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Abstract: A new Populus variety with a strong salt tolerance was obtained from cross breeding
P. talassica as the female parent and P. euphratica as the male parent. In order to elucidate the
molecular mechanism and find out the major differentially expressed genes of salt tolerance of
P. talassica × P. euphratica, after being subjected to salt stress, at 0, 200, and 400 mmol/L NaCl, the
root, stem, and leaf transcriptomes (denoted as R0, S0, and L0; R200, S200, and L200; and R400, S400,
and L400, respectively) of P. talassica × P. euphratica were sequenced. In total, 41,617 differentially
expressed genes (DEGs) were identified in all the comparison groups with 21,603 differentially
upregulated genes and 20,014 differentially downregulated genes. Gene Ontology analysis showed
that DEGs were significantly enriched in biological processes that may be involved in salt stress, such
as ‘cell communication’, ‘ion transport’, ‘signaling’, and signal ‘transmission’. Kyoto Encyclopedia
of Genes and Genomes analysis showed that DEGs were mainly enriched in pathways of ‘plant–
pathogen interaction’, ‘carbon metabolism’, and ‘plant hormone signal transmission’. The pathways
and related gene information formed a basis for future research on the mechanisms of salt stress, the
development of molecular markers, and the cloning of key genes in P. talassica × P. euphratica.

Keywords: Populus talassica × Populus euphratica; salt stress; transcriptome sequencing; differentially
expressed genes

1. Introduction

Soil salinization is a main challenge hindering global food security and environmental
sustainability. The harmful effects of climate change have accelerated the development
of soil salinity [1]. Low precipitation, high surface evaporation, weathering of primary
rocks, and irrigation with brine are the main reasons for the increase in salinity [2]. Soil
salinization poses multiple hazards to crops. Salt stress causes physiological and metabolic
crop disorders, such as decreased photosynthetic efficiency, increased respiration, blocked
protein synthesis, accumulation of toxic substances, and accelerated aging and death [3].
Due to frequent drought, irregular precipitation, increasing salinization, and high tem-
perature, climate change has altered many ecosystems. These environmental changes
have also led to a decline in crop yields worldwide. Therefore, there is an urgent need to
fully understand the response mechanisms of plants to abiotic stress and use the acquired
knowledge to improve their stress resistance [4].

Saline soil mainly contains Na+ and Cl− [5]. Plants grown in saline soil can regulate
the absorption of Na+ and Cl− to avoid ionic toxicity and ensure that there is enough solute
to regulate permeability [6]. To survive in these areas, plants need to produce complex
responses to these abiotic stressors, including signal transduction, gene expression regula-
tion, ion homeostasis, reactive oxygen species clearance, compatible solute accumulation,
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and growth regulation [7–11]. Plants produce large numbers of transduction signals under
salt stress conditions, including ion, osmotic, and detoxification signals. In addition, the
sucrose and starch catabolic process in plants is strengthened. The decomposed sugars
provide energy for plant growth and development, and the resulting small molecular
monosaccharides increase the soluble sugar contents of cells and the osmotic potential of
cells, which aid in resisting the osmotic stress caused by high salt ion concentrations [12].
In crops, salt not only affects osmotic stress, it also affects ion stress, and secondary stresses,
such as oxidative stress, also occur [13].

Abiotic stresses trigger a series of plant responses, starting from stress perception,
leading to the activation of signal pathways and changes in gene expression levels, thereby
altering plant physiology, growth, and development [14]. Salt stress affects all the stages
of plant growth and development (such as seed germination, growth, flowering, and
fruiting) and all the processes of physiological metabolism (such as water metabolism,
photosynthesis, and enzyme system metabolism), which leads to declines in crop yield
and quality, and even crop failure in serious cases. The responses of plants to salt stress
include a series of changes at the molecular, biochemical, and physiological levels. Salt
stress leads to the destruction of intracellular homeostasis and ion distribution, as well as
the denaturation of structural and functional proteins [15]. To improve the salt tolerance
of plants, it is necessary to understand the salt tolerance mechanisms of plant growth and
physiology, as well as the salt tolerance mechanisms at the whole-plant, organelle, and
molecular levels [16]. Under salt stress conditions, the gene expression pattern changes, and
special genes related to salt stress are activated [15]. Identifying genes that enable plants to
adapt to, or tolerate, salt stress is key for breeding programs. It is particularly urgent and
important to improve the utilization rates of salinized land resources, ensure ecological
security, and achieve high quality crops with high yields. This may be achieved by studying
the mechanisms of plant salt tolerance and cultivating salt-tolerant plant varieties.

To develop more salt-tolerant crops effectively, the genetic mechanisms of salt tolerance
must be determined. Salt stress changes gene expression in tissue-specific and time-
dependent manners. Identifying transcripts associated with salt stress is the first step in
detecting genes that contribute to plant salt tolerance. The structural analysis of isolated
genes will provide clues to the elements controlling their expression [5]. Identifying the key
genes involved in the reproductive physiology of halophytes and using them to transform
crops is a promising method for the development of saline agriculture [17]. Previous
studies have shown that plant salt tolerance involves multiple genes and is coordinated by
multiple mechanisms [18]. The genes related to salt stress response involve ion transport,
cell defense, physiological metabolism, cell growth, and many other pathways. These
genes work together to resist salt stress in different ways, such as encoding genes related
to photosynthesis, osmotic regulation, free radical scavenging enzymes, and vacuole
regionalizing enzymes [19].

The use of salinized land for crop cultivation and production has become an impor-
tant factor for agricultural development [3,19]. Improving the utilization of saline alkali
land requires the application of biological improvement methods to increase land-use effi-
ciency [20]. To date, numerous genetic-improvement-related investigations of crop plants
have been conducted to elucidate changes in species at the transcriptome level in response
to salt stress. The studied plants include Arabidopsis [21], rice [22], peanut [23], sugar
beet [24], cotton [25], citrus [26], Clerodendrum inerme (L.) [27], Microalgae Dunaliella [28],
kenaf [29], and wild barley [30].

P. talassica × P. euphratica is a new variety obtained by cross breeding P. talassica Kom.
as the female parent and P. euphratica Oliv. as the male parent. In addition to the excel-
lent characteristics of cold resistance, drought resistance, saline alkali resistance, barren
resistance, and wind and sand resistance for P. talassica × P. euphratica, it also has the
characteristics of strong asexual reproductive ability, fast growth speed, strong growth
potential, good material quality, high cutting survival rate, and strong adaptability. It is
an excellent tree species for wind prevention and sand control afforestation in arid, saline
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alkali, and desert areas. At present, although some research progress has been made in
salt-tolerance-related gene mining and in understanding the molecular mechanisms of
salt tolerance in other crops, research on the salt tolerance of P. talassica × P. euphratica
remains at the morphological and physiological levels. The related molecular mechanisms
are still unclear, and there is limited research on transcriptome analysis of different tissues
in P. talassica × P. euphratica under salt stress conditions. In recent years, high-throughput
sequencing technologies have been used to study gene function and gene structure at
the overall level, and it has revealed the molecular mechanisms of specific biological and
physiological processes. Among these technologies, a transcriptome sequencing (RNA-seq)
is a collection of all the transcripts produced by a species or specific cell type, and it
has been widely used in many fields, such as basic research, physiological mechanisms,
and clinical diagnoses [31]. Therefore, RNA-seq is a cost-effective platform for analyz-
ing gene expression [32–34]. However, the differences in the salt tolerance mechanisms
of P. talassica × P. euphratica and the elucidation of genes that play major roles in these
mechanisms are limited, due to the lack of transcriptome information.

To explore the unique salt tolerance mechanisms of P. talassica × P. euphratica and
explore its key genes in response to salt stress, this study applied RNA-seq technology
for root, stem, and leaf tissues of P. talassica × P. euphratica under salt stress conditions.
After transcriptome analysis of P. talassica × P. euphratica under salt stress conditions were
performed, the differentially expressed genes under these conditions were excavated, and
pathways related to the salt stress responses of P. talassica × P. euphratica were identified.
Understanding the salt tolerance mechanisms of P. talassica × P. euphratica at the molecular
level will not only provide a valuable resource for future research and breeding [35] but
will also help to promote the planting of P. talassica × P. euphratica in saline alkali land and
provide a reference for the improvement and sustainable development and utilization of
soil saline alkali land in Xinjiang in the future.

2. Materials and Methods
2.1. Plants and Stress Treatment

One-year-old potted P. talassica × P. euphratica seedlings were used as experimental
materials to study the salt tolerance of P. talassica × P. euphratica at different NaCl concen-
trations by open-air potted soil culture. Three NaCl concentration levels were used—0,
200, and 400 mmol/L. P. talassica × P. euphratica with the same growth trends and good
growth were selected and they were divided into three groups of three plants each. The
salt treatment group was treated with NaCl solution once every three days, and the control
group was irrigated with 1000 mL deionized water once every three days. Both the control
and the salt treatment groups were treated for a total of five times.

In order to avoid the salt shock effect, the potted P. talassica × P. euphratica seedlings
were treated with salt stress in the way of increasing salt concentration until the predeter-
mined concentration. In the 200 mmol/L NaCl treatment group, NaCl concentration in-
creased by 50 mmol/L, 100 mmol/L, 150 mmol/L, and 200 mmol/L until the predetermined
salt concentration of 200 mmol/L, and then were treated with 200 mmol/L NaCl solution
once. We kept the final salt concentration stable at 200 mmol/L. In the 400 mmol/L NaCl
treatment group, NaCl concentration increased by 100 mmol/L, 200 mmol/L, 300 mmol/L,
and 400 mmol/L, until the predetermined concentration of 400 mmol/L, and then was
treated with 400 mmol/L NaCl solution once. We kept the final salt concentration stable
at 400 mmol/L. After the salt concentration was stabilized, the roots, stems, and leaves of
seedlings in each treatment group were selected, with a total of 27 samples. After sampling,
samples were quickly frozen in liquid nitrogen and brought back to the laboratory for
storage in a −80 ◦C ultra-low-temperature refrigerator.

2.2. RNA Extraction, Library Construction, and Sequencing

The root, stem, and leaf samples treated with 0, 200, and 400 mmol/L NaCl solution
were set as R0, S0, and L0, respectively; R200, S200, and L200, respectively; and R400, S400,
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and L400, respectively. RNA was extracted from tissues or cells using the TRIzol extraction
method, followed by the rigorous quality control of the RNA samples using an Agilent
2100 BioAnalyzer and the accurate detection of RNA integrity.

The first-strand cDNA was synthesized using an M-MuLV reverse transcriptase sys-
tem with an mRNA fragment as template and a random oligonucleotide as primer. Sub-
sequently, the RNA strand was degraded by RNaseH, and the second-strand cDNA was
synthesized with dNTPs in a DNA Polymerase I system. The purified double-stranded
cDNA was repaired at the end, A tails were added, and sequencing joints were connected.
Approximately 250–300-bp cDNA was screened using AMPure XP Beads for PCR ampli-
fication, and PCR products were purified again with AMPure XP beads to finally obtain
libraries [36].

After the library was constructed, a Qubit2.0 Fluorometer was used for initial quan-
tification, and the library was diluted to 1.5 ng/µL. An Agilent 2100 BioAnalyzer was
then used to determine the insert size of the library, and qRT-PCR was used to accurately
quantify the effective library concentration (Effective library concentration is higher than
2 nM) to ensure the library quality. After qualified library inspection, Illumina sequencing
was performed using Illumina HiSeq 2500 after pooling different libraries in accordance
with the effective concentration and the targeted offline data requirements. The basic
principle of this sequencing technology was sequencing by synthesis. In the sequencing
flow cell, there were four kinds of fluorescence-labeled dNTPs, amplification primers, and
DNA polymerase. In each sequence complementary chain cluster, when a fluorescently
labeled dNTP was added to the chain, it released the corresponding fluorescence, which
was captured by Illumina HiSeq 2500 and converted from optical signals into sequencing
peaks by computer software. In this manner, the sequence information of the fragment to
be tested was obtained [37–39].

2.3. Data Quality Control and Reference Genome Alignment

The original data obtained by sequencing contained a small number of reads con-
taminated with sequencing connectors or of low sequencing quality. To ensure the qual-
ity and reliability of the data analysis, it was necessary to filter the original data, re-
move the reads with adapters, and remove the reads containing large numbers of Ns
(where N indicates that the base information cannot be determined). Low-quality reads
(Qphred ≤ 20 base numbers represent more than 50% of the total read length) were re-
moved. Clean reads for the subsequent analysis were obtained by filtering the original
data filtering and confirming the sequencing error rate and GC content distribution [40].
Clean reads after quality control were compared with the reference genome. HISAT2
(Version 2.0.4) software (http://daehwankimlab.github.io/hisat2/ (accessed on 3 October
2021)) was used to compare clean reads quickly and accurately with the reference genome
of P. talassica × P. euphratica to obtain the locational information of reads on the reference
genome [41].

2.4. Quantification of Gene Expression and Differential Expression Analysis

Using the locational information of the gene alignment on the reference genome of
P. talassica × P. euphratica, the number of reads covering each gene (including the new
prediction gene) from start to end was calculated. Reads with a comparison quality value of
less than 10, unpaired reads, and reads to multiple regions of the genome were filtered. This
part of the analysis was performed using the featureCounts tool in subread software [42].
A quantitative analysis of the gene expression level was carried out for each sample, and
then the expression matrix of all the samples was obtained [43].

Due to the influence of sequencing depth and gene length, RNA-seq expression values
are generally not expressed by read count, but by FPKM, which is used to correct sequencing
depth and gene length successively [44]. After the expression values of all the genes in each
sample were calculated, the distributions of gene expression levels in different samples
were displayed using box graphs. After gene expression quantification, the expression data

http://daehwankimlab.github.io/hisat2/
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were statistically analyzed to screen for genes with significant differences in expression
level under different conditions. The difference analysis was divided into three steps. The
original read count was first standardized, mainly to correct for the sequencing depth.
Then, the statistical model calculated the probability of hypothesis testing (p-value), and
finally, multiple hypothesis testing correction was conducted to obtain false discovery rate
values (error detection rate, padj) [45–47].

Transcriptome analyses are conducted on thousands of genes, which leads to the
accumulation of false positives. The greater the number of genes, the greater the accu-
mulation of false positives in the hypothesis testing. Therefore, padj was introduced
to correct the p-value of the hypothesis testing to control the proportion of false posi-
tives [48]. Differences in gene screening standards are very important, we used the standard
|log2 (fold change)| ≥ 1 and padj ≤ 0.05 as common values.

2.5. Novel Gene Prediction

In order to identify possible key genes related to salt resistance of P. talassica × P.
euphratica, we used |log2 (fold change)| ≥ 5 as a selection criterion. Some genes with high
expression levels were screened out from the list of differentially expressed genes (DEGs)
in all comparison groups of root, stem, and leaf.

2.6. Gene Ontology (GO) Enrichment Analysis and Kyoto Encyclopedia of Genes and Genomes
(KEGG) Pathway Enrichment Analysis

Gene ontology uses a comprehensive database to describe the functions of genes. It
mainly classifies genes on the basis of their essential functions to define and describe the
functions of genes and proteins. The GO database divides the functions into three types: Bi-
ological Process (BP), Cellular Component (CC), and Molecular Function (MF) [49–51]. The
KEGG database integrates genomic, chemical, and system functional information [52,53].

Enrichment analysis was based on the principle of hypergeometric distribution, in
which the differential gene set was the gene set obtained from the differential significant
analysis and annotated in the GO or KEGG database. ClusterProfile software was used for
the GO functional enrichment analysis of differential gene sets. In addition, ClusterProfile
software was used to analyze the KEGG pathway enrichment of differential gene sets. The
KEGG database is comprehensive, integrating genomic, chemical, and system functional
information. Both GO and KEGG enrichment analyses used padj <0.05 as the threshold for
significant enrichment [54]. In BP, enrichment was most concentrated in cellular processes
and metabolic processes. Cells and cell components were the most enriched in CC. Binding
and catalytic activities were significantly enriched in MF pathways. KEGG provides a
way to systematically analyze gene function according to the metabolic network of gene
products [55].

2.7. Mutation Locus Analysis

A mutation site analysis is an important RNA-seq structural analysis, mainly including
the detection of congenital and acquired somatic mutation sites. GATK software (https:
//gatk.broadinstitute.org (accessed on 3 October 2021)) was used to analyze the variation
sites in the sample data, and SnpEff software was used to annotate the variation sites [56].

3. Results
3.1. Sequencing Quality Analysis

To ensure the quality and reliability of the data analysis, first, the original data were
filtered, and then the reads with joints, reads containing N, and low-quality reads were
removed. After original data filtering, the sequencing error rate and GC content distribution
were determined. In total, 1,109,438,718 clean reads were obtained, accounting for 97.08%
of the raw reads. The data summary is shown in Table 1. In 27 samples, the proportion of
the high-quality read content to the original read content was greater than 94%. There was
166.41 G of high-quality reads, and the content of GC per sample was greater than 44%.

https://gatk.broadinstitute.org
https://gatk.broadinstitute.org
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Thus, the reads were of high quality. High quality reads with Q20 exceeded 97.31%, and
those with Q30 exceeded 92.5%. The GC contents in both groups exceeded 42.81%. These
data results revealed the sequencing quality of the transcriptome. Among the 27 samples,
high-quality reads (high Q20 percentage) were selected.

Table 1. Information of RNA-seq data.

Sample Library Raw_Reads Clean_Reads Clean_Bases Error_Rate Q20 Q30 GC_Pct

L0_1 FRAS210141894-1r 43,229,878 41,916,070 6.29 G 0.03 97.72 93.28 43.80
L0_2 FRAS210141895-1r 43,503,400 41,412,972 6.21 G 0.03 97.72 93.30 42.92
L0_3 FRAS210141896-1r 41,700,782 40,131,530 6.02 G 0.03 97.64 93.04 43.93
L200_1 FRAS210141903-1r 42,337,890 41,376,760 6.21 G 0.03 97.75 93.37 44.00
L200_2 FRAS210141904-1r 41,637,272 40,851,878 6.13 G 0.03 97.72 93.30 43.90
L200_3 FRAS210141905-1r 41,808,814 40,466,298 6.07 G 0.03 97.77 93.38 43.56
L400_1 FRAS210141912-1r 43,477,378 41,505,660 6.23 G 0.03 97.72 93.27 43.25
L400_2 FRAS210141913-1r 40,334,862 39,717,696 5.96 G 0.03 97.58 92.95 43.92
L400_3 FRAS210141914-1r 43,098,376 42,022,164 6.30 G 0.03 97.71 93.32 43.79
R0_1 FRAS210141888-1r 41,219,840 38,942,918 5.84 G 0.03 97.31 92.50 44.26
R0_2 FRAS210141889-1r 40,474,488 39,722,168 5.96 G 0.03 97.66 93.17 43.25
R0_3 FRAS210141890-1r 41,990,470 41,326,130 6.20 G 0.03 97.70 93.25 43.58
R200_1 FRAS210141897-1r 41,346,852 40,288,012 6.04 G 0.03 97.60 93.07 43.87
R200_2 FRAS210141898-1r 41,922,834 40,528,650 6.08 G 0.03 97.59 93.08 44.29
R200_3 FRAS210141899-1r 42,625,060 41,322,596 6.20 G 0.03 97.54 93.02 44.55
R400_1 FRAS210141906-2r 47,618,458 46,825,304 7.02 G 0.03 97.39 92.57 44.77
R400_2 FRAS210141907-2r 44,838,230 43,672,332 6.55 G 0.03 97.40 92.61 44.64
R400_3 FRAS210141908-1r 40,153,594 38,188,658 5.73 G 0.03 97.58 93.05 44.60
S0_1 FRAS210141891-1r 42,998,830 41,953,190 6.29 G 0.03 97.68 93.21 43.01
S0_2 FRAS210141892-1r 41,626,198 40,928,406 6.14 G 0.03 97.67 93.14 42.92
S0_3 FRAS210141893-1r 42,162,498 40,897,322 6.13 G 0.03 97.75 93.32 43.04
S200_1 FRAS210141900-1r 41,365,530 39,960,594 5.99 G 0.03 97.58 93.11 43.65
S200_2 FRAS210141901-1r 41,693,852 40,826,972 6.12 G 0.03 97.50 92.84 43.60
S200_3 FRAS210141902-1r 43,498,006 42,704,462 6.41 G 0.03 97.74 93.33 43.13
S400_1 FRAS210141909-1r 43,083,076 41,548,528 6.23 G 0.03 97.65 93.17 43.24
S400_2 FRAS210141910-1r 42,854,862 41,521,356 6.23 G 0.03 97.70 93.27 43.29
S400_3 FRAS210141911-1r 40,153,198 38,880,092 5.83 G 0.03 97.44 92.77 42.81

3.2. Reference Genome Alignment Results Were Analyzed

Clean reads after quality control were compared with the reference genome of P.
euphratica. HISAT2 (Version 2.0.4) software (http://daehwankimlab.github.io/hisat2/
(accessed on 3 October 2021)) was used to compare clean reads quickly and accurately with
the reference genome to obtain the locational information of the reads on the reference
genome. To calculate the respective mapping rates of read1 and read2, the Total_reads
number was the sum of read1 and read2, which was Clean_reads in Table 1, and the
comparison between the samples and reference genomes is shown in Table 2.

3.3. Quantitative Analysis of Gene Expression
3.3.1. Gene Expression Distribution

Using the locational information from the gene alignment on the reference genome of
P. talassica × P. euphratica, the number of reads covering each gene (including the newly
predicted genes) from start to end was calculated. Reads with a comparison quality value
of less than 10, unpaired reads, and reads to multiple regions of the genome were filtered.
This part of the analysis used the featureCounts tool in the subread software [42].

http://daehwankimlab.github.io/hisat2/
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Table 2. Statistics of the comparison between samples and reference genomes.

Sample Total_Reads Total_Map Unique_Map Multi_Map Read1_Map Read2_Map Positive_Map Negative_Map Splice_Map Unsplice_Map Proper_Map

L0_1 41,916,070 34,099,861 31,929,576 2,170,285 16,031,977 15,897,599 15,964,215 15,965,361 14,181,366 17,748,210 28,988,606
(81.35%) (76.18%) (5.18%) (38.25%) (37.93%) (38.09%) (38.09%) (33.83%) (42.34%) (69.16%)

L0_2 41,412,972 32,664,958 30,703,326 1,961,632 15,406,956 15,296,370 15,331,819 15,371,507 11,989,541 18,713,785 27,601,396
(78.88%) (74.14%) (4.74%) (37.20%) (36.94%) (37.02%) (37.12%) (28.95%) (45.19%) (66.65%)

L0_3 40,131,530 32,731,445 30,693,348 2,038,097 15,420,588 15,272,760 15,336,379 15,356,969 13,627,713 17,065,635 27,583,972
(81.56%) (76.48%) (5.08%) (38.43%) (38.06%) (38.22%) (38.27%) (33.96%) (42.52%) (68.73%)

L200_1 41,376,760 32,898,394 30,611,563 2,286,831 15,356,087 15,255,476 15,298,246 15,313,317 12,888,498 17,723,065 27,751,170
(79.51%) (73.98%) (5.53%) (37.11%) (36.87%) (36.97%) (37.01%) (31.15%) (42.83%) (67.07%)

L200_2 40,851,878 32,073,201 29,883,288 2,189,913 14,986,813 14,896,475 14,936,879 14,946,409 12,214,282 17,669,006 27,036,076
(78.51%) (73.15%) (5.36%) (36.69%) (36.46%) (36.56%) (36.59%) (29.90%) (43.25%) (66.18%)

L200_3 40,466,298 32,754,785 30,638,096 2,116,689 15,357,668 15,280,428 15,310,291 15,327,805 12,668,641 17,969,455 27,793,958
(80.94%) (75.71%) (5.23%) (37.95%) (37.76%) (37.83%) (37.88%) (31.31%) (44.41%) (68.68%)

L400_1 41,505,660 33,238,571 31,112,328 2,126,243 15,607,894 15,504,434 15,538,117 15,574,211 12,673,945 18,438,383 28,325,300
(80.08%) (74.96%) (5.12%) (37.60%) (37.35%) (37.44%) (37.52%) (30.54%) (44.42%) (68.24%)

L400_2 39,717,696 31,919,467 29,885,359 2,034,108 15,027,743 14,857,616 14,941,370 14,943,989 12,497,015 17,388,344 26,970,556
(80.37%) (75.24%) (5.12%) (37.84%) (37.41%) (37.62%) (37.63%) (31.46%) (43.78%) (67.91%)

L400_3 42,022,164 33,553,507 31,383,445 2,170,062 15,742,857 15,640,588 15,688,348 15,695,097 13,645,448 17,737,997 28,539,948
(79.85%) (74.68%) (5.16%) (37.46%) (37.22%) (37.33%) (37.35%) (32.47%) (42.21%) (67.92%)

R0_1 38,942,918 29,175,374 27,383,231 1,792,143 13,782,210 13,601,021 13,664,279 13,718,952 9,546,470 17,836,761 24,479,086
(74.92%) (70.32%) (4.60%) (35.39%) (34.93%) (35.09%) (35.23%) (24.51%) (45.80%) (62.86%)

R0_2 39,722,168 30,801,737 28,995,952 1,805,785 14,556,757 14,439,195 14,473,119 14,522,833 10,181,574 18,814,378 26,065,798
(77.54%) (73.00%) (4.55%) (36.65%) (36.35%) (36.44%) (36.56%) (25.63%) (47.36%) (65.62%)

R0_3 41,326,130 32,315,221 30,390,025 1,925,196 15,250,293 15,139,732 15,172,739 15,217,286 11,044,773 19,345,252 27,505,356
(78.20%) (73.54%) (4.66%) (36.90%) (36.63%) (36.71%) (36.82%) (26.73%) (46.81%) (66.56%)

R200_1 40,288,012 31,451,369 29,490,159 1,961,210 14,795,186 14,694,973 14,720,654 14,769,505 11,114,536 18,375,623 26,546,638
(78.07%) (73.20%) (4.87%) (36.72%) (36.47%) (36.54%) (36.66%) (27.59%) (45.61%) (65.89%)

R200_2 40,528,650 31,057,737 29,136,961 1,920,776 14,612,559 14,524,402 14,547,707 14,589,254 10,636,348 18,500,613 26,202,788
(76.63%) (71.89%) (4.74%) (36.05%) (35.84%) (35.89%) (36.00%) (26.24%) (45.65%) (64.65%)

R200_3 41,322,596 30,250,140 28,378,130 1,872,010 14,241,200 14,136,930 14,165,430 14,212,700 10,488,271 17,889,859 25,446,492
(73.20%) (68.67%) (4.53%) (34.46%) (34.21%) (34.28%) (34.39%) (25.38%) (43.29%) (61.58%)

R400_1 46,825,304 34,091,693 31,999,767 2,091,926 16,001,871 15,997,896 15,983,812 16,015,955 11,468,760 20,531,007 28,565,350
(72.81%) (68.34%) (4.47%) (34.17%) (34.17%) (34.13%) (34.20%) (24.49%) (43.85%) (61.00%)

R400_2 43,672,332 34,574,074 32,289,809 2,284,265 16,166,727 16,123,082 16,116,947 16,172,862 11,606,074 20,683,735 29,067,328
(79.17%) (73.94%) (5.23%) (37.02%) (36.92%) (36.90%) (37.03%) (26.58%) (47.36%) (66.56%)

R400_3 38,188,658 25,409,066 23,861,327 1,547,739 11,973,526 11,887,801 11,908,929 11,952,398 8,480,579 15,380,748 21,370,942
(66.54%) (62.48%) (4.05%) (31.35%) (31.13%) (31.18%) (31.30%) (22.21%) (40.28%) (55.96%)



Genes 2022, 13, 1032 8 of 28

Table 2. Cont.

Sample Total_Reads Total_Map Unique_Map Multi_Map Read1_Map Read2_Map Positive_Map Negative_Map Splice_Map Unsplice_Map Proper_Map

S0_1 41,953,190 32,267,320 30,360,095 1,907,225 15,242,528 15,117,567 15,157,535 15,202,560 11,350,223 19,009,872 27,252,422
(76.91%) (72.37%) (4.55%) (36.33%) (36.03%) (36.13%) (36.24%) (27.05%) (45.31%) (64.96%)

S0_2 40,928,406 31,190,534 29,382,790 1,807,744 14,736,558 14,646,232 14,660,622 14,722,168 10,667,910 18,714,880 26,398,080
(76.21%) (71.79%) (4.42%) (36.01%) (35.79%) (35.82%) (35.97%) (26.06%) (45.73%) (64.50%)

S0_3 40,897,322 31,534,019 29,548,587 1,985,432 14,809,974 14,738,613 14,739,097 14,809,490 11,417,118 18,131,469 26,865,924
(77.11%) (72.25%) (4.85%) (36.21%) (36.04%) (36.04%) (36.21%) (27.92%) (44.33%) (65.69%)

S200_1 39,960,594 31,613,489 29,619,742 1,993,747 14,855,726 14,764,016 14,775,203 14,844,539 11,488,947 18,130,795 26,757,178
(79.11%) (74.12%) (4.99%) (37.18%) (36.95%) (36.97%) (37.15%) (28.75%) (45.37%) (66.96%)

S200_2 40,826,972 32,184,287 30,214,916 1,969,371 15,174,062 15,040,854 15,076,017 15,138,899 11,759,858 18,455,058 27,384,426
(78.83%) (74.01%) (4.82%) (37.17%) (36.84%) (36.93%) (37.08%) (28.80%) (45.20%) (67.07%)

S200_3 42,704,462 32,736,990 30,757,053 1,979,937 15,435,697 15,321,356 15,343,424 15,413,629 12,076,016 18,681,037 27,631,548
(76.66%) (72.02%) (4.64%) (36.15%) (35.88%) (35.93%) (36.09%) (28.28%) (43.74%) (64.70%)

S400_1 41,548,528 31,715,603 29,766,573 1,949,030 14,916,876 14,849,697 14,844,254 14,922,319 11,238,002 18,528,571 26,809,282
(76.33%) (71.64%) (4.69%) (35.90%) (35.74%) (35.73%) (35.92%) (27.05%) (44.60%) (64.53%)

S400_2 41,521,356 32,538,126 30,505,240 2,032,886 15,313,023 15,192,217 15,209,470 15,295,770 12,225,058 18,280,182 27,518,922
(78.36%) (73.47%) (4.90%) (36.88%) (36.59%) (36.63%) (36.84%) (29.44%) (44.03%) (66.28%)

S400_3 38,880,092 30,215,448 28,441,954 1,773,494 14,304,860 14,137,094 14,181,255 14,260,699 10,674,997 17,766,957 25,446,248
(77.71%) (73.15%) (4.56%) (36.79%) (36.36%) (36.47%) (36.68%) (27.46%) (45.70%) (65.45%)
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Then, HISAT2 (Version 2.0.4) software (http://daehwankimlab.github.io/hisat2/ (ac-
cessed on 3 October 2021)) was used to compare the obtained high-quality clean reads
to the reference genome of P. talassica × P. euphratica, and StringTie software (https:
//ccb.jhu.edu/software/stringtie/ (accessed on 3 October 2021)) was used to perform a
quantitative expression analysis of each sample gene [57]. After all the gene expression
values (FPKM) of the 27 samples were calculated, the distribution of gene expression levels
among samples was determined, as shown in Figure 1. The gene expression distribution
of all samples in each treatment group of root, stem, and leaf can be clearly seen from
Figure 1A.
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Figure 1. Quantitative analysis of gene expression. (A) Distribution box plot of gene expression levels
in different samples. (B) Density distribution diagram of FPKM values. (C) Correlation heat map.
(D) PCA diagram of samples.

3.3.2. FPKM Density Distribution

Generally speaking, the number of DEGs only accounts for a small part of the whole
gene, and a few differentially expressed genes have little influence on the distribution of the
expression level of a sample. In most cases, samples have similar distributions of expression
levels. For the gene expression level of each sample, the logarithm base 2 was used to
construct the density distribution map, as shown in Figure 1B. The abscissa represents
log2 (FPKM + 1) values, and the ordinate represents the gene distribution density of the

http://daehwankimlab.github.io/hisat2/
https://ccb.jhu.edu/software/stringtie/
https://ccb.jhu.edu/software/stringtie/
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corresponding expression quantity. Thus, they reflect the distribution of gene FPKM and
the proportions of genes with different expression levels in all the samples. Each color in
the figure represents a sample, the sum of all probabilities is 1, and the area of each region
is 1. The peak of the density curve represents the region with the highest concentration
of gene expression in the whole sample. In the data, there were different peaks, but the
proportions of gene expression at different peaks and the trend of density distribution
curves of different samples were relatively consistent because the distribution of the gene
expression density in the same tissue of the same species was similar [58].

3.3.3. Correlation Analysis between Samples

Inter-sample correlation, intragroup biological repeatability, and intergroup sample
differences were evaluated. The correlation of gene expression levels among samples
represents an important index to determine the reliability of experiments and the rationality
of sample selection. The closer the correlation coefficient is to 1, the greater the similarity
in the expression patterns between samples. In accordance with the FPKM values of
all the genes in each sample, the correlation coefficients of samples within and between
groups were calculated, and a heat map was constructed that can visually display the
sample differences between groups and the sample repetition within groups. The higher
the correlation coefficient between samples, the closer the expression pattern. The sample
correlation heat map is shown in Figure 1C. The left and upper sides are sample clustering,
the right and lower sides are sample names, and the squares of different colors represent
the correlations of the two samples. In Figure 1C, the correlation coefficient of the three
biological replicates for each salt concentration treatment was close to 1, which showed
that the data of the three biological replicates at each salt treatment were very good,
and the correlations within and between groups were good. Thus, they can be used for
subsequent experiments.

A principal component analysis (PCA) is an algorithm that reduces data dimensions.
It is a way to evaluate the quality of biological duplications. It is used to evaluate the
biological repeatability of samples within a group and the differences between groups.
On the basis of a data matrix of gene expression in the sample, it is mapped to the two-
dimensional plane to obtain the principal component (PC) with the greatest contribution to
the different genes. In the transcriptome, each sample contains thousands of genes. The
FPKM values of these genes were calculated, and a PCA was used to reduce the dimension
of the overall data. The distance between the midpoint in Figure 1D represents the degree
of similarity between samples. PC1 refers to the contribution rate ranking first, which is
the factor that has the greatest impact on the amount of variation. PC2 is the factor ranking
second. As shown in Figure 1D, the abscissa was PC1, and the ordinate was PC2. As shown
in the PCA cluster diagram of Figure 1D, the correlations of the three biological repeats in
the R0 and L0 treatment groups were low, and the difference between groups was obvious.
The three biological repeats in other groups, such as L200, L400, S0, S200, S400, R200, and
R400, gathered together. The PC1 and PC2 of the three biological repeats were very close,
the correlations were high, and the difference between groups was not obvious, indicating
that the samples were very similar.

3.4. Analysis of Differential Gene Expression Levels
3.4.1. DEGs in Different Comparison Groups

On the basis of the expression of quantitative data, using the DESeq2 identification of
differentially expressed genes, poplar seedlings in different experiments were compared.
The screening criteria for DEGs were |log2 (fold change)| ≥ 1 and padj ≤ 0.05. When
p ≤ 0.05, the gene was regarded as differentially expressed. In Figure 2, the abscissa
represents the comparison groups in the differential expression analysis, the ordinate
represents the number of DEGs, and the color represents upregulated and downregulated
genes. As shown in Figure 2, the numbers of upregulated and downregulated genes in each
comparison group of P. talassica × P. euphratica roots, stems, and leaves were consistent
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with volcano diagram results. As shown in Figure 2, under salt stress conditions, there
were more upregulated genes than downregulated genes, indicating that the effect of salt
stress on the gene expression trend was mainly upregulated.
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Figure 2. Differentially expressed genes of P. talassica × P. euphratica in different comparison groups.

3.4.2. Differential Gene Volcano Map

In Figure 3A–I, the abscissa is log2(fold change), the ordinate is the significance level,
and the value of negative logarithm was taken for 10. The two vertical dashed lines in the
figure represent the threshold of the difference multiple, and the horizontal dotted line is the
significance level threshold. Color indicates that the gene is upregulated, downregulated,
or non-significantly differentially expressed. The downregulated genes are represented in
green, the upregulated genes are represented in red, and the non-differentially expressed
genes are represented in blue.

Volcano Map of Differential Gene Expression Levels in Leaf Comparison Groups

The levels of differential gene expression are shown using a volcano map. As shown
in Figure 3A–C, the total number of DEGs in the L200 vs. L0 comparison group was 3042,
with 1842 being upregulated and 1200 being downregulated. The total number of DEGs in
the L400 vs. L0 comparison group was 4534, with 2472 being upregulated and 2062 being
downregulated. The total number of DEGs in the L400 vs. L200 comparison group was
4250, with 2197 being upregulated and 2053 being downregulated.

Volcano Map of Differential Gene Expression Levels in Stem Comparison Groups

The levels of differential gene expression were shown using a volcano map. As shown
in Figure 3D–F, the total number of DEGs in the S200 vs. S0 comparison group was 8257,
with 4564 being upregulated and 3693 being downregulated. The total number of DEGs in
the S400 vs. S0 comparison group was 8478, with 4562 being upregulated and 3916 being
downregulated. The total number of DEGs in the S400 vs. S200 comparison group was
1548, with 626 being upregulated and 922 being downregulated.
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Figure 3. Volcano diagram of differential gene expression levels in each comparison group. (A) L200
vs. L0; (B) L400 vs. L0; (C) L400 vs. L200; (D) S200 vs. S0; (E) S400 vs. S0; (F) S400 vs. S200; (G) R200
vs. R0; (H) R400 vs. R0; (I) R400 vs. R200.

Volcanic Map of Differential Gene Expression Levels in Root Comparison Groups

The levels of differential gene expression were shown using a volcano map. As shown
in Figure 3G–I, the total number of DEGs in the R200 vs. R0 comparison group was 4076,
including 1804 upregulated DEGs and 2272 downregulated DEGs. The total number of
DEGs in the R400 vs. R0 comparison group was 5047, with 2291 being upregulated and
2756 being downregulated. The total number of DEGs in the R400 vs. R200 comparison
group was 2385, with 1245 being upregulated and 1140 being downregulated.

3.4.3. Differential Gene Venn Diagram

A Venn diagram of the co-expressed genes in each of the three comparison groups
was constructed, and FPKM > 1 was used as the criterion to judge the gene expression.
A Venn analysis was performed to detect the different expressions of rhizome and leaf
tissues under salt stress conditions. The analysis results are shown in Figure 4A–F. In total,
271 genes were co-expressed in the R200 vs. R0, S200 vs. S0, and L200 vs. L0 comparison
groups; 450 genes were co-expressed in the S400 vs. S0, L400 vs. L0, and R400 vs. R0
comparison groups; 38 genes were co-expressed in the R400 vs. R200, L400 vs. L200, and
S400 vs. S200 comparison groups; 196 genes were co-expressed in the R200 vs. R0, R400
vs. R200, and R400 vs. R0 comparison groups; 381 genes were co-expressed in the S400 vs.
S0, S200 vs. S0, and S400 vs. S200 comparison groups; and 150 genes were co-expressed in
the L400 vs. L200, L200 vs. L0, and L400 vs. L0 comparison groups. In a comprehensive
analysis, there were more DEGs in the Figure 4B,E comparison groups.
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Figure 4. Venn diagram of differential gene expression levels in each comparison group. (A) R200
vs. R0_ S200 vs. S0_L200 vs. L0 group; (B) S400 vs. S0_L400 vs. L0_R400 vs. R0 group; (C) R400 vs.
R200_L400 vs. L200_ S400 vs. S200 group; (D) R200 vs. R0_R400 vs. R200_R400 vs. R0 group; (E) S400
vs. S0_S200 vs. S0_S400 vs. S200 group; (F) L200 vs. L0_L400 vs. L0_L400 vs. L200 group. Note: As
shown in (A–F), the number of genes expressed in each comparison group and their overlapping
relationships are shown. The sum of the numbers in each circle represents the total number of DEGs
in the comparison combination, and the overlapping part of the circle represents the common.

3.4.4. Cluster Analysis of DEGs

The DEGs in all the comparison groups of roots, stems, and leaves were collected as
the differential gene sets and clustered on the basis of their expression levels. In the cluster
analysis of the differential gene sets, genes or samples with similar expression patterns
in the heat map clustered together. Figure 5A shows the heat map of clustering among
samples. The abscissa has the sample names, and the ordinate represents the normalized
values of differential gene FPKM. Figure 5B shows an inter-group clustering heat map.
Horizontal comparisons of colors in the heat map indicate the expression of the same gene
in different samples. The higher the redness, the higher the expression level, and the higher
the greenness, the lower the expression level. The Figure 5A,B shows the clustering of
DEGs in each comparison group.
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3.4.5. Trend Analysis

To further provide a global expression profile of uniquely assembled transcripts under
salt stress conditions, expression models of all the DEGs were created and divided into four
clusters on the basis of a log2(fold change). Cluster is the cluster number after clustering
according to the expression mode. As shown in Figure 6, the change trend of the expression
of all the genes related to stress treatment was analyzed. The change characteristics of
the same gene in a changing trend were determined to identify the most representative
change process of a genetic group, as shown in Figure 6. Each square represents a kind
of trend in the gene expression data. In Figure 6, the abscissa has the names of the
different tissue samples, and the ordinate represents the value under the sample after
Z-score homogenization of gene FPKM value in the sample. The gray line in each subplot
represents the relative corrected gene expression levels of genes in a cluster under different
experimental conditions, and and the blue line represents the average value of the relative
corrected gene expression levels of all genes in this cluster under different experimental
conditions. As shown in Figure 6, we can see the change trend of all gene expression levels
after relative correction under different experimental conditions. Comprehensive analysis,
it can be seen that the expression of most DEGs in sub_cluster (1–4) were up-regulated after
salt stress exposure.

3.4.6. Novel Gene Prediction Results

Using |log2 (fold change)| ≥ 5 as a selection criteria, by screening the DEGs in
the three comparison groups of L200 vs. L0, L400 vs. L0, and L400 vs. L200, we
found some genes that were highly expressed in leaves. In the L200 vs. L0 compari-
son group, the genes with higher expression levels were LOC105129452, LOC105136804,
LOC105127881, LOC105142149, and LOC105131213. In the L400 vs. L0 comparison group,
the genes with higher expression levels were LOC105124563, LOC105129935, LOC105115176,
LOC105141220, and LOC105132264. In the L400 vs. L200 comparison group, the genes with
higher expression levels were LOC105128502, LOC105131234, LOC105124001, LOC105114274,
and LOC105116811.
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Using |log2 (fold change)| ≥ 5 as a selection criteria, by screening the DEGs in the
three comparison groups of S200 vs. S0, S400 vs. S0, and S400 vs. S200, we found some
genes that were highly expressed in stem. In the S200 vs. S0 comparison group, the
genes with higher expression levels were LOC105141088, LOC105141220, LOC105119414,
LOC105142033, and LOC105119522. In the S400 vs. S0 comparison group, the genes with
higher expression levels were LOC105112164, LOC105129607, LOC105137881, LOC105126640,
and LOC105131256. In the S400 vs. S200 comparison group, the genes with higher ex-
pression levels were LOC105116962, LOC105122741, LOC105115491, LOC105134677, and
LOC105134493.

Using |log2 (fold change)| ≥ 5 as a selection criteria, by screening the DEGs in
the three comparison groups of R200 vs. R0, R400 vs. R0, and R400 vs. R200, we
found some genes that were highly expressed in roots. In the R200 vs. R0 compari-
son group, the genes with higher expression levels were LOC105108844, LOC105135115,
LOC105134637, LOC105115176, and LOC105114369. In the R400 vs. R0 comparison group,
the genes with higher expression levels were LOC105127231, LOC105107217, LOC105124330,
LOC105115119, and LOC105128502. In the R400 vs. R200 comparison group, the genes with
higher expression levels were LOC105120059, LOC105116469, LOC105127348, LOC105112947,
and LOC105124801.

3.5. GO Enrichment Analysis of DEGs

To further analyze the expression functions of DEGs, a GO analysis was performed on
all comparison groups of P. talassica × P. euphratica treated with different concentrations
of NaCl, and the enriched GO items were screened on the basis of the significance of the
enrichment (p-value ≤ 0.05) and reliability (Q-value ≤ 0.05). Each group of DEGs was
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significantly enriched at three levels: CC, BP, and MF. The GO functional enrichment used
padj < 0.05 as the threshold of significant enrichment, and the GO enrichment results of
all the comparison groups of P. talassica × P. euphratica roots, stems, and leaves are shown
in Figure 7A–I. In the bar chart, the abscissa represents the GO terms, and the ordinate
represents GO terms enriched −log10 (p-value).
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Figure 7. GO enrichment analysis of differentially expressed genes in each comparison group of leaf,
stem and root. (A) L200 vs. L0; (B) L400 vs. L0; (C) L400 vs. L200; (D) S200 vs. S0; (E) S400 vs. S0;
(F) S400 vs. S200; (G) R200 vs. R0; (H) R400 vs. R0; (I) R400 vs. R200.

3.5.1. GO Enrichment Analysis Diagram of DEGs in Each Leaf Comparison Group

As shown in Figure 7A, the differentially expressed genes in the L200 vs. L0 compari-
son group were mainly enriched in cell communication, ion transport, cellular response to
stimulus, signaling, and signal transmission in BP. Organelle part, intracellular organelle
part, intracellular non-membrane-bound organelle, non-membrane bound organelle, and
cell peripheries were mainly enriched in CC. Transferase activity, transferring glycosyl
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groups, transferring hexosyl groups, DNA-binding transcription factor activity, coenzyme
binding, tetrapyrrole binding, and heme binding were mainly enriched in MF.

As shown in Figure 7B, the differentially expressed genes in the L400 vs. L0 comparison
group were mainly enriched in ion transport, lipid metabolic process, cell communication,
cellular response to stimulus, response to stress, signal transmission, signaling, oxidative
metabolic process, and organic acid metabolic process in BP. Organelle part, intracellular
organelle part, cell perimeter, membrane protein complex, non-membrane-bound organelle,
and intracellular non-membrane-bound organelle were mainly enriched in CC. DNA-
binding transcription factor activity, hydrolase activity, acting on glycosyl bonds, protein
dimerization activity, transferase activity, transferring glycosyl groups, hydrolase activity,
hydrolyzing O-glycosyl compounds, hydrolase activity, acting on acid anhydrides, in
phosphorus containing anhydrides and hydrogen activity, and acting on acid anhydrides
were mainly enriched in MF.

As shown in Figure 7C, the DEGs in the L400 vs. L200 comparison group were mainly
enriched in ion transport, cellular response to stimulus, cell communication, lipid metabolic
process, oxidative metabolic process, organic acid metabolic process, and carboxylic acid
metabolic process in BP. Intracellular non-membrane-bound organelle, non-membrane-
bounded organelle, intracellular organelle part, organelle part, membrane protein complex,
catalytic complex, thylakoid, thylakoid part, and cell perimeter were mainly enriched
in CC. DNA-binding, transcription factor activity, hydrolase activity, acting on glycosyl
bonds, transferase activity, transferring glycosyl groups, hydrolase activity, hydrolyzing
O-glycosyl compounds, protein dimerization activity, coenzyme binding, tetrapyrrole
binding, and heme binding were mainly enriched in MF.

3.5.2. GO Enrichment Analysis Diagram of DEGs in Each Stem Comparison Group

As shown in Figure 7D, the DEGs in the S200 vs. S0 comparison group were mainly
enriched in cell communication, cellular response to stimulus, ion transport, lipid metabolic
process, signal transduction, signaling, organic acid metabolic process, oxoacid metabolic
process, carboxylic acid metabolic process, organophosphate metabolic process, and small
molecule biosynthetic process in BP. Organelle part, intracellular organelle part, non-
membrane-bound organelle, non-membrane-bound organelle, cell periphery, membrane
protein complex, ribonucleoprotein complex, and catalytic complex were mainly enriched
in CC. Transferase activity, transferring glycosyl groups, DNA binding transcription fac-
tor activity, transferring hexosyl groups, hydrolase activity, acting on acid anhydrides,
hydrolase activity, acting on acid anhydrides, in phosphorus-containing anhydrides, py-
rophosphatase activity, nucleoside-triphosphatase activity, hydrolase activity, acting on
glycosyl bonds, and coenzyme binding were mainly enriched in MF.

As shown in Figure 7E, the DEGs in the S400 vs. S0 comparison group were mainly
enriched in cell communication, lipid metabolic process, cellular response to stimulus,
organic acid metabolic process, oxoacid metabolic process, carboxylic acid metabolic
process, ion transport, signal transduction, signaling, and response to stress in BP. Or-
ganelle part, intracellular organelle part, non-membrane-bound organelle, intracellular non-
membrane-bound organelle, cell periphery, and catalytic complex were mainly enriched
in CC. Transferase activity, transferring glycosyl groups, transferase activity, transferring
hexosyl groups, hydrolase activity, acting on glycosyl bonds, acting on acid anhydrides, in
phosphorus-containing anhydrides, hydrolyzing O-glycosyl compounds, pyrophosphatase
activity, and nucleoside-triphosphatase activity were mainly enriched in MF.

As shown in Figure 7F, the DEGs in the S400 vs. S200 comparison group were mainly
enriched in ion transport, carboxylic acid metabolic process, oxoacid metabolic process,
organic acid metabolic process, and catabolic process in BP. Cell periphery, non-membrane-
bound organelle, intracellular non-membrane-bound organelle, cell wall, and external
encapsulating structure were mainly enriched in CC. Coenzyme binding, DNA-binding
transcription factor activity, heme binding, tetrapyrrole binding, iron ion binding, trans-
ferase activity, and transferring glycosyl groups were mainly enriched in MF.
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3.5.3. GO Enrichment Analysis Diagram of DEGs in Each Root Comparison Group

As shown in Figure 7G, the DEGs in the R200 vs. R0 comparison group were mainly
enriched in response to stress, ion transport, lipid metabolic process, cell communication,
cellular response to stimulus, organic acid metabolic process, and oxoacid metabolic process
in BP. Cell periphery, non-membrane-bound organelle, intracellular non-membrane-bound
organelle, cell wall, external encapsulating structure, and ribonucleoprotein complex were
mainly enriched in CC. Heme binding, tetrapyrrole binding, transferase activity, transfer-
ring glycosyl groups, iron ion binding and oxidoreductase activity, and acting on paired
donors, with incorporation or reduction of molecular oxygen, were mainly enriched in MF.

As shown in Figure 7H, the DEGs in the R400 vs. R0 comparison group were mainly
enriched in ion transport, response to stress, cell communication, lipid metabolic process,
cellular response to stimulus, cation transport, signal transduction, and signaling in BP.
Cell periphery, non-membrane-bounded organelle, intracellular non-membrane-bounded
organelle, cell wall, and external encapsulating structure were mainly enriched in CC.
Transferase activity, transferring glycosyl groups, heme binding, tetrapyrrole binding, hy-
drolase activity, acting on glycosyl bonds, transferase activity, transferring hexosyl groups
and hydrolase activity, and hydrolyzing O-glycosyl compounds were mainly enriched
in MF.

As shown in Figure 7I, the DEGs in the R400 vs. R200 comparison group were
mainly enriched in cellular amide metabolic process, cellular response to stimulus, amide
biosynthetic process, cell communication, ion transport, peptide metabolic process, peptide
biosynthetic process, and translation in BP. Cell periphery, external encapsulating struc-
ture, cell wall, non-membrane-bound organelle, and intracellular non-membrane-bound
organelle were mainly enriched in CC. Hydrolase activity, acting on glycosyl bonds, hydro-
lase activity, hydrolyzing O-glycosyl compounds, transferase activity, transferring glycosyl
groups, nucleoside-triphosphatase activity, pyrophosphatase activity, hydrolase activity,
acting on acid anhydrides, in phosphorus-containing anhydrides, hydrolase activity, and
acting on acid anhydrides were mainly enriched in MF.

Thus, the BPs were mainly concentrated in cell communication, ion transport, cellular
response to stimulus, signaling and signal transmission, lipid metabolic process response to
stress, and organic acid metabolic process. Among the MFs, the most annotated subclasses
of DEGs were transferase activity, transferring glycosyl groups, DNA binding, transcription
factor activity, hydrolase activity, acting on glycosyl bonds, transcription factor activity,
transferring hexyl groups, acting on acid anhydrides, and hydrolyzing O-glycosyl com-
pounds. Among the major categories of CC, the most annotated sub-categories of DEGs
were organelle part, intracellular organelle part, cell perimeter, membrane protein com-
plex, intracellular non-membrane bound organelle, non-membrane-bound organelle, cell
periphery, cell wall, and external encapsulating structure

3.6. KEGG Pathway Enrichment Analysis of DEGs

The KEGG database (http://www.genome.jp/kegg/ (accessed on 6 October 2021))
provides knowledge about genomes and their relationships to biological systems, such
as cells and whole organisms, as well as their interactions with the environment [59]. To
further analyze the differences in gene expression functions in response to different con-
centrations of salt stress by P. talassica × P. euphratica, stem, root, and leaf samples of DEGs
in each comparison group were subjected to a KEGG pathway enrichment analysis. From
the KEGG enrichment results, the 20 most significant KEGG pathways were selected, and
scatter diagrams were constructed. If there were less than 20 pathways, all the pathways
were included. In Figure 8A–I, the abscissa represents the ratio of the number of differen-
tially annotated genes to the total number of differentially annotated genes in the KEGG
pathway, and the ordinate represents the KEGG pathway. The size of each dot represents
the number of genes annotated to the KEGG pathway, and the color, from red to purple,
represents the significance of enrichment.

http://www.genome.jp/kegg/
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Figure 8. KEGG pathway enrichment analysis of differentially expressed genes in each comparison
group of leaf, stem and root. (A) L200 vs. L0; (B) L400 vs. L0; (C) L400 vs. L200; (D) S200 vs. S0;
(E) S400 vs. S0; (F) S400 vs. S200; (G) R200 vs. R0; (H) R400 vs. R0; (I) R400 vs. R200.

3.6.1. KEGG Pathway Enrichment Analysis Diagram of DEGs in Each Leaf
Comparison Group

To further analyze the differential gene expression functions, a KEGG pathway en-
richment analysis was carried out on the DEGs obtained from the three leaf comparison
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groups—L200 vs. L0, L400 vs. L0 and L400 vs. L200—of P. talassica × P. euphratica. The
enrichment results are shown in Figure 8A–C.

As shown in Figure 8A, in the L200 vs. L0 comparison group, the largest number
of differential genes annotated to the pathway was ‘protein processing in endoplasmic
reticulum’, and the number of DEGs was 60. The second most enriched pathways were
‘plant–pathogen interaction’ and ‘carbon metabolism’, with 37 DEGs each. There were
32 DEGs in both ‘glutathione metabolism’ and ‘biosynthesis of amino acids’. As shown in
Figure 8B, in the L400 vs. L0 comparison group, the largest number of DEGs was annotated
to the pathway of ‘plant hormone signal transmission’, having 72 DEGs. This was followed
by ‘protein processing in endoplasmic reticulum’ and ‘carbon metabolism’, each with
65 DEGs. There were 57 DEGs in ‘biosynthesis of amino acids’, and there were 53 DEGs
in ‘plant–pathogen interaction’. As shown in Figure 8C, in the L400 vs. L200 comparison
group, the largest number of DEGs was annotated to the pathway of ‘biosynthesis of amino
acids’, having 80 DEGs. The second most annotated pathway was ‘carbon metabolism’,
with 74 DEGs. There were 62 DEGs in ‘plant hormone signal transmission’, and there were
51 DEGs in ‘cystaine and methionine metabolism’.

Thus, candidate genes involved in the salt stress response of P. talassica × P. euphratica
may be screened from the metabolic pathways of ‘protein processing in endoplasmic
reticulum’, ‘plant–pathogen interaction’, ‘carbon metabolism’, ‘glutathione metabolism’,
‘biosynthesis of amino acids’, ‘plant hormone signal transduction’, and ‘protein processing
in endoplasmic reticulum’.

3.6.2. KEGG Pathway Enrichment Analysis Diagram of DEGs in Each Comparison Group
of Stem

KEGG pathway enrichment analysis was carried out on the DEGs obtained from the
three stem comparison groups S200 vs. S0, S400 vs. S0, and S400 vs. S200 of P. talassica × P.
euphratica. The enrichment results are shown in Figure 8D–F. As shown in Figure 8D, in
the S200 vs. S0 comparison group, the largest number of differential genes was annotated
to the pathway of ‘carbon metabolism’, and the number of DEGs was 140. The second
most annotated pathway was ‘biosynthesis of amino acids’, with 115 DEGs. There were
112 DEGs in ‘plant–pathogen interaction’. There were 109 DEGs in ‘plant hormone signal
transmission’. As shown in Figure 8E, in the S400 vs. S0 comparison group, the largest
number of DEGs was annotated to the pathway of ‘carbon metabolism’, and the number
of DEGs was 149. The second most annotated pathways were ‘plant hormone signal
transduction’ and ‘biosynthesis of amino acids’, each with 117 DEGs. There were 108 DEGs
in ‘plant–pathogen interaction’. As shown in Figure 8F, in the S400 vs. S200 comparison
group, the largest number of DEGs was annotated to the pathway of ‘carbon metabolism’,
with 42 DEGs. The second most annotated pathway was ‘glycolysis/gluconeogenesis’,
with 41 DEGs. There were 39 DEGs in ‘biosynthesis of amino acids’. There were 35 DEGs
in ‘plant hormone signal transmission’. Thus, candidate genes for salt stress responses
of P. talassica × P. euphratica may be screened from the metabolic pathways of ‘carbon
metabolism’, ‘biosynthesis of amino acids’, ‘plant–pathogen interaction’, ‘plant hormone
signal transduction’, and ‘glycolysis/gluconeogenesis’.

3.6.3. KEGG Pathway Enrichment Analysis Diagram of DEGs in Each Root Comparison Group

KEGG pathway enrichment analysis was carried out on the DEGs obtained from three
root comparison groups: R200 vs. R0, R400 vs. R0, and R400 vs. R200 of P. talassica × P.
euphratica. The enrichment results are shown in Figure 8G–I.

As shown in Figure 8G, in the R200 vs. R0 comparison group, the largest number of
85 DEGs was annotated to the ‘plant hormone signal transmission pathway’. The second
most annotated pathway was ‘carbon metabolism’, with 56 DEGs. There were 52 DEGs in
‘biosynthesis of amino acids’. There were 51 DEGs in ‘MAPK-signaling pathway–plant’. As
shown in Figure 8H, in the R400 vs. R0 comparison group, the largest number of DEGs
was annotated to the pathway of ‘plant hormone signal transmission’, with 87 DEGs. The
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second most annotated pathway was ‘phenylpropanoid biosynthesis’, with 64 DEGs. There
were 61 DEGs in ‘plant–pathogen interaction’. There were 60 DEGs in ‘MAPK-signaling
pathway–plant’. As shown in Figure 8I, in the R400 vs. R200 comparison group, the largest
number of DEGs was annotated to the pathway of ‘plant hormone signal transmission’,
with 36 DEGs. The second was ‘plant–pathogen interaction’, with 33 DEGs. There were
32 DEGs in ‘phenylpropanoid biosynthesis’. There were 25 DEGs in ‘carbon metabolism’.
There were 24 DEGs in ‘biosynthesis of amino acids’.

Thus, candidate genes for salt-stress response of P. talassica × P. euphratica may be
screened from the metabolic pathways of ‘plant hormone signal transduction’, ‘carbon
metabolism’, ‘biosynthesis of amino acids’, ‘MAPK-signaling pathway–plant’, ‘plant–
pathogen interaction’, and ‘phenylpropanoid biosynthesis’.

3.7. Mutation Loci Analysis

Using P. euphratica as the reference genome, after GATK was used for mutation loci
detection, a statistical analysis was performed for mutation locus in accordance with the
SnpEff (Download and install—SnpEff & SnpSift Documentation (pcingola.github.io))
annotation information, as shown in Figure 9A–C This mainly includes functional, regional,
and influential statistics of variation loci. SNP function was statistically analyzed from
three aspects, synonymous, missense, and nonsense mutations. The SNP function statistical
analysis results of each sample are shown in Figure 9A. Statistical analysis and mapping of
SNP impact were carried out at four levels: HIGH, MODERATE, LOW, and MODIFIER
(no phenotypic effects on their own, only when they co-exist with other mutation sites).
The SNP impact statistics results of each sample are shown in Figure 9B. Statistical analysis
and mapping of SNP regions were conducted for EXON, INTRON, INTERGENIC, and
other gene structures, and the SNP region statistics results of each sample are shown in
Figure 9C.
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4. Discussion

Studies using transcriptome sequencing to analyze salt tolerance in plants have
been increasing in the past few years [58–64]. In this study, the salt tolerance of
P. talassica × P. euphratica under different salt concentrations was comprehensively ana-
lyzed by using RNA-seq.

Results revealed that the DEGs in roots, stems, and leaves had distinct expression
patterns. The following findings hold valid: the total number of DEGs in stems > the total
number of DEGs in leaves > the total number of DEGs in roots. The reason is because
under salt stress, DEGs with distinct expression patterns amongst roots, stems, and leaves
were ideal targets for further functional research to better understand the more specific
molecular mechanisms of salt tolerance [62].
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By screening the expression levels of DEGs, the possible salt tolerance genes in the
roots, stems, and leaves of P. talassica × P. euphratica were further explored. The highly
expressed DEGs in each comparison group of leaves such as LOC105129452, LOC105129935,
and LOC105114274 belong to the AP2/ERF transcription factor family. LOC105136804,
LOC105124563, and LOC105124001 belong to the NAC (NAM,ATAF1,2,CUC) transcription
factor family. LOC105131213, LOC105116811, and LOC105132264 belong to the WRKY
transcription factor family. LOC105127881, LOC105142149, LOC105115176, LOC105141220,
LOC105128502, and LOC105131234 belong to the bZIP transcription factor family. The highly
expressed DEGs in each comparison group of stems such as LOC105119414, LOC105129607,
and LOC105122741 belong to the AP2/ERF transcription factor family. LOC105142033,
LOC105112164, and LOC105116962 belong to the NAC (NAM,ATAF1,2,CUC) transcription
factor family. LOC105119522, LOC105131256, and LOC105115491 belong to the WRKY
transcription factor family. LOC105141088, LOC105141220, LOC105137881, LOC105126640,
LOC105134677, and LOC105134493 belong to the bZIP transcription factor family. The highly
expressed DEGs in each comparison group of roots such as LOC105108844, LOC105107217,
and LOC105120059 belong to the AP2/ERF transcription factor family. LOC105135115,
LOC105127231, and LOC105116469 belong to the NAC (NAM,ATAF1,2,CUC) transcription
factor family. LOC105114369, LOC105124330, and LOC105127348 belong to the WRKY
transcription factor family. LOC105134637, LOC105115176, LOC105115119, LOC105128502,
LOC105112947, and LOC105124801 belong to the bZIP transcription factor family.

Plants often activate an array of defense responses in response to abiotic and biotic
stresses, including inducible expression of a set of stress-related genes that are regulated
directly or indirectly by various types of transcription factors [65]. Several classes of
transcription factors, including AP2/ERF, bZIP, NAC (NAM, ATAF, and CUC), and WRKY,
are reported to be associated with plant defense [66–69]. NAC (NAM, ATAF, and CUC)
domain proteins are plant-specific transcriptional factors that play diverse roles in plant
growth and development [70,71]. NAC (NAM, ATAF, and CUC) transcription factors
are also involved in plant responses to biotic and abiotic stress processes, including high
salt [72], drought [73], freezing [74], and viral infection [75]. NAC (NAM, ATAF, and CUC)
plant transcription factors regulate essential processes in development, stress responses,
and nutrient distribution in important crop and model plants (rice, Populus, Arabidopsis),
making them crucial in crop improvement and production [76].

The AP2/ERF transcription factors are known to regulate diverse processes of plant
development and stress responses. In addition, AP2/ERF transcription factors are ideal
candidates for crop growth, development, and improvement because their overexpres-
sion enhances tolerances to drought and salt stress in the transgenic plants [77]. Various
AP2/ERF transcription factors have been successfully identified and investigated in some
plants, including Arabidopsis, rice [78,79], poplar (P. tricocarpa) [80], and wheat (Triticum
aestivum) [81]. WRKY transcription factors, a family of regulatory genes, were first identi-
fied in plants [82–84]. Numerous WRKY transcription factors are key regulators of many
plant processes, including the responses to biotic and abiotic stresses, senescence, seed
dormancy, and seed germination [85]. A large number of WRKY transcription factors have
been reported from Arabidopsis, rice, and other higher plants [86]. The Populus genome
contains at least 100 WRKY genes [87]. Increasing evidence has confirmed the importance
of WRKY transcription factors in poplar defense processes, and several poplar WRKY
genes have been identified to be involved in defense response [88].

The bZIP transcription factor gene family is one of the largest and most diverse families
in plants. The bZIP proteins regulate numerous growth and developmental processes [89].
They are also involved in responses to various abiotic/biotic stimuli, such as drought [90,91]
and high salinity [77]. Some of these bZIP factors confer disease resistance [92] and trigger
expression of defense-related genes in systemic acquired resistance (SAR) [93]. bZIP-type
transcriptional factors are involved in developmental and physiological processes in re-
sponse to stresses and are important for various plants to withstand adverse environmental
conditions [94,95].
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Stress-resistant transcription factors, such as AP2/ERF, NAC (NAM, ATA, and CUC),
WRKY, and bZIP, are all involved in the detection of early salt stress in poplars and other
plants. The analysis found that these differential genes with high expression in the roots,
stems, and leaves of P. talassica × P. euphratica also existed in its male parent P. euphratica.
These genes are likely to be the key salt-tolerant genes that exist in P. talassica × P. euphratica
to resist external salt stress. In the future, the functions of these genes in P. talassica × P.
euphratica and other tree species should be further analyzed to provide some reference for
the planting of P. talassica × P. euphratica in saline-alkali land.

GO enrichment analysis showed that many DEGs were related to ‘material metabolism’,
‘signal transmission’, and other processes, which was consistent with the annotation re-
sults of Reaumuria trigyna [96]. The genes involved in the above processes, such as ‘signal
transmission’, ‘ion transport’, ‘cell communication’, ‘cell periphery’, and ‘cell wall’, may be
involved in P. talassica × P. euphratica responses to salt stress. Salt stress disturbs the normal
growth and development of plants. Modifications of the cell wall are common defense
responses when plants are subjected to abiotic and biotic stresses. In our study, most of the
genes related to cell wall and growth were upregulated under salt stress conditions [97].
KEGG enrichment analysis revealed that DEGs were mainly enriched in ‘plant hormone
signal transduction’ and ‘MAPK-signaling pathway–plant’, which were highly annotated,
may be involved in P. talassica × P. euphratica responses to salt stress. This is similar to the
research results of Zhan Jiang Han et al. [58].

For plants under abiotic or biotic stress, signal transduction is very crucial for ad-
justment in such unfavorable conditions [98–101]. Plants respond to abiotic stresses by
regulating complex signaling networks, helping plants adapt to stress and thus enhancing
their growth and development [102]. Furthermore, hormone signal transduction is in-
volved in plant growth regulation and root development under salt stress conditions [103].
KEGG-enriched pathways of these DEGs were similar, and P. talassica × P. euphratica may
have a special response mechanism to salt stress.

Through GO functional enrichment analysis and KEGG enrichment analysis, the
metabolic pathways and molecular functions of the DEGs enriched in P. talassica × P.
euphratica were clarified, and the response mechanism of salt stress in P. talassica × P.
euphratica was revealed at the molecular level. A unique salt tolerance mechanism may
provide a reference for further mining of salt tolerance genes of P. talassica × P. euphratica.
Subsequent transgenic, proteomics, and metabolomics studies should be carried out to
explain the unique salt tolerance mechanism of P. talassica × P. euphratica at multiple levels.

5. Conclusions

In this study, the stems, roots, and leaves of P. talassica × P. euphratica seedlings treated
with different concentrations of NaCl solution were subjected to transcriptome sequencing.
A total of 1,109,438,718 clean reads, accounting for 97.08% of the raw reads, were obtained.
The raw reads of each group contained over 94% high-quality reads, producing 166.41 G of
high-quality reads. The obtained data were screened under the conditions of |log2 (fold
change)| ≥ 1 and padj ≤ 0.05 to obtain DEGs, which illustrated the differences among salt
treatments (200 and 400 mmol/L NaCl) and controls. A total of 41,617 DEGs were obtained
in each comparison group. Using |log2 (fold change)| ≥ 5 as a selection criteria, a total
of 45 DEGs in AP2/ERF, NAC (NAM, ATAF, and CUC), WRKY, and bZIP transcription
factor families in roots, stems, and leaves of P. talassica × P. euphratica were screened in
this study. P. talassica × P. euphratica have up- and downregulated genes. Generally, the
number of upregulated genes in P. talassica × P. euphratica was greater than the number
of downregulated genes. Thus, it may be inferred that the effects of salt stress on gene
expression trends is mainly upregulated. GO functional enrichment analysis and KEGG
pathway enrichment analysis further clarified the metabolic pathways and molecular
functions of the DEGs enriched in P. talassica × P. euphratica. This finding can contribute to
the screening salt-stress-responsive candidate genes of P. talassica × P. euphratica from the
more enriched metabolic pathways in the future. Through further analyses, a theoretical
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basis for the cultivation and planting of stress-resistant P. talassica × P. euphratica varieties
will be established.
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