inherited cardiomyop-
athies and arrhythmias. Commercial genetic testing of
subsets of the more common of these disease genes is
now available, and expert consensus recommendations for
indications for genetic testing have recently been compiled by
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the Heart Failure Society of America, the Heart Rhythm
Society, and the European Heart Rhythm Association.64,65

Healthcare professionals are now empowered to send off
patient DNA samples for genetic testing, and informed
interpretation of the results is crucial.

If the results for a family proband DNA sample come back
as positive, showing a variant in gene X that is “probably
pathogenic,” it cannot necessarily be assumed that this is the
disease-causing mutation in the family, and a number of
questions need to be asked initially along the lines of the
flowchart in Figure 1. One needs to know whether the variant
is novel, rare, or commonly present in a population whose
ethnicity is similar to that of the family being studied. As noted
above, disease-causing mutations are nearly always rare and
are often novel. The genes on genetic testing panels have all
been preselected on the basis of known associations with
cardiac disease, but it is useful to know whether the same
variants, other variants at the same amino residue, or variants
in neighboring residues in these genes have previously been
identified with the same disorder or other cardiac disorders.
This information can be obtained by searching mutation
databases or the published literature. Bioinformatics tools
have undoubtedly been used to come to the “probably
pathogenic” annotation, and it is useful to know which
programs and how many programs were used and the criteria
used to define pathogenicity. We now know that every
individual carries hundreds of novel potentially pathogenic
variants,3,66 and so additional steps should be taken to make a
case for a particular variant being disease causing. Determin-
ing whether a variant cosegregates with disease status in a
family is a key factor in assessing its likely role in disease.
Clinical evaluation of all first-degree relatives of an index case
with suspected heritable disease should be performed and
blood samples taken for DNA analysis. The presence or
absence of a variant in family DNA samples can be readily
ascertained by simple tests, such as polymerase chain
reaction and sequencing. Factors such as variable expressivity
and penetrance and phenotype phenocopies need to be taken
into account when assessing variant segregation in a family.
Even if a variant does cosegregate with the family phenotype,
however, this cannot be regarded as definitive evidence of
disease causation. The final interpretation of clinical signifi-
cance relies on a considered balance of probabilities and is
ideally performed in the setting of a multidisciplinary clinic in
which pretest and posttest genetic counseling is provided. The
role of genetics in clinical practice is likely to increase
exponentially in the near future as whole-genome sequencing
to document personal genomes becomes more readily avail-
able. This type of information will take genetics beyond looking
for rare disease-causing variants in families to assessment of a
single patient’s risk of developing common diseases and
responses to drug therapies.67

Future Directions
This is a rapidly moving field, and the need for faster and more
comprehensive prediction tools is growing in parallel with the
exponential use of next-generation sequencing. In the short
term, submission inputs/outputs for prediction programs
need to be streamlined, database resources need to be
updated and maintained, quantitative and standardized mea-
sures of accuracy and reliability are required, and gene-
specific functional domain information should be taken into
account. In addition to refining methods to assess nonsyn-
onymous variants, there is an ongoing need to look at other
types of variants and parameters. VAAST, developed by
Yandell and colleagues,68 has been recently developed
specifically to analyze next-generation sequencing data and
includes scoring of a broad range of coding and noncoding
genetic variants, as well as incorporation of pedigree data.
Comprehensive programs such as this will be invaluable for
looking at the role of rare variants in both rare and common
disorders. A generic limitation of all programs is the focus on
single variants, and future refinements of genomic prediction
tools would ideally incorporate evaluation of clusters of
variants and their interactions.8,69 The extent to which the
cardiac “environment” can affect gene variant effects is also
an important question.70 The development of integrative
strategies that can delineate unique individual cardiac
substrates for disease is a daunting task but will ultimately
be required to successfully implement personalized
approaches to medical diagnosis and management.
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