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High-resolution serum proteome trajectories in
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Abstract

A deeper understanding of COVID-19 on human molecular patho-
physiology is urgently needed as a foundation for the discovery of
new biomarkers and therapeutic targets. Here we applied mass
spectrometry (MS)-based proteomics to measure serum proteomes
of COVID-19 patients and symptomatic, but PCR-negative controls,
in a time-resolved manner. In 262 controls and 458 longitudinal
samples of 31 patients, hospitalized for COVID-19, a remarkable
26% of proteins changed significantly. Bioinformatics analyses
revealed co-regulated groups and shared biological functions.
Proteins of the innate immune system such as CRP, SAA1, CD14,
LBP, and LGALS3BP decreased early in the time course. Regulators
of coagulation (APOH, FN1, HRG, KNG1, PLG) and lipid homeostasis
(APOA1, APOC1, APOC2, APOC3, PON1) increased over the course of
the disease. A global correlation map provides a system-wide func-
tional association between proteins, biological processes, and clini-
cal chemistry parameters. Importantly, five SARS-CoV-2
immunoassays against antibodies revealed excellent correlations
with an extensive range of immunoglobulin regions, which were
quantified by MS-based proteomics. The high-resolution profile of
all immunoglobulin regions showed individual-specific differences
and commonalities of potential pathophysiological relevance.
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Introduction

The pandemic associated with the severe acute respiratory coron-

avirus type 2 (SARS-CoV-2) has spread around the globe with

massive impact on humankind. By now, coronavirus disease 2019

(COVID-19) has infected and killed millions (https://covid19.who.

int/). Thanks to the tremendous efforts of the global scientific

community, the virus has been extensively investigated, and new

tests for pathogen detection and potential treatments have been

rapidly developed (Wiersinga et al, 2020).

The clinical presentation of COVID-19 is characterized by a vari-

ety of symptoms (Wiersinga et al, 2020). The most common mani-

festations are fever (89%), cough (58%), and dyspnea (45%)

(Rodriguez-Morales et al, 2020). This is mirrored by rather non-

specific laboratory findings, such as decreased albumin, elevated C-

reactive protein (CRP), and lymphopenia, which are also commonly

seen in other viral diseases. A rather characteristic feature of

COVID-19, particularly in severe cases, is venous thromboem-

bolism, which occurred in up to 59% of patients in an intensive care

unit setting (Middeldorp et al, 2020). On a mechanistic level, dysreg-

ulated platelets and neutrophils cooperate to drive a systemic

prothrombotic state, indicating inflammation as a trigger for throm-

botic complications. As an important laboratory finding, the fibrin

degradation product d-dimer was strongly elevated in COVID-19 and

correlated significantly with disease severity (Nicolai et al, 2020).

Another hallmark of COVID-19 is the formation of virus-specific

antibodies, which peaked within 3 weeks after symptom onset

(Long et al, 2020; Buchholtz et al, 2021). While currently available

routine laboratory tests give important diagnostic cues and have

contributed to a better understanding of the pathophysiology, they

only provide an incomplete picture of humoral changes in

COVID-19.

Proteins control and execute the vast majority of biological

processes, and specific alterations in protein levels typically accom-

pany disease onset and progression. Mass spectrometry (MS)-based

proteomics is the method of choice to globally investigate proteins

in a biological system—its proteome (Aebersold & Mann, 2016). In
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this sense, MS-based proteome analysis of plasma and serum is

unbiased and in principle an ideal technology for systems-wide

characterization of disease response (Geyer et al, 2017). In practice,

body fluid proteomics is very challenging but continuous technolog-

ical improvements have led to a resurgence of interest (Geyer et al,

2017; Ignjatovic et al, 2019; Suhre et al, 2021).

Several groups have analyzed the serum or plasma proteome of

COVID-19-infected patients (D’Alessandro et al, 2020; Messner et al,

2020; Park et al, 2020; Shen et al, 2020; Shu et al, 2020). These were

generally small-scale studies with single or few time points. As a

general trend, the levels of complement components and inflamma-

tion proteins tended to increase, whereas proteins of the coagulation

cascade tended to decrease when compared to control groups. One

study investigated a relatively large number of plasma samples in a

longitudinal study design to develop predictive models but also

reported alterations linked to inflammatory response, metabolic

reconstitution, and immunomodulation (Demichev et al, 2021).

The aim of our study was to use MS-based proteomics to discover

new potential biomarkers and provide a better understanding of the

underlying pathophysiology of COVID-19. To this end, we set out to

measure protein trajectories in unprecedented detail in a longitudi-

nal cohort of COVID-19 patients. This involved plasma proteome

profiling of 720 serum proteomes of patients hospitalized with

COVID-19 symptoms and controls. To efficiently and rapidly analyze

this large sample set, we developed a very robust workflow based

on a recently described “clinical grade” liquid chromatography (LC)

system (Bache et al, 2018) with a novel trapped ion mobility—time-

of-flight mass spectrometer (timsTOF) (Beck et al, 2015; Meier et al,

2018). This allowed the characterization of 60 serum proteomes per

day. The study design followed our recently proposed “rectangular

strategy”, where samples are measured in as great a depth as routi-

nely possible, and biomarker patterns are extracted from the entire

study population (Geyer et al, 2017). This further allowed the

assessment of sample or analysis quality issues such as contamina-

tion with blood cells or coagulation (Geyer et al, 2019). Further-

more, aggregated into global correlation maps, the data identify co-

regulated factors, physiological processes and enable integration

with other clinical results (Albrechtsen et al, 2018; Geyer et al, 2019;

Ignjatovic et al, 2019). We previously noted that the levels of most

plasma proteins are specific to an individual, making longitudinal

studies particularly informative. As each individual serves as its

own control, this effectively corrects for inter-individual variations,

increasing the likelihood to discover true regulations of protein

levels (Geyer et al, 2016a; Dodig-Crnkovi�c et al, 2020).

In this work, we first describe differences between the serum

proteomes of COVID-19 patients and those with apparent COVID-19

symptoms who were PCR-negative. We then derive highly detailed

time-resolved disease trajectories of serum proteins with on average

15 time points, covering up to 54 days in blood sampling. This

study design allowed us to investigate various aspects of the host

response to COVID-19 infection as reflected in differences between

disease trajectories, longitudinal protein changes, and immunoglob-

ulin production. We disentangle these with global correlation maps

that also include detailed clinical chemistry parameters. In particu-

lar, the cohort had measurements with five different anti-SARS-CoV-

2 immunoassays against antibody classes, enabling us to inspect

correlations between these immunoassays and the corresponding

MS-detected serum proteins. Our results show that protein levels

follow complex patterns and suggest that biomarker tests would

benefit from incorporating individual timelines and individual-

specific protein levels. We discuss implications of our measure-

ments for our understanding of the antibody-based and individual

responses of COVID-19.

Results

Study overview and serum proteome analysis

To draw a detailed picture of the dynamic nature of circulating

proteins in response to COVID-19, we investigated longitudinal

blood serum samples of 31 COVID-19 patients, as well as single time

point samples of 262 SARS-CoV-2 PCR-negative controls (Fig 1A).

Patients presented at the University Hospital of the Ludwig-

Maximilian University (LMU) Munich with COVID-19-like symp-

toms. Among a total of 720 samples, 458 were from the 31 COVID-

19 patients with an average of 14 samples (7–30) per individual over

an average period of 31 days (14–54; Fig 1B and C; Dataset EV1).

Applying recent technological progresses of streamlined MS-

based proteomics and an automated sample preparation procedure

allowed protein digestion and peptide purification of 720 study

samples within a single working day (Fig 1D) (Geyer et al, 2016b)

(Materials and Methods). For peptide separation, we used an

Evosep One LC system in which peptides are first immobilized on a

small volume of disposable C18 tip material without carryover,

eluted into preformed gradients, and finally separated on a relatively

short and robust analytical column with minimal overhead between

injections. Mass analysis used the PASEF acquisition principle on a

▸Figure 1. Study overview and serum proteome analysis.

A Overview of the study cohort, including 262 SARS-CoV-2 PCR-negative control patients with single time point samples and 31 COVID-19 patients with longitudinal
samples collected during the period of hospitalization.

B Total numbers of samples within each study group.
C Longitudinal trajectories of the covered time in days (x-axis) and the number of available samples (y-axis) for each patient.
D Automated MS-based proteomics pipeline starting with 1 µl of serum, LC-MS instrumentation to generate MS raw data and data analysis.
E In total, 502 proteins were quantified in this study, covering more than five orders of magnitude of MS signal. Examples of clinically applied biomarkers are labeled.
F Violin plots representing the numbers of quantified proteins in individual serum samples of PCR-negative controls and COVID-19 positive patients. The dashed lines

indicate the median, and the dotted lines indicate the quartiles.
G Quality assessment of each sample according to main contamination sources of serum (Geyer et al, 2019). Intensities of samples with contamination indicators above

a designated cutoff are highlighted in red, and the numbers of samples exceeding these levels are displayed.
H Cross-correlation of quantitative protein levels across all 720 proteomes. Longitudinal samples within individuals are arranged in consecutive order along the axes. A

zoom-in of the framed area is depicted in Fig 4E.
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timsTOF instrument, enabling very high sequencing speed and

therefore data completeness (Meier et al, 2015, 2018; Bache et al,

2018). Across all 720 samples, we quantified a total of 502 proteins

(Fig 1E). The median number of quantified proteins in samples from

COVID-19 positive patients and PCR-negative controls in this rapid

method was 312 (� 18) and 308 (� 16), respectively (Fig 1F). The

dataset contained 71 clinically applied biomarkers for a wide range

of indications (Dataset EV2). To obtain further insights into the

tissues of origin for each protein, we annotated proteins according

to the Human Protein Atlas (HPA) based on transcriptomics data of

organs (Dataset EV2). In total, 123 proteins were enriched in their

expression according to the mRNA data in one specific organ

A

D

F G H

E

B C

Figure 1.
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(Materials and Methods) with the liver as the main origin with 92

proteins. We also annotated proteins for a wide variety of biological

functions. Moreover, we highlighted all proteins showing dependen-

cies of age, sex or weigh loss (Dataset EV2).

As a first analysis step, we assessed the quality of all samples

according to our previously established quality marker panels in

order to pinpoint samples with potential issues in pre-analytical

processing. One sample was contaminated with platelets, 21 had

evidence of erythrocyte lysis, and 18 had signs of impaired coagula-

tion (Figs 1G and EV1) (Geyer et al, 2019). Furthermore, we

detected increased erythrocyte protein contaminations in the control

group compared to the COVID-19 patient samples (5 vs. 21

samples). Upfront knowledge of these issues turned out to be impor-

tant as it allowed us to highlight these proteins as potential sources

of bias in our further analysis (Fig EV2A–C). As intra-individual

variation is expected to be smaller than inter-individual variation,

we used a correlation of the 720 proteomes to each other for a

global consistency check. Indeed, the large majority of longitudinal

samples showed higher correlation within than between individuals

(Fig 1H, Appendix Fig S1, see below).

Serum proteome differences of COVID-19 patients and SARS-CoV-
2 PCR-negative controls with COVID-19-like symptoms

Our hypothesis was that alterations of serum protein levels specific

to COVID-19 might enable the differentiation of COVID-19 patients

from patients with COVID-19-like symptoms. This was the basis for

collecting samples of SARS-CoV-2 PCR-positive and PCR-negative

patients. The latter presented with COVID-19-like symptoms such as

fever, cough, shortness of breath, throat pain, loss of smell and

taste, fatigue, general malaise, gastrointestinal complaints, head-

ache, cognitive impairment, need of oxygen, or intensive care treat-

ment because of respiratory symptoms.

Comparing the serum proteomes between the two groups on the

first day of sampling resulted in 37 proteins with significantly

altered levels of which 14 showed increased and 23 decreased levels

in COVID-19 patients (Figs 2A and EV2A, Dataset EV3). Proteins

increased in COVID-19 patients included typical innate immune

system mediators such as complement factors C2, C9, C4BPA,

alpha-1-acid glycoprotein 1 (ORM1), monocyte differentiation anti-

gen CD14, and galectin-3-binding protein (LGALS3BP). Plasma

protease C1 inhibitor (SERPING1) was the most significantly regu-

lated protein (P-value: 1.7*10�11; 1.5-fold), and CD14 was the

protein with the highest fold-change (P: 2.4*10�10; 2.1-fold) in

COVID-19 patients compared to PCR-negative controls. Moreover, a

group of protease inhibitors, including SERPING1, SERPINA3,

SERPINA10, ITIH3, and ITIH4, were increased in COVID-19 patients.

Likewise, coagulation factor V (F5) was significantly increased in

COVID-19 patients, whereas modulators of coagulation such as the

beta-2-glycoprotein 1 (APOH), histidine-rich glycoprotein (HRG),

and fibronectin (FN1) were decreased. Proteins of the lipid home-

ostasis system, especially components of high-density lipoprotein

(HDL) particles such as APOA1, APOA2, APOA4, APOC1, APOD,

PLTP, and LCAT were also significantly decreased in COVID-19

patients. APOH was the most significantly regulated of these (P:

2.5*10�16; 1.9-fold), and the cysteine-rich secretory protein 3

(CRISP3) was the protein with the highest fold-change with

decreased levels in COVID-19 patients (P: 1.1*10�4; 2.9-fold).

Proteins differentially abundant between both groups confirm

several findings from former studies, especially the protease inhibi-

tors, proteins of lipid homeostasis, and factors of the immune

system (D’Alessandro et al, 2020; Messner et al, 2020). We also

replicated the regulation of gelsolin (GSN), which has been high-

lighted in previous MS-based proteomics studies. However, GSN

ranked at position 34 and was only borderline significant on the first

day of sampling (P: 1.6*10�4; 1.3-fold).

A B C D

Figure 2. Serum proteome differences of COVID-19 patients and SARS-CoV-2 PCR-negative controls with COVID-19-like symptoms.

A Volcano plot comparing the serum proteomes of 31 COVID-19 patients on the first day of sampling to those of the 262 PCR-negative controls. Significantly up-
regulated proteins in COVID-19 positive patients are highlighted in red and down-regulated proteins in blue. Highlighted proteins are significant after multiple
hypothesis testing. The log10 fold-change in protein levels is represented on the x-axis and the �log10 t-test P-value on the y-axis. Examples of significantly altered
proteins are labeled.

B Volcano plot comparing the serum proteomes in samples from COVID-19 patients at the time point of highest Roche S-Ab levels to PCR-negative controls.
Significantly up-regulated proteins in COVID-19 positive patients are highlighted in red and down-regulated proteins in blue. Significantly up-regulated
immunoglobulin regions are highlighted in dark red. Examples of significantly altered proteins are labeled.

C Scatter plot of protein fold-changes in (A) vs. those in (B). Significant proteins of (A) are highlighted dark red, those of (B) in blue, and significant in both in bright red.
Examples of significantly altered proteins are labeled.

D ROC curve to classify whether a sample was obtained from a COVID-19 positive or a PCR-negative control patient. The mean ROC curve is displayed in red and � 1
standard deviations are illustrated in gray. The model achieved an area under the curve (AUC) of 0.90.
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To investigate alterations of the serum proteome of COVID-19

patients at a later time point to PCR-negative controls, we leveraged

the extensive antibody testing that had been performed in our study.

We selected the sample of each patient that had the highest level of

SARS-CoV-2 antibodies based on the Roche S-Ab test. Comparison

at this point, which occurred on average 21 (� 12) days after first

sampling, resulted in 34 significantly different proteins (Fig 2B and

EV2B, Dataset EV4). At this later time points, in contrast to the first

one, GSN had the most significantly decreased levels (P: 1.2*10�11;

1.7-fold), which illustrates the importance of the investigated point

of time and the present dynamics in COVID-19. In contrast, the

group of coagulation system proteins described above was not

significantly different at this time point. HDL particle proteins were

consistently lower also at this time point in COVID-19 patients,

among which APOD (P: 4.2*10�10; 1.9-fold) and APOA2 (P:

1.6*10�5; 1.5-fold) were statistically significant. These examples

indicate the advantages of investigating the proteome in a longitudi-

nal fashion as distinct proteins were regulated at distinct time points

during disease progression.

With a total of 19 out of the 34 differently abundant proteins,

immunoglobulins were the group of proteins that showed the most

elevated levels in COVID-19 patients. This reflects the antibody test

results but at a much more granular level (see below). Only five

proteins were significantly different between the comparisons of

both the first day of sampling and the day of highest Roche S-Ab

levels with the PCR-negative controls (F5, ATRN, GSN, APOD,

APOA2; Fig 2C), providing a clear indication of a massive rear-

rangement of the serum proteome during the course of the

disease.

Additionally, we investigated the effect of gender within the

cohort on the levels of plasma proteins. Two proteins pregnancy

zone protein (PZP) and sex hormone-binding globulin (SHBG) were

highly significantly different between women and men (�log10 P-

values of 8.0 and 10.5; (Geyer et al, 2016b)), and four additional

proteins had smaller effects (APOC4, AFM, ORM1, C9). We high-

lighted all proteins in the comparisons of COVID-19 patients and

PCR-negative controls (Datasets EV3 and EV4).

We applied our recently released open-source machine learning

platform OmicLearn to our dataset (preprint: Torun et al, 2021). A

principal challenge was the low number of samples, limiting the

statistical significance of the results. To estimate how good our ML

classifier distinguishes COVID-19 patients and PCR-negative

controls, we used a Stratified K-Fold cross-validation approach

(k = 5) to classify patients. With this approach, we split the existing

data repeatedly into train and test set and applied the ML pipeline.

For the training data of each split, we used a decision tree approach

to select the 20 most important proteins which are different between

the two classes (Fig EV3A–C). Next, we employed an XGBoost-

Classifier (Chen & Guestrin, 2016) on the training subset of proteins

and then estimated performance values on the remaining test set of

each split. Lastly, we averaged the results of all splits, resulting in a

receiver operating characteristic (ROC) curve with an average area

under the curve (AUC) of 0.90 � 0.08 (Fig 3D) and Precision-Recall

(PR) curve with an average AUC of 0.92 � 0.06 (Fig EV3A). The

positive predictive value of the classifier for the presence of COVID-

19 was 0.81, while the negative predictive of the absence of COVID-

19 in controls was 0.87 (Fig EV3B).

Regulated serum proteins in the disease course of COVID-19

To understand the degree and nature of serum proteome remodeling

during the disease course in infected patients, we performed three

statistical analyses on our dataset (Fig 3A). For all comparisons, we

considered the first day of sampling as a baseline. We used a one-

sample t-test, because proteins vary in an individual-specific

manner (Geyer et al, 2016a; Dodig-Crnkovi�c et al, 2020).

A B C D

E

Figure 3. Identification of proteins altered in COVID-19.

A Schematic of how proteins were compared across disease trajectories. Letters correspond to the panels in this figure. Red and blue boxes indicate binned time intervals.
B Volcano plot of the results of a one-sample t-test comparing the sample on the first day of sampling and the time point with the highest antibody levels. Blue-

colored proteins are significantly down- and red ones up-regulated over time. Immunoglobulins are highlighted in dark red. The fold-change in protein levels is
depicted on the x-axis and the -log10 t-test P-value on the y-axis. Examples of significantly altered proteins are labeled.

C Correlation of proteins with sampling time during hospitalization. Pearson correlation coefficients and -log10 P-values are displayed on the x- and y-axes,
respectively. Z-scored protein intensities were used for the correlating to take individual-specific protein levels into account. Proteins significantly correlating with
sampling time (positively or negatively) and a P-value < 10�4 are highlighted in red. Examples of significantly altered proteins are labeled.

D Numbers of significantly altered proteins between the first day of sampling (day 0) and subsequent time intervals (binned days on the x-axis), determined by one-
sample t-tests.

E Numbers of samples per interval subjected to the one-sample t-test in (D).
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First, we investigated differences between the first day of

sampling (early disease stage) and the time point with the highest

host antibody response as determined by the Roche S-Ab assay. This

allowed us to anchor the analysis around a clinical parameter speci-

fic to each patient. In total, the systemic effects on the serum

proteome were accompanied by 38 decreased and 44 increased

proteins (Figs 3B and EV2C, Dataset EV5).

The most significantly decreased proteins included the comple-

ment factors C2 (P: 6.1*10�7; 1.6-fold) and CFB (P: 1.0*10�6; 1.3-

fold), whereas FN1 (P: 1.4*10�8; 2.0-fold) and APOH (P: 1.7*10�8;

1.9-fold) increased most significantly. The median fold-change of

significantly regulated proteins was 1.6 from the first day to the day

with the highest Roche S-Ab level. As a group, the down-regulated

proteins were dominated by factors of the inflammation system,

including 18 proteins annotated with the Gene Ontology Biological

Process (GOBP) term “immune system process”, which included

serum amyloid A-1 protein (SAA1; P: 3.6*10–4; 5.2-fold), C-reactive

protein (CRP; P: 6.3*10�4: 3.2; 4.9-fold), serum amyloid A-2 protein

(P: 5.2*10�3; 4.7-fold), CD14 (P: 3.8*10�5; 2.1-fold), and

lipopolysaccharide-binding protein (LBP; P: 3.5*10�6; 2.1-fold).

Notably, increased proteins were dominated by immunoglobulins

with 20 different regions (see below). In addition to APOH and FN1,

the coagulation regulators HRG (P: 2.1*10�5; 1.6-fold), CPB2 (P:

1.1*10–3; 1.2-fold), PROZ (P: 3.4*10�3; 1.9-fold), and TTR (P:

4.5*10�4; 2.0-fold) clearly increased, as did a group of apolipopro-

tein C proteins (APOC1 (P: 5.9*10�6; 1.7-fold), APOC2 (P: 1.3*10�5;

1.9-fold), APOC3 (P: 3.2*10�5; 1.6-fold)).

Second, we explored regulations of serum protein levels over

time, which revealed 34 highly significant positively and 39 highly

negatively correlated proteins (P-value < 10�4; Fig 3C, Dataset

EV6). Proteins showing the highest positive correlation were ITIH2

(P: 6.4*10�27; Pearson correlation R: 0.47), ITIH1 (P: 7.8*10�21; R:

0.42), APOH (P: 5.3*10�16; R: 0.37) and FN1 (P: 2.8*10�19; R: 0.40).

Proteins showing the highest negative correlation were LGALS3BP

(P: 3.6*10�18; R: �0.39), C2 (P: 2.0*10�17; R: �0.38), L-selectin

(SELL; P: 4.7*10�16; R: �0.40), and ORM1 (P: 5.8*10�14; R: �0.34).

These data demonstrate a strong, coordinated response of the serum

proteome over the time course of infection.

Third, to investigate more complex protein trajectories in COVID-

19 infection, we conducted one-sample t-tests across 5-day intervals

(Fig 3D). This resulted in 28 significantly regulated proteins (Fig 3D,

Dataset EV7) in addition to those correlating with sampling time

alone. Interestingly, after binning samples in 5-day intervals, there

were no significant changes from day 0 to days 1–5 and the first

significant changes were detected when comparing to days 6–10.

Strong regulations were found between day 0 and the later intervals

up to the days 26–30 (Fig 3D and E). The coagulation-associated

proteins described above were again the most significantly increased

ones, but the binned time course analysis added AZGP1 and KNG1

to this group. The most significantly decreased proteins consisted of

complement factors such as C8A, C8B, CFB, C2, and C9 in the

11–15 and 16–20 days intervals and other inflammation proteins

such as ORM1, ORM2, LBP, CD14, LGALS3BP, and CRP in the later

intervals.

Together, these three time-resolved analyses (Fig 3B–D) impli-

cate that a large proportion of the quantified serum proteins (130

out of 502) in diverse biological processes are significantly altered

in the course of COVID-19. Reassuringly, 52 (79%) of the 66

proteins significantly altered between COVID-19 patients and PCR-

negative controls changed over the time course. This highlights both

the extensive rearrangement of central physiological proteins and

that these can be assessed by proteome profiling.

High-resolution trajectories and clusters of differentially
regulated proteins in COVID-19

Following the analysis of COVID-19 cases against controls as well as

binned and grouped time intervals described above, we inspected

protein trajectories of all COVID-19 patients in high resolution.

Reducing the time span to a maximum of 37 days (for which we had

at least five patients per sampling day) resulted in 116 proteins with

significant changes along the trajectories. This revealed three major

clusters: (i) broadly decreasing, encompassing 51 proteins, (ii)

broadly increasing (35 proteins), and (iii) broadly increasing,

followed by a decrease (30 proteins; Fig 4A). As the Z-scored trajecto-

ries substantially overlapped, Fig 4B shows all of them in the form of

a heatmap, preserving full resolution of all proteins and time points.

For biological interpretation of regulated proteins, we tested the

116 regulated proteins with keywords and GOBP, Molecular Function

(GOMF), and Cellular Component (GOCC) using a Fisher exact test.

This resulted in 409 significant associations between the keyword

and GO term categories, corresponding to 51 keywords, which were

further reduced to 20 non-overlapping terms (Materials and Methods,

Dataset EV8). Enzymatic activity was one of the main reported regu-

lations indicated by proteins with keywords “Proteases”, “Protease

inhibitors”, “Zymogen” and “Hydrolases”. The keyword “Protease”

had the highest number of annotations (25 proteins), reflecting the

regulation of plasma protease inhibitors, coagulation factors and the

complement system. Other frequent annotations included “Trans-

port” (21 proteins), followed by “Immunity” (19 proteins),

▸Figure 4. Longitudinal trajectories and extent of proteome alterations in COVID-19.

A Longitudinal trajectories of the 116 proteins that significantly changed over the disease course of up to 37 days and were quantified in at least five of 31 COVID-19
patients. Trajectories were clustered into three main groups by Euclidian distance after Z-scoring and were color-coded by distance from the cluster center to
highlight outliers (blue).

B Longitudinal protein trajectories in COVID-19 over the sampling time of up to 37 days represented as a heatmap and clustered as in (A).
C Main keywords associated with regulated proteins. Keywords were identified in Fisher exact test on all 116 proteins and then subjected to hierarchical clustering

(Materials and Methods).
D Scatter plot of the serum proteomes of one patient on the first day of sampling (day 0, x-axis) compared to day 2 (left panel) and day 18 (right panel). Proteins of the

clusters 1, 2, 3 described above are highlighted in blue, dark red, and bright red, respectively. The inflammation markers CRP and SAA1 are labeled.
E Color-coded Pearson correlation coefficients for all samples of the same patient as in (D). The panel is a zoom-in of the framed area in Fig 1H.
F Longitudinal variation of the serum proteome for all 31 COVID-19 patients. Pearson correlation coefficients were calculated between the first (day 0) and each

consecutive sampling day as shown by example in (D). The trajectory of the median Pearson correlation coefficient is highlighted in red.
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“Complement-pathway” (15 proteins), “Metal-binding” (15 proteins)

and “Blood-coagulation” (12 proteins; Fig 4C).

Applied to the three clusters of temporally regulated proteins, the

results of Fisher’s exact test revealed that cluster 1 contained proteins of

the innate immune system such as CRP, SAA1, CD14, ORM1, ORM2,

LBP, 13 different complement factors and LGALS3BP (Fig 4B, Dataset

EV9). These reflect down-regulation of the immune system in the

course of hospitalization at the level of individual proteins. Cluster 2

contained proteins associated with lipid homeostasis, including

APOA1, APOA4, APOC1, APOC2, APOC3, PON1, and PLTP. Moreover,

proteins involved in coagulation such as FN1, F13B, and K-dependent

protein C (PROC) were also increased and members of this cluster.

Cluster 3 revealed partly similar trajectories as cluster 2 but decreasing

levels toward the later time points. It also contained coagulation-

associated proteins such as APOH, VWF, HRG, and several proteases

with functions in the regulation of blood coagulation such as

kininogen-1 (KNG1), plasminogen (PLG), and carboxypeptidase B2

(CPB2). The joined trajectories of coagulation-associated proteins have

been further confirmed by clustering the longitudinal trajectories

according to physiological processes (Appendix Fig S2A and B). This is

in line with previous reports of coagulopathies (in particular over-

activity of this system) as one of the main complications in COVID-19

but adds a temporal and molecular dimension. With 20 proteins,

immunoglobulins constitute the largest group in cluster 3.

In order to explore the extent of proteome changes over time on

an individual patient basis, we calculated Pearson correlation coeffi-

cients of serum proteomes between the first (day 0) and all consecu-

tive sampling days. This is shown by example for one person from

day 0 to day 2 and day 0 to day 18 (Fig 4D). As expected, correla-

tion between day 0 and 2 is higher than between day 0 and 18 (0.96

vs. 0.83). The scatter plots also confirm that this divergence is dif-

ferent for the three clusters according to their overall trajectories. In

particular, CRP and SAA1 are members of cluster 1 and their levels

decreased up to 1,000-fold over time. Integrating these binary

proteome comparisons for a typical individual patient reveals a

remarkable stability of the individual serum proteomes on consecu-

tive days, while changes over more than a week are much more

substantial (Fig 4E). Finally, the Pearson correlation coefficients for

all patients over time decrease from a median correlation of 0.96 on

day 1 to 0.88 from day 10 on (Fig 4F).

Focusing on the 25 patients that survived COVID-19 infection

compared to the six that did not, levels of 14 proteins were different

at the last day of sampling. These 14 proteins included factors of the

coagulation system such as heparin cofactor 2 (SERPIND1), plasma

kallikrein (KLKB1), and PLG. The latter two proteins showed longi-

tudinal alterations in cluster 3, emphasizing the importance of the

coagulation system in COVID-19. Interestingly, the isoform Q14626

of ITIH4, a pro-inflammatory acute phase protein was significantly

increased in patients that did not survive (P: 2.8*10�6; 2.8-fold)

already at the first day of sampling, raising the possibility of

prospective classification of disease mortality (Fig EV4). Reassur-

ingly, ITIH4 has been confirmed very recently as a potential predic-

tor for disease mortality in COVID-19 (preprint: Völlmy et al, 2021).

Global correlation map of 720 proteomes

To better understand the overall associations of all 502 quantified

proteins with each other and the 19 clinical parameters of our

cohort, we generated a global correlation map (Albrechtsen et al,

2018). This consists of the pairwise correlation of 521 items in all

720 samples (135,460 correlation coefficients) that were subjected

to unsupervised hierarchical clustering (Fig 5A). This highlighted 21

positively or negatively correlated groups of proteins and clinical

chemistry parameters (Dataset EV10).

The inflammation system formed the largest cluster with 71 co-

correlated items. CRP values as quantified by a standard clinical

chemistry test showed the highest coefficient of correlation (R: 0.95)

with MS-quantified CRP, providing a positive control for our work-

flow (Fig 5B). Next to positive correlations, we also observed anti-

correlating clusters of proteins, which reflect partially on study-

specific characteristics. For example, the anti-correlation of the

inflammation-dominated cluster and the immunoglobulin cluster

can be explained by the longitudinal trajectories of both groups,

which are in opposite directions (Fig 4B).

Notably, FN1 and APOH, which were among the most signifi-

cantly different proteins between the first time point of COVID-19

patients and PCR-negative controls and were also longitudinally

regulated, fall all into the same main cluster. Furthermore, they

clustered with eight proteins connected to blood coagulation: CPB2,

F2, F12, F13B, PLG, KNG1, SERPIND1, and KLKB1, further tying

coagulation processes to the time course of COVID-19 at the

systems-wide level. The second largest cluster of 52 items was

dominated by immunoglobulins and consisted of several strongly

co-regulated sub-cluster of antibodies, containing specific

immunoglobulin regions. Note that our MS-based proteomics work-

flow does not de-novo sequence each antibody, but readily distin-

guishes antibody classes from each other based on peptide

sequences of constant domains.

The cohort was extensively tested by five different SARS-CoV-2

antibody immunoassays, which grouped very closely together.

However, they did not fall into the immunoglobulin cluster on the

global correlation map, possibly due to the PCR-negative control

patients. In agreement with this hypothesis, a second global correla-

tion map limited to COVID-19-positive patients indeed clustered

SARS-CoV-2 antibody immunoassays together with the immunoglob-

ulin area (Fig 5C). Of the 49 proteins with a positive correlation to

the Roche S-Ab test, 34 belonged to different antibody classes

(“immunoglobulin domains”, Fig 5D). A similar number of correla-

tions with immunoglobulin regions was identified for the other

SARS-CoV-2 antibody immunoassays (Fig EV5A–E, Dataset EV11).

Antibody secretion during seroconversion in COVID-19

The five SARS-CoV-2 antibody immunoassays resulted in positive

responses—indicating seroconversion—in most but not all COVID-

19 patients (Fig 6A). The time courses of all patients show orders of

magnitude differences in immune response as indicated by the Roche

S-Ab immunoassay (Fig 6B, Appendix Fig S3A–F for all tests). To

investigate the association of MS-quantified immunoglobulin regions

with the five SARS-CoV-2 antibody immunoassays, we selected the

five most significantly correlating serum proteins of each assay. This

resulted in nine immunoglobulins and four non-immunoglobulin

proteins (FCGBP, PROZ, FN1, ITIH4), whose correlation to each of

the test is shown in Fig 6C. The antibody chain Ig kappa chain V-III

region CLL (P04207) was the protein with the highest significant

correlation to the Roche S-Ab test (P: 2.3*10�53; R: 0.67), but showed
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little correlation to the EUR S-IgG, EUR N-IgG, and EUR S-IgA tests

(R < 0.30; Fig 6C). The immunoglobulin J-chain (IGJ; P: 2.9*10�28;

R: 0.48) and the Ig alpha-1 chain C region (IGHA1; P: 1.2*10�23; R:

0.45) highly correlated to the EUR S-IgA assay, which detects

immunoglobulin IgA, providing positive control for the serum

proteomics measurements. Our unbiased approach clearly associates

a large number of specific antibody regions to SARS-CoV-2 infection.

Furthermore, it also implicates other proteins, such as FCGBP, which

binds constant regions of IgGs and has mainly been described in

tissue contexts (Johansson et al, 2009).

To investigate how our data resolve individual-specific and

protein-specific courses of antibody development, we correlated

immunoglobulin regions with SARS-CoV-2 antibody immunoassay

levels within each patient. This is exemplified for patient 11, where

we separately plot the Roche S-Ab values against the levels of the

four most correlating serum proteins. For each of these, seroconver-

sion happened between day 6 and 8 (Fig 6D). While seroconversion

always tends to happen within a few days, the time points varied

for different patients.

To obtain a global view of the composition of the antibody

response detected by the five SARS-CoV-2 antibody immunoassays,

we determined the number of significantly correlating

immunoglobulin regions for each test and patient (Fig 6E). With the

exception of patients 13, 17, and 22, we found at least one

immunoglobulin domain significantly correlating with at least one

of the five tests. There were no correlations for patient 17 because

none of the antibody tests were significant. Only in seven patients,

all five antibody tests were associated with significantly changing

immunoglobulins. Interestingly, we found correlating immunoglob-

ulin regions even in cases where the test results had not exceeded

the clinical cutoff values (marked by X in the panel). This is illus-

trated for patient 15, where we found 28 significantly correlating

proteins with the EUR S-IgG assay, although this test itself was not

above the cutoff (Appendix Fig S4A–D). In total, 24 patients had

significant correlations of immunoglobulin regions with the Roche

S-Ab test, while only 14 individuals had significant correlations with

the EUR S-IgA test (Fig 6F, Appendix Fig S5A–D). The maximum

number of correlating immunoglobulins with the Roche S-Ab assay

within an individual was 49 (mean: 11). This was not a function of

the number of samples per patient (Fig 6F). Significantly correlating

immunoglobulins increased on average 4.3-fold, but certain

immunoglobulin regions were more than 100-fold elevated.

Next, we investigated the distribution of significantly correlating

immunoglobulin regions in the study population. For this purpose,

A B

C D

Figure 5. Clusters of co-regulated proteins from the global correlation map.

A Global correlation map of proteins and clinical chemistry parameters based on Pearson correlation coefficients and hierarchical clustering using Euclidean distance.
The cluster designated as (a) contains inflammation proteins and (b) proteins correlating with SARS-CoV-2 antibody immunoassay values. Colored sections of the
dendrogram highlight clusters of co-regulated proteins. The color code on the right refers to the three trajectories of longitudinally regulated proteins of Fig 4B.

B Magnification of sub-cluster (a). The zoom-in on the right depicts the correlation between MS-determined CRP and clinical chemistry determined CRP.
C Magnification of the cluster containing the five SARS-CoV-2 antibody immunoassay values and their correlating proteins from the global correlation map of all

COVID-19 patients. The cluster predominantly contains immunoglobulin regions.
D Proteins correlating with the Roche S-Ab test. Significantly correlated proteins are highlighted in blue and significantly correlated immunoglobulin regions are

highlighted in red (q < 0.05; P < 10�4). Pearson correlation coefficients and P-values were calculated, and statistically significantly correlating proteins were
determined using a Benjamini-Hochberg FDR correction. Examples of significantly altered proteins are labeled.

ª 2021 The Authors EMBO Molecular Medicine 13: e14167 | 2021 9 of 16

Philipp E Geyer et al EMBO Molecular Medicine



we counted different immunoglobulins that were significant in each

individual. Taking the Roche S-Ab test as an example, the majority

of antibody regions were significantly correlated in at least two indi-

viduals (Fig 6G). In total, a remarkable 92 out of the 127 quantified

immunoglobulin regions were significant, indicating that the large

majority of immunoglobulin regions are involved in the response to

SARS-CoV-2 infection. Moreover, we identified “favored” antibody

regions that were increased in many patients such as IGHV3–15 (12

of 31 patients), IGHV1–69 (11), and IGLV3–10 (11).

Finally, we analyzed the time course of all patients without

recourse to the antibody tests. This resulted in a very detailed

picture of seroconversion, in which highly correlated immunoglobu-

lin regions clustered closely together (Fig 6H). Even within an indi-

vidual, the number of immunoglobulin regions, their fold-changes,

and time points of increasing levels varied. Note that our MS-based

proteomics workflow identifies several peptides per immunoglobu-

lin, sufficient to assign them to immunoglobulin regions while not

revealing their complete sequence; hence, the antigen-binding sites

are not covered by this analysis. Clusters of trajectories of

immunoglobulin regions presumably indicate a common antigen, in

this case virus proteins. Interestingly, we observed a general

decrease in the levels of specific immunoglobulin regions in several

individuals. One of these, the IgM constant domain, reports on the

class switch of IgM to IgG directly from the proteomics data.

As expected from the readouts of the SARS-CoV-2 antibody

immunoassays (Fig 6B), the immunoglobulin trajectories were

highly individual-specific. In patient 11, for example, 33

immunoglobulin regions increased over time, which grouped in two

clusters with an average of 4.2- and 2.1-fold increase (Fig 6H). We

found that MS-based proteomics provided additional insights in

patients with very low SARS-CoV-2 antibody immunoassays values.

Although these values were very low in patient 15, we identified

two clusters of immunoglobulin regions which increased on average

5.6- and 2.0-fold, allowing this patient’s antibody response to be

tracked by longitudinal MS-based proteome profiling. Remarkably,

in patient 17, who had no positive SARS-CoV-2 antibody immunoas-

says (but was PCR-positive), two immunoglobulin regions increased

two-fold (A0A087WUS7: P: 2.6*10�4; P01708: P: 1.9*10�4) after

which their levels stayed elevated. SARS-CoV-2 antibody immunoas-

says were negative twice and three times just above threshold for

patient 22. MS-based proteomics explained these borderline results

as the 53 immunoglobulin regions of this patient dropped on aver-

age 5.6-fold compared to the first time points of sampling and indi-

cated a strong effect on the adaptive immune system.

Discussion

Here, we describe alterations of the serum proteome during COVID-

19 in an untargeted manner using a scalable plasma proteome pro-

filing workflow. With a total of 720 serum samples, this is one of

the largest MS-based body fluid proteomics efforts, comprising the

most detailed longitudinal protein trajectories during hospitalization

(average 31 days; maximum 54 days). Furthermore, the comparison

of serum proteomes to a control cohort of patients with COVID-19-

like symptoms that turned out to be PCR-negative allowed further

interpretation of virus-induced alterations.

As a main finding, a quarter of quantified serum proteins (130 of

502; 26%) changed significantly over the disease course, revealing

an extensive remodeling of the serum proteome in COVID-19. Con-

firming this, a study investigating the time course of the plasma

proteome during COVID-19 found a comparable portion of protein

changes (89 of 309; 29%) (Demichev et al, 2021).

In our study, three clusters of co-regulated proteins with different

longitudinal protein trajectories stood out: The first cluster comprised

proteins decreasing during hospitalization, the second comprised

proteins increasing, and the third cluster comprised proteins increas-

ing within the first 3 weeks and decreasing afterward. Serum

proteome changes were striking not only on the cohort level, but just

as much at the individual level. The latter could also be seen from the

individual trajectories of serum proteome remodeling.

The first cluster of longitudinally altered proteins included

predominantly proteins of the innate immune system, which

decreased during the first days and remained low, indicating a

general decline of the immune system response during hospitaliza-

tion. This observation has been confirmed by longitudinal studies of

inflammatory markers determined by routine clinical chemistry, and

immunoassays (Haljasm€agi et al, 2020). The global correlation map

with an unbiased hierarchical clustering to group proteins with the

same regulation across COVID-19 positive and negative patients

▸Figure 6. Dynamics of SARS-CoV-2 antibody secretion during seroconversion in COVID-19.

A Number of individuals with seroconversion as indicated by five different SARS-CoV-2 antibody immunoassays. Dashed horizontal line indicates the total number of
patients.

B Longitudinal trajectories of the Roche S-Ab immunoassay for all COVID-19 patients.
C For each of the commercial SARS-CoV-2 antibody immunoassays, the top five correlating proteins in the serum proteome were determined, resulting in nine

immunoglobulin gene products and four non-antibody proteins (x-axis).
D Examples of correlations of four different immunoglobulin regions with the Roche S-Ab test for patient 11. Labels on the data points indicate the day of sampling.

The data points of early sampling days are clustered near the origin, in contrast to later sample dates where both protein abundance values and Roche S-Ab values
are many-fold increased, which is consistent with seroconversion. The Pearson correlation coefficient (R) is displayed.

E Panels for each COVID-19 patient indicate the number of proteins significantly correlating with each of the five SARS-CoV-2 antibody immunoassays. The X indicates
immunoassay measurements not exceeding the cutoff that classifies an individual as having produced antibodies against SARS-CoV-2. Red numbers indicate
individuals of which detailed patient-specific trajectories of immunoglobulin regions were highlighted in panel H.

F Numbers of significantly correlated immunoglobulin regions per patient are shown in a ranked order with red bars (left y-axis). Numbers of samples per patient are
shown in gray (right y-axis).

G Immunoglobulin regions correlating with the Roche S-Ab test in the indicated number of individuals (y-axis). The three immunoglobulin regions significantly
correlating with the Roche S-Ab test in the highest number of individuals are labeled.

H Time-resolved trajectories of consistently quantified immunoglobulins exemplified with patients 11, 15, 17, and 22. Hierarchical clustering grouped trajectories of
immunoglobulin regions by Euclidean distance. The columns are arranged by sampling date. The time points are indicated in days above the heatmaps.
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further confirmed the strong systemic effect on the inflammation

system. The reaction of the adaptive immune response was indi-

cated by increasing levels of specific antibody regions and SARS-

CoV-2 antigen antibodies.

The second cluster, comprising proteins which increased over

the course of COVID-19, consisted of proteins associated with lipid

homeostasis and coagulation. Changes of proteins related to coag-

ulation and plasma apoprotein levels were corroborated by previ-

ous work (Demichev et al, 2021). Coagulopathies are a main

complication in COVID-19, calling for a detailed understanding of

mechanisms of hypercoagulability via identification of proteins

regulated in these processes (Demichev et al, 2021; Gupta et al,

2020; Kollias et al, 2020). The description of the detailed regula-

tion of various proteins involved in the coagulation system might

even open up the possibility for the development of potential ther-

apeutic avenues.

The third cluster followed a particularly interesting pattern of

protein levels, which increased initially and then decreased during

hospitalization. This cluster consisted mostly of immunoglobulins,

which have not been reported in previous work. Several of the

immunoglobulin chains that we found as regulated during serocon-

version have more recently been removed from Ensembl and subse-

quently from the UniProt Knowledgebase, but are still available in

UniParc (https://www.uniprot.org/uniparc) (UniProt Consortium,

2018; The UniProt Consortium, 2021). Their inclusion was crucial to

our study, which would otherwise have resulted in a much lower

number of regulated immunoglobulin regions. More generally, stud-

ies of infectious diseases with seroconversion could be applied to

confirm and curate public databases. We further extensively charac-

terized the immune response of our cohort by five different

immunoassays meant to detect antibodies against the N- and S-

antigens of SARS-CoV-2. These were correlated with different types

of immunoglobulin regions as quantified by our untargeted proteo-

mics measurements. From the MS-based proteomics data, we

further constructed individual-specific time-resolved trajectories of

the levels and composition of antibody regions. We found highly

individualized responses, but also discovered regions prominently

regulated across individuals. Additionally, we found in some

patients a disagreement between the quantitative signal of longitudi-

nally regulated immunoglobulin regions identified by MS compared

to the SARS-CoV-2 antibody immunoassay measurements. In one

case, the SARS-CoV-2 antibody immunoassays resulted in very

limited signals; however, MS-based proteomics reported on an

increase of a broad spectrum of immunoglobulin regions with fold-

changes similar to patients with highly positive responses in the

immunoassays. Of note, the different SARS-CoV-2 antibody

immunoassays had also a distinct degree of variation in terms of

fold-changes and correlations to each other (Buchholtz et al, 2021).

Hence, the MS readout of the highly detailed immunoglobulin pro-

file could be applied to track seroconversion in patients. In addition

to antibody regions, IgGFc-binding protein (FCGBP) prominently

correlated with SARS-CoV-2 antibodies. The function of FCGBP is

poorly understood and has previously been reported as elevated in

serum of patients with autoimmune disease (Kobayashi et al, 2001).

We found levels of circulating FCGBP to be regulated during sero-

conversion in our COVID-19 data, and we speculate that it is an

indicator of antibody response. This would allow studying the

immune response to COVID-19 in a quantitative fashion for each

individual and to identify those that produced strong antibody

responses and that could serve as donors for production of conva-

lescent serum/plasma therapeutics (Amanat et al, 2020).

Adding to longitudinal trajectories, we also performed a compar-

ison of proteomes of PCR-negative controls with COVID-19-like

symptoms. This analysis revealed that HRG, FN1, and APOH were

among the most significantly regulated proteins showing decreased

abundance in COVID-19 patients at the first day of sampling. Our

results point toward a complex rearrangement of multiple factors of

the coagulation system, in which many of these proteins decrease at

earlier time points and increase during disease course toward the

levels of PCR-negative controls. Machine learning enabled us to

train a classifier that on average correctly identified COVID-19

patients with 81% true positive rate. Conversely, it identified PCR-

negative controls with a 87% negative predictive value. These are

excellent and promising values given our relatively small cohort.

Our work emphasizes the value of longitudinal study design for

biomarker discovery, which allowed to correct for inter-individual

variation and determination of proteome alterations in disease

progression. Compared to studies with single time points between

COVID-19 patients and controls that provided first insights into

potentially regulated proteins, our comparison of serum proteomes

over the course of disease progression provided a clear set of poten-

tial biomarkers which we are now following up in larger cohorts.

Materials and Methods

Study cohort

COVID-19 patients
Serum samples from 31 COVID-19 patients, admitted to the Univer-

sity Hospital of LMU Munich with acute COVID-19 confirmed by

positive PCR, were collected over time from leftover material of

samples submitted to the Institute of Laboratory Medicine for

routine laboratory diagnostics. Serial samples were collected from

each patient, covering a period of up to 54 days from the first day of

sampling, adding up to a total of 458 samples. The cohort partially

overlapped with a cohort described in our previous work, including

the description of the SARS-CoV-2 antibody immunoassys Roche N-

Ab (Roche Elecsys Anti-SARS-CoV-2), Roche S-Ab (Roche Elecsys

Anti-SARS-CoV-2 S), EUR S-IgG (EUROIMMUN Anti-SARS-CoV-2

(IgG)), EUR N-IgG ( EUROIMMUN Anti-SARS-CoV-2-NCP (IgG)) and

EUR S-IgA (EUROIMMUN Anti-SARS-CoV-2 (IgA)) (Buchholtz et al,

2021). Clinical and clinical chemistry data were retrieved from elec-

tronic patient records. The patients were sampled at both regular

wards and intensive care units.

PCR-negative control patients
Serum samples from 262 patients, admitted to the University Hospi-

tal of LMU Munich with possible symptoms of SARS-CoV-2 but with

a negative PCR result, were collected from leftover material of

samples submitted to the Institute of Laboratory Medicine for

routine laboratory diagnostics. SARS-CoV-2 symptoms included

fever, cough, shortness of breath, throat pain, loss of smell and

taste, fatigue, general malaise, gastrointestinal complaints, head-

ache, cognitive impairment, need of oxygen, or intensive care treat-

ment because of respiratory symptoms.
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Samples were stored as 250 ll aliquots in 2D barcoded biobank-

ing vials (Thermo Scientific, Waltham, Massachusetts, USA) at

�80°C in the LMU LabMed Biobank. Anonymized analysis has been

approved by the Ethics Committee of LMU Munich (reference

number 21-0047). The experiments conformed to the principles set

out in the WMA Declaration of Helsinki and the Department of

Health and Human Services Belmont Report.

Sample preparation

Serum samples were prepared for LC-MS/MS analysis as previously

published (Geyer et al, 2016b). In brief, serum proteins were dena-

tured, alkylated, digested, and peptides purified using an automated

liquid handling platform (Agilent Bravo) in a 96 well format. To

generate a spectral library, 20 serum samples were pooled and frac-

tioned into 24 fractions using high pH-reversed phase liquid chro-

matography.

LC-MS/MS analysis

Digested peptides were separated online via a nanoflow reversed

phase chromatography with an Evosep One liquid chromatography

(LC) system (Evosep). Peptides were separated on an 8 cm × 150 µm

column packed with 1.9 lm ReproSil-Pur C18-AQ particles (Dr.

Maisch) using the 60 SPD method with a gradient length of 21 min.

The Evosep One was coupled online to a timsTOF Pro mass spectrom-

eter (Bruker Daltonics). The instrument was operated in the DDA

PASEF mode with 10 PASEF scans per acquisition cycle and accumu-

lation and ramp times of 100 ms each. Singly charged precursors

were excluded, the “target value” was set to 20,000 and dynamic

exclusion was activated and set to 0.4 min. The quadrupole isolation

width was set to 2 Th form/z < 700 and 3 Th form/z > 800.

Data analysis

Mass spectrometry raw files were analyzed by MaxQuant software,

version 1.6.17.0, and MS spectra were searched against the refer-

ence proteome FASTA file, downloaded from https://www.ebi.ac.

uk/reference_proteomes/ in January 2020.

A contaminant database generated by the Andromeda search

engine and the human database were configured with cysteine

carbamidomethylation as a fixed modification and N-terminal acety-

lation and methionine oxidation as variable modifications. We set

the false discovery rate (FDR) to 0.01 for protein and peptide levels

with a minimum length of seven amino acids for peptides and the

FDR was determined by searching a reversed sequence database.

Enzyme specificity was set as C-terminal to arginine and lysine as

expected using trypsin and LysC as proteases. A maximum of two

missed cleavages were allowed. All proteins and peptides matching

the reversed database were filtered out. The mass tolerance used for

the main search of each precursor was set to 20 ppm and the mini-

mum number of peptides needed for the quantification of a protein

was set to 1.

Bioinformatics analysis

Bioinformatics analyses were performed in Jupyter notebooks using

Python and with the Perseus software of the MaxQuant

computational platform. Two-sample t-tests were performed for the

comparison of different groups. For two-sample tests, we used a

two-sided Student’s t-test and used a permutation-based FDR (0.05)

for multiple hypothesis testing. Two-sample tests were performed to

identify protein level differences of PCR-negative patients with

COVID-19-like symptoms and COVID-19 patients at the first day of

sampling and at the time point with the highest Roche S-Ab test

response.

Longitudinal alterations of protein levels

To identify proteins correlating with the time course, we first Z-

scored proteins within each individual to take individual-specific

protein levels into account. Pearson correlation coefficients were

calculated for correlation analysis and a Benjamini-Hochberg FDR

correction was applied for multiple hypothesis testing.

One-sample t-tests were applied to identify longitudinally altered

protein levels between two time points. First, the difference of

protein levels between both time points was calculated on log10
transformed data to take individual-specific protein levels into

account. This was performed to calculate the difference of the first

day of sampling and the sample with the highest Roche S-Ab test

response.

One-sample t-tests were also applied to identify longitudinally

altered protein levels between the first day of sampling and binned

time intervals. For this purpose, we normalized the protein levels by

referencing to the first day of sampling to take individual-specific

protein levels into account. Next, we averaged the normalized values

for 5-day intervals (day 1–5, 6–10, . . .) and applied a one-sample t-

test to identify proteins significantly different between the first time

point and the median of the intervals. A Benjamini-Hochberg FDR

(0.05) has been applied for multiple hypothesis testing.

Quality assessment

The evaluation of sample quality has been performed according to

recently described quality marker panels (Geyer et al, 2019). In

short, summed intensities of each of three quality marker panels for

erythrocyte lysis, platelet contamination, and coagulation have been

calculated in addition to the intensities of all non-quality-associated

proteins. The percentage of the intensities of the quality marker

panels compared to non-quality-associated proteins was calculated

to determine the contamination of each sample. If the percentage of

erythrocyte protein intensities compared to the total proteome was

> 6%, a sample was flagged as having increased erythrocyte

proteins. If the percentage of platelet protein intensities compared to

the total proteome was > 0.5%, a sample was flagged as having

increased platelet contamination. If the percentage of fibrinogen

chains was > 0.3%, a sample was flagged as having impaired coagu-

lation. Coagulation of serum samples was impaired according to the

quality marker panel in 17 samples of COVID-19 patients compared

to just one control sample. A total of 15 out of the 17 samples of

COVID-19 patients originated from the same individual.

Potential bias between groups was assessed by highlighting the

three quality marker panels in a volcano plot of the comparison of

the two groups (Fig EV2). Potential bias was indicated in the text, if

present. Outliers in statistical tests that serve as candidates within

this manuscript were assessed for potential co-correlations with

ª 2021 The Authors EMBO Molecular Medicine 13: e14167 | 2021 13 of 16

Philipp E Geyer et al EMBO Molecular Medicine

https://www.ebi.ac.uk/reference_proteomes/
https://www.ebi.ac.uk/reference_proteomes/


platelet and erythrocyte markers. As MS-based proteomics is unbi-

ased in the selection of proteins for evaluation, we report on a broad

scope of information that we can use to evaluate potential outlier

proteins in more detail. Herein, we used the quality marker panels

for further evaluation of statistically significant outlier. The quality

marker panel indicated a bias toward increased erythrocyte proteins

in controls, which was reflected in the results comparing COVID-19

positive and negative patients with significant proteins of typical

erythrocyte proteins such as the hemoglobin chains HBA1, HBB,

and HBD and the bias of quality marker proteins in one side of the

t-test (Fig EV2A–C). In the same vein, we reported previously

(Geyer et al, 2019) that GSN can be an indicator for platelet contam-

ination. However, other platelet markers were not enriched in

controls and a global correlation analysis revealed that GSN was not

co-regulated with other platelet markers in this study, confirming

that GSN changed due to COVID-19 infection. Of all significantly

regulated proteins, only hemoglobin chains clustered within quality

marker panels, indicating that they originated from erythrocytes.

Protein trajectories

Significantly longitudinally regulated proteins were defined as

proteins that have a statistically significant difference between the

first time sampling time points and other time points. Samples were

available for each COVID-19 patient at the first time point (TP 0),

but not at every other time point. To increase the statistical power

for the identification of longitudinally changing proteins, we binned

proteomes over a distinct time window of always 5 days: 1–5, 6–10,

11–15, 16–20, 21–25, 26–30, 31–35, 36–40, 41–45, 46–50, 51–54. For

this purpose, we calculated the difference within each individual

from the first sample to all other time points and calculated the

median according to the above listed time windows. Next, we

applied a one-sample t-test, which resulted in 86 statistically signifi-

cant proteins for all comparisons (Dataset EV7). Next, we selected

all proteins that were statistically significant in one of the above-

mentioned tests to identify longitudinally changing proteins, result-

ing in 130 proteins. The protein intensities were Z-scored within

each individual over time. We calculated the median of the Z-scores

for each time point for which we had at least five samples, resulting

in 37 time points and 116 proteins fulfilling this criterion. The

median Z-scores of the proteins were then subjected to a hierarchi-

cal clustering with Euclidean distance.

Intra-individual proteome remodeling

The proteome remodeling was assessed by calculating Pearson

correlation coefficients between the proteome at the first time point

and the other time points. The median Pearson correlation coeffi-

cient plot was calculated only for time points with samples of at

least five individuals, hence, covering up to 37 days.

Keyword annotation of regulated proteins

Keywords and GOBP, GOCC, and GOMF terms were added to the 116

proteins. A Fisher´s exact test was applied between the Keywords and

the GO terms. This resulted in 409 significant associations from 51

keywords. Keywords “3D structure”, “Completeproteome”, “Referen-

ceproteome”, “Polymorphism”, “Directproteinsequencing”, “Repeat”,

“Secreted”, “Signal” and “Disulfidebound” were excluded due to the

general nature of the terms. The keywords “Secreted” and “Signal”

were combined to “Secreted”, ”Innateimmunity” and “Immunity” to

“Immunity”, ”Serineprotease” and “Protease” to “Protease”, “Serin-

proteaseinhibitor” and “Proteaseinhibitor” to “Proteaseinhibitor”,

”ImmunoglobulinVregion” and “Immunoglobulindomains” to

“Immunoglobulindomains”, “Complementalternatepathway” and

“Complementpathway” to “Complementpathway”, ”Cytolysis” and

“Membraneattackcomplex” to “Membraneattackcomplex” due to

their high similarity. The 20 Keywords which had the most significant

associations with a GO term were selected for Fig 4A. The complete

list can be found in Dataset EV8.

Tissue-specific proteins

Proteins were annotated for organ-specific expression according to

the Human Protein Atlas (HPA) (https://www.proteinatlas.org/).

Organ-specific categories of proteins in the HPA are based on tran-

scriptomics data, defining “enriched” proteins with at least four

times higher mRNA levels in one organ compared to any other

tissue. Group-enriched proteins have at least four-fold higher aver-

age mRNA levels in a group of 2–5 tissues compared to any other

tissue. Tissue enhanced proteins have at least four-fold higher

mRNA levels in a particular tissue compared to the average level in

all other tissues. The origin of each protein determined in this way

is supplied in Datasets EV2–EV7.

Weight loss related proteins

Proteins changing due to weight loss were classified according to

our previous weight loss study (Geyer et al, 2016a) and highlighted

in Datasets EV2–EV5.

Correlation analysis

We calculated Pearson correlation coefficients of binary compar-

isons of proteins and/or clinical parameters. We applied a hierarchi-

cal clustering on top of the correlation matrix using Euclidean

distance. Based on the clustering, 21 groups of co-regulated proteins

and/or clinical parameters were identified. To draft correlation plots

(U-plots), the correlation of clinical to proteomics data was done

with Python version 3.8.5. using Pandas (1.1.3), Numpy (1.19.2),

Scipy (1.5.2), and Statsmodels (0.12.0) packages. In brief, Pearson

correlation coefficients and Pearson P-values of protein intensity

values to other numerical parameters were calculated. To address

multiple testing, Benjamini–Hochberg FDR was employed for

P-value correction.

Machine learning

We used OmicLearn (1.0.0) for performing the data analysis, model

execution, and generating the plots and charts (preprint: Torun

et al, 2021). Within OmicLearn, machine learning was done in

Python (3.8.8). Feature tables were imported via the Pandas package

(1.0.1) and manipulated using the Numpy package (1.18.1). The

machine learning pipeline was employed using the scikit-learn pack-

age (0.22.1). For generating the plots and charts, Plotly (4.9.0)

library was used. Data were normalized in each split using a
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StandardScaler approach. To impute missing values, a median impu-

tation strategy is used. Features were selected using an ExtraTrees

(n_trees = 100) strategy with the maximum number of 20 features.

Normalization and feature selection were individually performed

using the training data of each split. For classification, we used a

XGBoost-Classifier (random_state = 23 learning_rate = 0.3

min_split_loss = 0 max_depth = 6 min_child_weight = 1).

Individual-specific immunoglobulin trajectories

Immunoglobulin regions were filtered for 100% valid values within

each individual. Next, the time points were sorted from the first to

the last day of sampling. A hierarchical clustering based on Eucli-

dean distance was applied to group similar trajectories together. In

patient 17, a two-sample t-test was performed to compare protein

intensities of P01708 and A0A087WUS7 between the earlier (0–

24 days) and later time points (25–44 days).

Data availability

The MS raw data and MaxQuant output files of the searches gener-

ated during and/or analyzed during the current study are available

from the corresponding authors on reasonable request.

Expanded View for this article is available online.
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