
RESEARCH ARTICLE

Protein-protein interactions underlying the

behavioral and psychological symptoms of

dementia (BPSD) and Alzheimer’s disease

Yimin Mao1,2☯, Daniel W. FisherID
3☯, Shuxing Yang1, Rachel M. Keszycki3,

Hongxin Dong3*

1 School of Information and Technology, Jiangxi University of Science and Technology, Jiangxi, China,

2 Applied Science Institute, Jiangxi University of Science and Technology, Jiangxi, China, 3 Department of

Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois,

United States of America

☯ These authors contributed equally to this work.

* h-dong@Northwestern.edu

Abstract

Alzheimer’s Disease (AD) is a devastating neurodegenerative disorder currently affecting

45 million people worldwide, ranking as the 6th highest cause of death. Throughout the

development and progression of AD, over 90% of patients display behavioral and psycho-

logical symptoms of dementia (BPSD), with some of these symptoms occurring before

memory deficits and therefore serving as potential early predictors of AD-related cognitive

decline. However, the biochemical links between AD and BPSD are not known. In this

study, we explored the molecular interactions between AD and BPSD using protein-protein

interaction (PPI) networks built from OMIM (Online Mendelian Inheritance in Man) genes

that were related to AD and two distinct BPSD domains, the Affective Domain and the

Hyperactivity, Impulsivity, Disinhibition, and Aggression (HIDA) Domain. Our results yielded

8 unique proteins for the Affective Domain (RHOA, GRB2, PIK3R1, HSPA4, HSP90AA1,

GSK3beta, PRKCZ, and FYN), 5 unique proteins for the HIDA Domain (LRP1, EGFR,

YWHAB, SUMO1, and EGR1), and 6 shared proteins between both BPSD domains (APP,

UBC, ELAV1, YWHAZ, YWHAE, and SRC) and AD. These proteins might suggest specific

targets and pathways that are involved in the pathogenesis of these BPSD domains in AD.

Introduction

Alzheimer’s Disease (AD) is a progressive neurodegenerative disease and is the most common

form of dementia with over 40 million people affected worldwide[1]. Surprisingly, over 90% of

AD patients display behavioral and psychological symptoms of dementia (BPSD), including

agitation, aggression, irritability, impulsivity, disinhibition, anxiety, depression, apathy,

euphoria, and psychosis[2, 3]. BPSD can present at almost any stage of AD, and in some

patients, these symptoms can even appear before memory deficits develop[4]. The severity of

BPSD increases significantly with disease progression, and BPSD affect the quality of life of
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both patients and their caregivers[5–7]. Though memory deficits are the best studied aspects

of AD, it is BPSD that are often the greatest source of burden for patients and caregivers and

are one of the main reasons for institutionalization[8–11]. Along with there being few rigorous

studies of BPSD’s biochemical and cellular mechanisms, there are no FDA-approved treat-

ments for BPSD management[12, 13].

Although BPSD present differently in each patient, the presence of certain symptoms

makes the co-occurrence of other symptoms more likely. Thus, it has been suggested that cer-

tain symptoms cluster into behavioral domains and that these domains may have commonly

disturbed molecular pathways at their core, explaining the higher likelihood of certain symp-

toms presenting together[2]. Among the myriad of BPSD, unbiased clustering approaches

generally yield the following 5 domains: Affective Domain; Hyperactivtiy, Impulsivity, Disin-

hibition, Aggression (HIDA) Domain; Apathy Domain; Psychosis Domain; and Euphoria

Domain [2]. However, the distinct molecular mechanisms leading to the common presenta-

tion of symptoms in each domain and how AD pathogenesis leads to these molecular alter-

ations is surprisingly unstudied.

Recently, investigation of the interactions between proteins encoded in known disease

genes through protein-protein interaction (PPI) networks has become a powerful approach to

exploring the etiology and neuropathology of complex diseases, including AD[14, 15]. PPI

data can be used at a larger scale to map networks of interactions depending on their func-

tional associations[16]. Research studies based on PPI networks have achieved noteworthy

results, revealing disease complexities at the protein and gene levels[14, 15, 17–23]. Among

them, some studies[14, 15, 17, 24] have used PPI to discover essential proteins, genes, and

associated pathways linked to disease pathogenesis and potential therapies. For example, using

such methods, researchers have identified candidate genes[14] and signaling pathways

involved in AD pathogenesis in a brain region-specific manner[15]. However, the proteomic

links between AD and BPSD have not been investigated.

In this study, using the PPI network analysis approach, we investigated the proteomic links

between AD and select BPSD domains, namely the Affective Domain and HIDA Domain. We

selected these two BPSD domains as their symptoms are the best studied outside AD patho-

genesis. We first chose causative genes related to these symptoms based on prior information

from the Online Mendelian Inheritance in Man (OMIM) database and published literature,

then we constructed PPI networks related to AD and the two BPSD domains. After, we

designed a DBruteForce algorithm to detect shared proteins. Finally, based on the “centrality-

lethality” paradigm[25], we designed a “shared protein-degree centrality” principle to identify

essential shared proteins between AD and each BPSD domain. Our study reveals intrinsic pro-

tein connections between AD and BPSD.

Materials and methods

The analytical framework to identify the shared essential proteins is illustrated schematically

in Fig 1. The process consists of three main steps–Construction, Detection, and Identification:

1) Construction involves building the PPI networks from the Interologous Interaction Data-

base (I2D); 2) Detection involves investigating the shared proteins between diseases by design-

ing a DBruteForce algorithm; and 3) Identification involves searching essential shared

proteins by designing a “shared protein-degree centrality” principle.

Databases

Two databases: OMIM and I2D were used in this study. OMIM is classical database containing

an authoritative compendium of human genotypes and associated phenotypes and contains

PPI between BPSD and AD
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over 15,000 genes. I2D is an online database of known and predicted mammalian and eukary-

otic protein-protein interactions. It has integrated known, experimental, and predicted PPIs

for five model organisms and humans. I2D is comprised of more than 687,000 experimental

PPIs and about 619,000 predicted interactions. Notably, two points make I2D preferred over

other interaction databases: 1) it has been built by mapping high-throughput data between spe-

cies, with these interactions being considered "predictions"; 2) it remains one of the most com-

prehensive sources of known and predicted eukaryotic PPIs. The most recent updates for the

databases we used were in April 2019.

Identification of input genes relating to AD and BPSD

First, we selected symptom terms that matched our AD and BPSD Domains, including “Alz-

heimer’s Disease”, “anxiety”, “depression”, “MDD”, “hyperactivity”, “disinhibition”, “impul-

sivity” and “aggression.” Then, we input these terms into the OMIM database and reviewed

the list of hereditary disease genes from the OMIM morbid map (http://www.omim.org). As

these search terms are broad, many of the resulting genes identified in OMIM are not clearly

associated with these symptoms. For instance, the search term ‘hyperactivity’ can bring up

genes involved in both aberrant motor behavior as well as an increased ability of cells to fire an

action potential. Thus, two investigators independently determined which potential genes

were truly implicated in causing each symptom based on the OMIM report and published

Fig 1. The overall study workflow used to explore the proteomic links between AD and BPSD symptoms. The input terms were identified

using the OMIM database and the PPI networks were constructed using information from I2D. The DBruteForce algorithm was used to detect

shared proteins and then the “shared protein-degree centrality” principle was applied to identify the essential shared proteins between AD and

each BPSD domain. The enrichment analyses were done on the shared proteins that were detected after using the DBruteForce algorithm. Red

color indicates the shared proteins between AD with one BPSD domain, and the green color indicates the shared proteins among AD with

both domains.

https://doi.org/10.1371/journal.pone.0226021.g001

PPI between BPSD and AD
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literature. Agreement between the investigators was>90%, and a third investigator deter-

mined if a gene should be added in the case of a disagreement.

Construction of PPI networks

The “causative proteins” for AD, the Affective Domain, and the HIDA Domain from OMIM

were input to the I2D database (http://ophid.utoronto.ca/ophidv2.204/ppi.jsp) with ‘human’

as the chosen target organism, and the resultant PPIs related to AD and BPSD were generated,

including predicted and experimental PPIs. To increase the data reliability of protein interac-

tions, all predicted homologous protein interactions were excluded. The interaction network

contained the disease-associated proteins (nodes) and their interactions (edges). By exploring

the mapping scheme of the UniProt database, corresponding gene names and IDs were

retrieved. Because some proteins were given multiple names, the results in tables and figures

were presented in the format of gene names and UniProt IDs to avoid ambiguous referencing.

Detection of the shared proteins between AD and BPSD

The connection sets between proteins for AD and the BPSD domains were produced based on

the PPI networks constructed for AD or each symptom domain. BruteForce [26] is the sim-

plest string match algorithm for two strings (two Uniprot IDs); however, it us unable to cap-

ture intersections between PPI networks. Using this algorithm as an intial framework, we

developed Deformation BruteForce algorithm (DBruteForce) to identify the shared proteins

between AD and BPSD networks. The DBruteForce algorithm performs intersections of Uni-

prot IDs for each protein from the AD list with all the proteins in the given BPSD domain list,

and these intersection IDs are served as “shared proteins.” Suppose two sets (setA and setB) of

nodes interact between AD and a given BPSD domain produced by the PPI networks. PID
indicates the Uniprot ID of the protein and is a string. The DBruteForce algorithm used in this

study is shown in Fig 2.

Identification of essential shared proteins among AD and BPSD

We identified essential shared proteins between AD and the two BPSD domains based on

their node degree centrality. For each node (protein), we applied degree centrality (DC) to

assess its role in the network. Given a PPI network, it is represented as an undirected graph G
(V, E) with proteins as nodes and interactions as edges. Degree centrality is calculated by:

DCðvÞ ¼ eðu; vÞ u; v 2 V ð1Þ

where v represents a node in PPI network, u is any node other than v in the network, and e(u,

v) represents the interaction between v and u. If such an interaction exists, the value of e(u,v) is

one. If not, e(u,v) is zero. |e(u,v)| represents total interaction numbers between v and u.

According to the “principle of centrality-lethality,” a shared protein with high degree centrality

might play an important role in the biological system, thus, it is an essential shared protein

[25].

Functional enrichment analysis

To further study the functions of the proteins in the PPI networks linked to AD and BPSD, an

analysis of functional enrichment and enriched pathways was performed with the Gene Ontol-

ogy (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases (Version No

DAVID 6.8; https://david.ncifcrf.gov/summary.jsp). In the enrichment analyses, functions or

pathways were considered enriched if P< .01. To perform these analyses, we annotated,

PPI between BPSD and AD
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visualized, and integrated discovery by using the DAVID database, which is an online platform

providing functional annotation tools to analyze biological meaning behind large gene lists.

Results

Genes and interaction networks

Candidate genes/proteins implicated in the pathogenesis of AD, the symptoms of Affective

Domain, and HIDA Domain were obtained from the OMIM database and verified with pub-

lished literature (The details are provided in S1 Table). The intersects of genes among AD,

Affective and HIDA Domains are described in Fig 3. There were 0 intersects of genes between

AD and Affective Domain, 1 intersect of genes between AD and HIDA Domain, and 8 inter-

sects of genes between Affective and HIDA Domains. The PPI networks comprising these

genes/proteins were constructed utilizing information from I2D. The AD-related proteins pro-

duced a network with 14,527 nodes, the proteins related to symptoms in Affective Domain

produced a network with 4,825 nodes, and the proteins related to symptoms in the HIDA

Domain produced a network with 3,127 nodes. After removing the predicted interactions that

were homologous to validated interactions, there were 8,747 interactions for AD, 2,763 inter-

action for the Affective Domain, and 1,754 interactions for the HIDA Domain as well as 3,415

nodes for AD, 2,111 nodes for the Affective Domain and 1,352 nodes for the HIDA Domain.

Shared proteins between AD and BPSD

The shared proteins between AD and the BPSD domains were detected using a DBruteForce

algorithm (Fig 2). We found 1,099 shared proteins between AD and the Affective Domains

Fig 2. The DBruteForce algorithm.

https://doi.org/10.1371/journal.pone.0226021.g002

PPI between BPSD and AD
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(S2 Table), 720 shared proteins between AD and the HIDA Domain (S3 Table), and 401

shared proteins among AD, the Affective Domain, and the HIDA domain (S4 Table, Fig 4).

Essential shared proteins between AD and BPSD

According to the “shared protein-degree centrality” principle, the proteins with high node

degree, defined as node degree greater than the mean, and shared among the domains and AD

are counted as essential shared proteins. We identified eight unique essential shared proteins

Fig 3. The intersects of genes. A) The intersects of genes between AD and Affective Domain symptoms. B) The intersects of genes between AD and HIDA

Domain symptoms. C) The intersects of genes between Affective and HIDA Domain symptoms.

https://doi.org/10.1371/journal.pone.0226021.g003

Fig 4. The numbers of shared protein. There were 1099 proteins shared between AD and the Affective Domain, 720

shared between AD and the HIDA Domain, and 401 shared between all three.

https://doi.org/10.1371/journal.pone.0226021.g004

PPI between BPSD and AD
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between the Affective Domains and AD, (Fig 5), five unique essential shared proteins between

the HIDA Domain and AD (Fig 6), and eight overlapping essential shared proteins between

the Affective Domain, HIDA Domain and AD (Fig 7).

The mean node degree connecting AD and Affective Domain proteins was six and five,

respectively. For each protein in Fig 5, the node degree connecting AD and Affective Domain

proteins were equal to or greater than the mean node degree, thus, RHOA, APP, UBC,

YWHAE, ELAVL1, GRB2, PIK3R1, SRC, HSPA4, YWHAZ, HSP90AA1, GSK3beta, PRKCZ,

and FYN were found to be essential shared proteins, in which RHOA and APP are also causa-

tive genes related AD, and GSK3beta and PRKCZ are causative genes related to Affective

Domain symptoms.

For each protein in Fig 6, the mean of degree centrality for each protein was eight and four

between the AD and HIDA PPI networks, respectively. The degree centrality for each protein

listed in the Fig 5 is equal to or greater than the mean of degree centrality, thus, APP, LRP1,

UBC, YWHAE, EGFR, ELAVL1, YWHAB, YWHAZ, SUMO1, SRC, and EGR1 are essential

shared proteins, in which APP and LRP1 are also causative genes related AD.

The mean number linking AD, Affective Domain, and HIDA Domain proteins are eight,

eight, and four, respectively. For each protein in Fig 7, the mean number linking AD, Affective

Domain, and HIDA Domain proteins are equal to or greater than the mean degree centrality,

thus, APP, UBC, YWHAE, ELAVL1, YWHAZ and SRC proteins are essential shared proteins

across AD and both BPSD domains.

Functional enrichment analysis

GO term and KEGG pathway enrichment analyses were performed based on the PPI networks

of shared proteins between AD and each BPSD Domain. The GO term analysis included three

Fig 5. The essential shared proteins between AD and the Affective Domain. There were 14 proteins that were identified as being essential

shared proteins between AD and the Affective Domain. Proteins in red are essential shared proteins that are unique to the Affective Domain

while those in black were also found to be essential shared proteins between AD, the Affective Domain, and the HIDA Domain.

https://doi.org/10.1371/journal.pone.0226021.g005

PPI between BPSD and AD
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categories: biological processes (BP), molecular functions (MF), and cellular components

(CC). Tables 1 and 2 describe five notable GO terms for BP, MF, and CC as well as five notable

KEGG pathways that are enriched between AD and the Affective Domain. These notable

terms include Vascular Endothelial Growth Factor (VEGF) signaling, chaperone binding, den-

dritic spine, and NF-kappa-B signaling in BP, MF, CC, and KEGG, respectively. Between AD

and the HIDA domain, there were notable enrichments for Ephrin Receptor signaling, SNAP

receptor activity, SNARE complex, and Amyotrophic Lateral Sclerosis (ALS) signaling in BP,

MF, CC, and KEGG, respectively (Tables 3 and 4). Additional functional enrichment analyses

are shown in S4 and S5 Tables.

Discussion

In this study, we used publicly available, bioinformatic databases to investigate the possible

interactions between AD and the Affective and HIDA Domains and discovered a specific set

of shared essential proteins that may be involved in each BPSD domain. In particular, to derive

these shared essential proteins, we selected candidate genes from OMIM associated with AD

and commonly co-occurring symptoms within each domain: anxiety and depression for the

Affective Domain, and hyperactivity, impulsivity, disinhibition, and aggression for the HIDA

Domain. Then, we established PPI networks, where common points of convergence between

lists were detected using a DBruteForce algorithm, and essential proteins were identified using

the “shared protein-degree centrality” principle. These identified “hubs” present a set of pro-

teins that may be adversely affected during AD pathogenesis and contribute specifically to the

symptoms within their associated BPSD domain.

Fig 6. The essential shared proteins between AD and the HIDA Domain. There were 11 proteins that were identified as being essential shared

proteins between AD and the HIDA Domain. Proteins in red are essential shared proteins that are unique to the HIDA Domain while those in black

were also found to be essential shared proteins between AD, the Affective Domain, and the HIDA Domain.

https://doi.org/10.1371/journal.pone.0226021.g006

PPI between BPSD and AD
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Fig 7. The essential shared proteins among AD and the Affective and HIDA Domains. 6 proteins were identified as

being essential shared proteins between AD, the Affective Domain, and the HIDA Domain.

https://doi.org/10.1371/journal.pone.0226021.g007

Table 1. Five notable significantly enriched GO terms between AD and the affective domain.

Terms Names of shared essential proteins P value

Biological

Process

Vascular endothelial growth factor receptor signaling pathway SRC, PIK3R1, FYN, RHOA(AD), HSP90AA1 1.62E-13

Ras protein signal transduction GRB2 1.44E-08

Response to cytokine 1.28E-06

Response to stress 1.89E-06

Negative regulation of reactive oxygen species metabolic process HSP90AA1 1.50E-05

Cell

Colocalization

Protein complex HSP90AA1 1.62E-27

Postsynapse GSK3beta(AF) 8.93E-08

Dendritic spine APP(AD) 9.95E-08

Histone deacetylase complex 2.76E-07

Nuclear chromosome, telomeric region 8.81E-06

Molecular

Function

Chaperone binding 6.62E-09

Bisphosphate 3-kinase activity GRB2, PIK3R1 7.40E-08

Non-membrane spanning protein tyrosine kinase activity GRB2, SRC, FYN 2.53E-07

Heat shock protein binding SRC,FYN 3.85E-06

Histone acetyltransferase activity 1.74E-05

Five notable significantly enriched GO terms between AD and the Affective Domain. There were 197 significant Biological Processes (BP), 78 Molecular Functions

(MF), and 75 Cellular Compartments (CC) identified in the PPI network of shared proteins between AD and Affective Domain symptoms. Five of the most notable

pathways in each group that did not show up in the AD and HIDA Domain PPI network are shown above.

https://doi.org/10.1371/journal.pone.0226021.t001

PPI between BPSD and AD
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The lists of essential shared proteins between AD, the Affective Domain, and the HIDA

Domain are inferences based on known protein interactions and thus represent only potential-

ities that may be central to BPSD pathogenesis. Moreover, use of degree as the sole metric of

protein essentiality may result in biased information, although in general, the higher the num-

ber of proteins connected between AD and BPSD, the more likely that these proteins drive bio-

logical mechanisms and perform physiological functions that are similarly perturbed in AD

and BPSD. However, in some cases, high connectivity does not necessarily imply essentiality,

and nodes with low degrees might also be relevant despite their relative underconnectedness.

In addition, connectivity between proteins is influenced by how often these proteins are inter-

rogated empirically, thus potentially overrepresenting the essentiality of more commonly stud-

ied proteins. Finally, some proteins, such as adapter proteins, ubiquitins, and chaperons that

bind nonspecifically to a large number of other proteins are more likely to be represented

given their promiscuity and multiple protein-interacting motifs. Therefore, it will be important

to verify the current analyses with other algorithms that may better account for these known

biases. Additionally, rigorous investigation will be necessary to confirm these potential mecha-

nisms. As complex symptoms like BPSD are likely to result from multiple aberrations among

many genes/proteins, commonalities between these proteins in terms of pathway or function

may be more informative than the individual proteins investigated in isolation. In addition, it

is interesting that there are proteins that appear on both lists, which suggest some common

driver of neurodegenerative pathology leading to BPSD. Still, the proteins that are unique to

one domain seem more likely to be implicated in the generation of specific symptoms. Regard-

less, the next few sections will help to contextualize the proteins identified here and point out

commonalities that may serve as future hypotheses detailing disruption of convergent path-

ways that cause these symptoms in AD.

Affective domain

The unique proteins implicated as essential to the Affective Domain broadly fall into two cate-

gories functionally, either as chaperones (HSPA4, HSP90AA1) or proteins involved in phos-

phorylation (FYN, GRB2, GSK3beta, PI3KR1, PRKCZ, RHOA). Though chaperones are likely

to be influenced by phosphorylation, and many client proteins for heat shock proteins are

kinases[27, 28], both sets of proteins may independently or synergistically affect other patho-

logical mechanisms that ultimately lead to affective symptoms in AD.

One point of convergence among these proteins concerns their regulation of hyperpho-

sphorylated tau (p-tau), an important protein involved in AD pathogenesis. In addition to

amyloid-beta (Abeta), p-tau aggregation is a hallmark of AD pathogenesis, with p-tau forming

Table 2. Five notable significantly enriched KEGG pathways between AD and the affective domain.

Terms Names of shared essential protein P value

Toll-like receptor signaling pathway PIK3R1 9.57E-13

GnRH signaling pathway GRB2, SRC 4.00E-12

Ras signaling pathway RHOA(AD), GRB2, PIK3R1 1.32E-11

AMPK signaling pathway ELAVL1, PIK3R1 6.65E-10

NF-kappa B signaling pathway 1.49E-10

Five notable significantly enriched KEGG pathways between AD and the Affective Domain. There were 66

significant KEGG pathways identified in the PPI network of shared proteins between AD and Affective Domain

symptoms. Five of the most notable pathways in each group that did not show up in the AD and HIDA Domain PPI

network are shown above.

https://doi.org/10.1371/journal.pone.0226021.t002

PPI between BPSD and AD
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intracellular tangles that, along with Abeta are often used to corroborate post-mortem patho-

logical assessments with ante-mortem clinical diagnosis of AD. In AD, abnormal tau starts

developing due to several post-translational modifications that lead to p-tau forming oligo-

mers, paired helical filaments, and straight filaments[29–32]. Though the exact mechanism

whereby tau leads to AD pathogenesis is far from clear, tau has been shown to inhibit microtu-

bule formation[33], impair axonal transport[34, 35], and promote neuronal toxicity[36]. One

of the earliest steps in AD pathogenesis is the hyperphosphylation of tau at multiple residues,

leading to disruption of tau at microtubules and relocation of tau to somatodendritic compart-

ments, influencing synaptic dysfunction[32, 33, 37, 38].

While there is still some debate as to whether the synaptic dysfunction from p-tau stems

from pre- or postsynaptic mechanisms[37], it has been well-established that synapse loss is one

of the strongest correlates of cognitive dysfunction in AD[39–42]. The loss of synapses is espe-

cially intriguing in terms of affective symptoms in AD, as synapse loss in key limbic areas is

Table 3. Five notable significantly enriched GO terms between AD and the HIDA domain.

Terms Names of shared essential proteins P value

Biological

Process

Ephrin receptor signaling pathway SRC 2.48E-09

Protein sumoylation SUMO1 9.56E-08

Vesicle-mediated transport 1.10E-07

Response to ethanol 3.98E-07

Toxin transport 1.65E-06

Cellular

Component

Endocytic vesicle membrane LRP1(AD) 3.51E-09

Proteasome complex 6.87E-09

SNARE complex 8.94E-08

Cytoplasmic vesicle membrane YWHAE, YWHAB, YWHAZ 1.99E-06

Terminal bouton APP(AD) 4.20E-06

Molecular

Function

Cadherin binding involved in cell-cell adhesion YWHAE, EGFR, YWHAB, YWHAZ, SRC 1.18E-17

SNARE binding 3.54E-08

SNAP receptor activity 4.12E-07

Nitric-oxide synthase regulator activity EGFR 6.77E-06

Receptor tyrosine kinase binding 9.40E-06

Five notable significantly enriched GO terms between AD and the HIDA Domain. There were 140 significant Biological Processes (BP), 57 Molecular Functions (MF),

and 60 Cellular Compartments (CC) identified in the PPI network of shared proteins between AD and HIDA Domain symptoms. Five of the most notable pathways in

each group that did not show up in the AD and Affective Domain PPI network are shown above.

https://doi.org/10.1371/journal.pone.0226021.t003

Table 4. Five notable significantly enriched KEGG pathways between AD and the HIDA domain.

Terms Names of shared essential proteins P value

Amphetamine addiction 5.76E-08

Notch signaling pathway 2.87E-07

Cholinergic synapse 2.83E-06

Glutamatergic synapse 4.65E-06

Amyotrophic Lateral Sclerosis (ALS) 1.60E-05

Five notable significantly enriched KEGG pathways between AD and the HIDA Domain. There were 66 significant

KEGG pathways identified in the PPI network of shared proteins between AD and HIDA Domain symptoms. Five of

the most notable pathways in each group that did not show up in the AD and Affective Domain PPI network are

shown above.

https://doi.org/10.1371/journal.pone.0226021.t004
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also correlated with affective symptoms, especially for depression[43–46]. Morphologically,

spine loss in the hippocampus and medial prefrontal cortex represents one of the most com-

mon pathological sequelae of chronic stress leading to depression[46, 47]. In addition, impair-

ments in proper BDNF expression are similarly noted in both depression and AD[48].

Speculatively, differential post-translational modifications of tau could result in divergent

effects on synaptic function in a cell type- and brain area-specific manner, leading to affective

symptoms when the balance of certain tau modifications are achieved. With the complex regu-

lation of tau through multiple post-translational modification sites, alternative splicing of 6

isoforms in human brains, and multiple structural confirmations[38, 49, 50], tau does not lack

in appropriate complexity for leading to the heterogeneous presentation of symptoms

throughout the course of AD.

The longest tau isoform has close to 80 phosphorylation sites, and of these, at least 20 have

been implicated in functional alterations of tau[51]. Though many kinases have been associ-

ated with tau, one of the most investigated of them is GSK3beta, which phosphorylates tau at

multiple residues, resulting in complex functional outcomes on a molecular and cellular basis

[52, 53]. GSK3beta’s involvement in AD is further supported by the fact that AD patients have

elevated levels of GSK3beta [54, 55] and that familial AD-associated protein PS1 helps localize

the kinase to tau[56]. GSK3beta is perhaps the most promiscuous kinase in mammals[57] and

so, unsurprisingly, has been associated with the pathogenesis of affective disorders[58, 59].

Notably, many of the treatments for depression have inhibitory effects on GSK3beta, chronic

stress increases GSK3beta, and small molecule inhibitors of GSK3beta have been shown to

decrease depression-like behavior in pre-clinical models[58]. Highlighting the potential

importance of GSK3beta in the Affective Domain of AD, two other kinases that were impli-

cated from our PPI analysis, PI3K and PKC, regulate GSK3beta and have been shown to influ-

ence its ability to hyperphosphorylate tau[60, 61]. Thus, GSK3beta represents a possible target

for Affective Domain symptoms, and it may be prudent to investigate these symptoms in clini-

cal trials that are testing the effects of GSK3beta inhibitors on cognition in AD. However, if

improvement in affective symptoms were realized, further investigation would be needed to

determine if inhibition of GSK3beta caused improvements via reduction in p-tau or other

mechanisms.

In addition to kinase regulation of p-tau, heat shock proteins have also been implicated in

regulating p-tau stabilization and function in AD[62, 63]. Heat shock proteins are induced by

cellular stress and are important for protein folding and proteosomal degradation[63]. Of the

eight unique proteins identified in our PPI analysis, two are heat shock proteins. HSPA4 is in

the HSP110 family and acts as a nucleotide exchange factor for HSP70, aiding in its function

[64], and HSP90AA1 is the stress-inducible isoform of HSP90[65]. Both HSP70 and HSP90

have been implicated in the regulation of p-tau, though interestingly, in divergent ways. While

HSP70 has been shown to increase p-tau degradation and stabilize tau binding to microtu-

bules[66–68], HSP90 may actually maintain oligomeric p-tau levels, which are quite patho-

genic[69, 70]. Thus, the HSP70/HSP90 balance may be a key factor in the regulation of p-tau

and resulting affective symptoms. Making matters more interesting, the peptidyl-prolyl isom-

erase FKBP51 is an interaction partner for HSP90 that seems to facilitate the preservative func-

tion of the chaperone on oligomeric p-tau[70]. The point of intrigue comes from the well-

described role for FKBP51 in regulation of glucocorticoid receptor localization and function,

underlying FKBP51’s prominent role in the manifestation of pathological behavior to chronic,

unpredictable, or extreme stress[71]. Though the role for FKBP51 in Affective Domain symp-

toms remains speculative, the hypothesis that imbalance between HSP70/HSP90 promotes p-

tau is intriguing, especially if alterations in subcellular distributions lead to increased p-tau-

dependent dysregulation of synaptic activity.
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Though many of the proteins identified in this PPI analysis are connected to increased p-

tau, a question remains as to how this elevation leads to affective symptoms. As mentioned,

one hypothesis is that hyperphosphorylation of tau results in aberrant localization to dendritic

compartments, thus leading to postsynaptic dysfunction in key limbic areas affected during

AD pathogenesis, such as the medial prefrontal cortex and hippocampus[72]. Interestingly, a

few of the proteins identified in our PPI analysis may provide insight into how this postsynap-

tic dysregulation may be achieved. FYN is a cytosolic tyrosine kinase that was found to be cen-

tral for oligomeric Abeta-induced synaptic loss and dysfunction[73]. In addition,

overexpression of FYN in an AD mouse model accelerated synapse loss and cognitive deficits,

with loss of FYN reversing these AD-related sequelae[74, 75]. While the mechanism of synap-

tic dysfunction was initially unclear, it was discovered that dendritic tau helps localize FYN to

the synapse and that loss of functional tau inhibited Abeta-induced synaptic dysfunction[76].

Ultimately, FYN has been shown to regulate the expression of important synaptic plasticity

proteins, most notably NMDAR and PSD95, though differential phosphorylation patterns of

tau have been shown to promote or ameliorate synaptic dysfunction by this mechanism[76,

77]. Interestingly, in a mouse model of chronic stress, cognitive and affective disorder-like

behavior necessitated tau expression to develop. In this same study, glucocorticoids were

found to increase p-tau and promote dendritic mislocalization of tau, and FYN was similarly

upregulated at the synapse of mice subjected to chronic stress but only if tau expression

remained intact, correlating with a change in NMDAR synaptic expression[78]. Though impli-

cations for FYN in affective disorders have been less well characterized, there is a report of

FYN polymorphisms being associated with trait anxiety[79].

In addition to FYN directly affecting synaptic function via phosphorylation of key postsyn-

aptic density proteins, FYN also regulates RHOA[80, 81], an important regulator of spine mor-

phology and dendritic complexity[82, 83] as well as being another protein identified by our

PPI analysis for the Affective Domain. However, while RHOA co-localizes with p-tau[84] and

has been shown to influence phosphorylation of tau at certain residues via ROCK[85], it is

unclear if a reverse relationship exists whereby p-tau leads to RHOA-dependent alterations of

the synapse. A mechanism whereby p-tau would affect RHOA signaling is especially intrigu-

ing, as chronic stress has been shown to negatively affect postsynaptic morphology in a

RHOA-dependent manner in both medium spiny neurons[83] and pyramidal cells[82], result-

ing in affective symptoms.

In summary, the eight unique proteins identified by our PPI analysis suggest that regulation

of p-tau may be highly involved in the Affective Domain. The increase in p-tau species could

lead to greater mislocalization of tau to postsynaptic compartments, which may lead to signifi-

cant synaptic dysregulation. Plausibly, both FYN and RHOA may be mediators of this synaptic

dysfunction through alterations in key synaptic proteins and dendritic structure.

HIDA domain

Unlike the Affective Domain, where proteins can be neatly sorted into two categories, the

unique proteins in the HIDA Domain have relatively diverse functions. Specifically, these pro-

teins are Low Density Lipoprotein Receptor-Related Protein 1 (LRP1), a cholesterol receptor

that mediates endocytosis and binds to over 40 ligands[86], Epidermal Growth Factor Recep-

tor (EGFR), a receptor tyrosine kinase in the neuregulin/ERBB family[87], 14-3-3beta

(YWHAB), a phosphoserine/phosphotyrosine binding protein of the 14-3-3 family that inter-

acts with a wide-range of other proteins to facilitate protein interactions[88], Small Ubiquitin

Related Modifier 1 (SUMO1), a ubiquitin-like post-translational modification that affects a

broad range of protein functions[89], and Early Growth Receptor 1 (EGR1), a transcription
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factor that represents an intermediate-early gene marking neuronal activation and synaptic

plasticity[90]. All five of these proteins have been implicated in AD pathogenesis: LRP1 is a

receptor that interacts with Abeta and APOE, which may influence LRP1’s ability to aid in

Abeta clearance[86]; EGFR polymorphisms were found to be inversely proportional to AD

risk in a Han Chinese cohort[91]; 14-3-3 can be found around Abeta plaques and facilitates

GSKbeta-mediated phosphorylation of tau[92]; SUMO1 expression is altered in cortices of AD

patients[93]; and EGR1 inhibition leads to decreased Abeta and p-tau while reversing cogni-

tive deficits in 3xTg AD mice[94]. However, the links between these proteins and HIDA

Domain symptoms are sparse. Despite this paucity of direct evidence in HIDA Domain symp-

toms, some points of convergence in perturbed pathways may suggest how these proteins

could influence the development of these symptoms in AD.

To conceptualize how these proteins may lead to HIDA Domain symptoms, understanding

the broad mechanisms that underlie these symptoms is helpful. Though at first hyperactivity,

impulsivity, disinhibition, and aggression may seem like distinctly different entities, they share

a common conceptual framework in a lack of inhibitory control over one’s actions. Unsurpris-

ingly, some common circuitries are perturbed in the development of these symptom, most

notably key corticostriatal pathways[95–97].

For instance, aggression is often partitioned into impulsive/reactive aggression and instru-

mental/proactive aggression, of which the former is most likely to occur in AD[97, 98]. Over

many human imaging and animal studies, three important circuits that mediate impulsive

aggression seem to emerge: 1) areas that support aggressive impulses, including the amygdala,

periaqueductal gray, anteroventral medial hypothalamus, lateral septum, and medial preoptic

nucleus, 2) cortical decision-making centers that evaluate the consequences of an action and

regulate emotion, such as the orbitofrontal prefrontal cortex (oPFC), ventromedial prefrontal

cortex (vmPFC), and anterior cingulate cortex (ACC), and 3) striatal areas mediating response

inhibition and encoding the rewarding and reinforcing aspects of aggressive acts[96, 97, 99–

101]. In aggression, the cortical decision-making circuitry has an inhibitory influence on the

impulses for aggressive behavior, though admittedly this is an overly simplistic description of a

complex and nuanced system[97].

When compared to aggression, the circuitry for impulsivity is surprisingly similar: impul-

sivity can generally be increased with activation of the ventral tegmental area (VTA) to the

ventral striatal circuit and is facilitated by reduced activation or lesioning of numerous frontal

cortical areas, such as the vmPFC, oPFC, and ACC[95, 99]. In addition, areas like the ventral

hippocampus and amygdala can modulate behavior in certain types of impulsivity[95]. For

motor response inhibition, which may be associated with agitation and hyperexcitability in

AD patients, the ACC, subthalamic nucleus, and certain pre-motor cortical areas, among oth-

ers, are implicated[95, 102]. Again, while highly simplified, the HIDA Domain seems to be

mechanistically united in its dependence on corticostriatal balance.

In addition to corticostriatal involvement, HIDA Domain symptoms have been shown to

be influenced by monoaminergic modulation, namely by serotonin, norepinephrine, and

dopamine[95, 96, 101]. Monoaminergic regulation of multiple behaviors, including those in

the HIDA Domain, is achieved through broad release of these neurotransmitters in almost

every area of the brain, especially among neocortical and limbic areas[103, 104]. In general,

reduction in signaling of these three molecules leads to a greater burden of HIDA Domain

symptoms, especially when affecting cortical and striatal areas[95, 96, 101]. In addition, multi-

ple monoaminergic signaling genes have been implicated in increased risk of impulsivity,

aggression, or disinhibition, including Drd1[105], Drd2[106, 107], Drd4[106, 107], 5htr1a
[108], 5htr1b[109–111], 5htr2a[112–114], 5htr2b[115], Dat1[116], 5htt[117–119], Maoa[120–

122], Comt[116, 123, 124], and Tph2[125]. Thus, reductions in monoaminergic regulation of
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corticostriatal pathways represents another complementary mechanism whereby HIDA

Domain symptoms may appear.

In AD, some of the first areas to show neuropathology, degeneration, and dysfunction

include the locus coreuleus (LC), the main center for noradrenergic signaling, and the dorsal

raphe nucleus (DRN), a main center that provides serotonergic innervation for limbic and cor-

tical areas[103, 126, 127]. In addition, some degeneration of the VTA, the main output center

for the mesolimbic dopamine circuit, exists and has a functional impact on AD symptoms,

though to a lesser extent than the LC and DRN[127–129]. Loss of monoaminergic innervation

to corticostriatal circuits may therefore represent an early mechanism that leads to HIDA

Domain symptoms. In contrast, while the transtentorial cortical region tends to degenerate

early in AD, the neocortical regions seem to develop AD-related pathology slightly later in dis-

ease progression and radiate from the ventral to dorsal cortices[103, 130]. There is also some

evidence that the striatum undergoes significant degeneration with AD[131]. Thus, selective

loss of corticostriatal pathways may underlie a relatively late mechanism of HIDA Domain

pathogenesis.

Perhaps the most straightforward link between these proteins and the HIDA Domain

would be in their ability to influence cell death. LRP1 promotes survival via an Akt-mediated

mechanism[132], EGFR protects cells from neurotoxicity through Akt downstream of PS1

[133], 14-3-3 is broadly involved in neuronal differentiation and survival[92], inhibition of

SUMO1 decreases neuroprotection to ischemia[134], and EGR1 promotes maturation and

survival of dentate granule cells[135]. Alterations in these proteins may cause degeneration of

cells in monoaminergic or cortical areas that regulate corticostriatal circuitry during AD path-

ogenesis, thus leading to presentation of HIDA Domain symptoms. While possible, synaptic

dysfunction precedes cell death in AD pathogenesis, and it is more likely that HIDA Domain

symptoms are present before a large burden of cell death occurs. In addition, it is unclear why

these particular proteins would be implicated in being neuroprotective for the HIDA Domain,

as few of them have unique ties to cortical or monoaminergic areas, though EGFR and 14-3-3

have been implicated in dopaminergic cell survival[136–139].

A more intriguing link between these proteins involves their ability to regulate axon remod-

eling and presynaptic function. Though synapse loss is generally agreed to be the best predictor

of symptom progression in AD, axonal pathology and dysregulation are some of the earliest

events in AD pathogenesis, often being detectable before plaque formation[34, 140, 141]. Spe-

cifically, axonal degeneration is typified by axonal swelling, demyelination, axonal atrophy,

loss of presynaptic markers, deficits in axonal transport mechanisms, and eventual dying back

neuropathy[34, 140, 141]. In addition, presynaptic dysfunction occurs in AD and may further

contribute to symptoms in addition to morphological degeneration of axons[142]. Presynaptic

dysfunction and axonal degeneration in cortico-cortical, corticostriatal, and monoaminergic

axons may thus represent a mechanism whereby HIDA Domain symptoms develop. This may

especially be true for monoaminergic axons, which are poorly myelinated and travel far dis-

tances, thus making them particularly susceptible to small aberrations in the cellular environ-

ment and increasing their dependence on efficient axonal transport[103].

In addition, it has been suggested that the areas of earliest AD pathology are also some of

the most plastic structurally, which may be necessitated by the constant remodeling that is

required to encode experiences and make decisions in dynamic contexts. Accordingly, it has

been suggested that AD occurs as a process of continuous synaptic organization gone awry,

leading to dedifferentiation and loss of synapses[143]. In support of AD being a disease of dys-

regulated structural plasticity, abnormal sprouting at both post- and presynaptic areas is an

early hallmark of AD pathogenesis[143].
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Thus, it is intriguing that the five unique proteins identified by our PPI analysis are involved

in presynaptic function and axon maintenance. For instance, LRP1 is necessary for axonal

extension mediated by lipoproteins, and its function can be enhanced by non-pathogenic

ApoE3 but not pathogenic ApoE4[144], a process which is dependent on MAPK and intracel-

lular calcium[145]. In addition, LRP1 agonism promotes sensory axon sprouting and regener-

ation after spinal cord injury[146], and axonal regeneration through the urokinase-

plasminogen activator is modulated by LRP1 independent of integrin beta-1[147]. Finally,

LRP1 was shown to be necessary for metallothienen-II’s ability to overcome microglial upregu-

lation of TNF-alpha and thus promote axon growth[148]. As LRP1 is a receptor allowing for

endocytosis of multiple lipoproteins that can integrate into the plasma membrane, it may be

an important regulator of axonal structural plasticity by allowing for the necessary plasma

membrane substrates to reach their presynaptic location.

EGFR has also been shown to impact axonal structure. Specifically, EGFR is best known as

being necessary for restriction of axonal regeneration in the CNS mediated by inhibitory sub-

strates, such as myelin and chondroitin sulfate proteoglycans[149–151]. Interestingly, EGFR

may not just promote inhibition of axonal regeneration, it may also be essential for maintain-

ing the proper balance between dynamic and static filopodia. Specifically, it was shown that

EGFR demonstrates an intrinsic asymmetry during axon outgrowth monitored by live cell

imaging, and aberrations in EGFR signaling led to reduced outgrowth dynamics and excessive

branch formation[152]. Thus, EGFR may be an important protein mediating the “structural

plasticity” hypothesis of AD and could exacerbate connectivity breakdown between corticos-

triatal or monoaminergic pathways.

14-3-3 Proteins have also been highly implicated in axon regeneration and structural plas-

ticity[88, 153]. In particular, knockdown or inhibition of 14-3-3beta can promote axon and

neurite outgrowth[154]. Similar to the dynamic role of EGFR, 14-3-3beta has also been shown

to be able to promote the switch from attraction to repulsion of axons induced by Sonic

Hedgehog signaling[155]. Interestingly, it was shown that 14-3-3 may interact with p-tau to

promote tubulin disruption, thus impacting proper axon maintenance or neurite outgrowth

and directly linking this axonal regulation with AD pathogenesis[156].

Unlike the previous three proteins, SUMO1 has been more closely linked to presynaptic

signaling mechanisms than axonal maintenance. However, it was shown that SUMO1 attaches

to the RNA binding protein La to facilitate its retrograde transport, implicating this post-trans-

lational modification in axonal transport[157]. Presynaptically, however, SUMO1 has been

shown to be necessary for the localization of several key proteins involved in presynaptic vesi-

cle recruitment and release, including synapsin Ia[158], RIM1-alpha[159], and gephryn[160].

In addition, SUMO1 actively influences presynaptic transmission, as evidenced by SUMO1

mediating decreased presynaptic glutamate release in the AD mouse model Tg2576[93]. Thus,

SUMO1 may contribute to deficits in axonal transport as well as reduced presynaptic function

in AD.

Finally, despite EGR1’s role as a transcription factor, and thus exerting the bulk of its

actions in the nucleus, it has also been implicated in influencing axon growth. Specifically,

inhibition of EGR1 prevents the ability of NGF to increase neurite outgrowth in a novel path-

way whereby EGR1 binding to c-Jun promotes NGF’s downstream effects[161]. In addition,

PACAP also depends on EGR1 for its ability to promote neuritogenesis[162]. Lastly, sAPPbeta,

the cleavage product of beta-secretase and upstream precursor of Abeta, is able to promote

neuritic outgrowth but needs functional EGR1 to promote axon outgrowth, while dendritic

outgrowth is independent of intact EGR1[163]. Thus, EGR1 joins the other unique proteins

associated with the HIDA Domain in our PPI analysis in its ability to influence the structural

plasticity of axons and presynaptic function. Altogether, this neurodegenerative process at
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presynaptic sites may influence corticostriatal and monoaminergic pathways, thus linking

these five proteins identified by our PPI analysis and the HIDA Domain.
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