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Abstract

Despite the widespread use of current-source density (CSD) analysis of extracellular potential recordings in the brain, the physical
mechanisms responsible for the generation of the signal are still debated. While the extracellular potential is thought to be exclu-
sively generated by the transmembrane currents, recent studies suggest that extracellular diffusive, advective and displacement
currents—traditionally neglected—may also contribute considerably toward extracellular potential recordings. Here, we first justify
the application of the electro-quasistatic approximation of Maxwell’s equations to describe the electromagnetic field of physiologi-
cal origin. Subsequently, we perform spatial averaging of currents in neural tissue to arrive at the notion of the CSD and derive
an equation relating it to the extracellular potential. We show that, in general, the extracellular potential is determined by the CSD
of membrane currents as well as the gradients of the putative extracellular diffusion current. The diffusion current can contribute
significantly to the extracellular potential at frequencies less than a few Hertz; in which case it must be subtracted to obtain cor-
rect CSD estimates. We also show that the advective and displacement currents in the extracellular space are negligible for phys-
iological frequencies while, within cellular membrane, displacement current contributes toward the CSD as a capacitive current.
Taken together, these findings elucidate the relationship between electric currents and the extracellular potential in brain tissue

and form the necessary foundation for the analysis of extracellular recordings.

Introduction

Electrical activity of excitable brain cells is realized by the trans-
membrane ionic currents which, in turn, give rise to currents and the
corresponding scalar electric potential in the extracellular space.
Measurements of extracellular potential therefore provide informa-
tion about electrical activity in the brain and aid to unravel the func-
tion of the underlying neuronal circuits. The high-frequency
component (above ~500 Hz) of the extracellular potential, termed
multi-unit activity, is typically used to detect spiking of individual
neurons (Schmidt, 1984). In contrast, the signal at lower frequencies
(below ~200 Hz), termed the local field potential (LFP) (Buzsaki
et al., 2012; Einevoll et al., 2013), characterizes the collective elec-
trical activity of neuronal populations. At a spatial scale greater than
that of a single cell, this collective electrical activity may be
described by a spatially smooth three-dimensional current-source
distribution, termed current-source density (CSD) (Mitzdorf, 1985).
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The idea that the CSD may be estimated from the Laplacian of
the extracellular potential recorded at nearby locations within the
brain, originates from Pitts (1952) and forms the basis of CSD anal-
ysis. Nicholson (1973) provided a theoretical justification for Pitts’
insight in the special case of the quasi-stationary approximation of
Maxwell’s equations (Haus & Melcher, 1989), which neglects both
magnetic induction and displacement current. This theory tacitly
assumes that tissue conductivity is independent of the frequency of
the signal in the physiological range, and that diffusion, advection
and displacement currents in the extracellular space are negligible in
comparison to Ohmic drift current.

The validity of these assumptions, however, has been questioned
in recent studies. Bédard & Destexhe (2009) developed a theoretical
model predicting that ionic diffusion in the extracellular space is the
main cause for the frequency dependence of the LFP. In a follow-up
study, it was concluded that the CSD must be due to the extracellu-
lar diffusion current rather than the transmembrane currents (Bédard
& Destexhe, 2011). Furthermore, analyzing the extracellular poten-
tial recordings, Riera et al. (2012) found that the estimated laminar
CSD profiles do not sum to zero across the cortical depth as would
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be expected from their neuronal origin. To address this paradox,
they speculated that tissue polarization as well as diffusive and
advective currents might need to be accounted for in the CSD analy-
sis of extracellular potential recordings.

The limiting assumptions of the theory of CSD analysis (Nichol-
son, 1973; Nicholson & Freeman, 1975) and challenges to its valid-
ity from both experimentalists and theoreticians motivated us to
revisit the physical basis of CSD analysis and examine its underly-
ing assumptions. Starting with Maxwell’s equations of macroscopic
electromagnetism, we utilize the electro-quasistatic approximation to
establish the equations describing fields of physiological origin. We
present the general relationship between currents and the potential in
the extracellular space and motivate a coarse-grained description
needed for the analysis of electrophysiological recordings. Applying
spatial averaging to currents in brain tissue, we arrive at the notion
of the CSD of transmembrane currents and subsequently derive the
equation for CSD analysis considering the possible frequency depen-
dence of tissue conductivity. We show that, in general, the extracel-
lular potential is determined by the transmembrane currents as well
as by the gradients of the putative extracellular diffusive currents,
which can play an important role at the lowest frequencies. In turn,
the effect of the displacement and advective currents in the extracel-
lular space is negligible as a result of fast charge relaxation. How-
ever, within cells the displacement current contributes toward the
CSD as a capacitive current.

Materials and methods
Electrophysiological recordings

All surgeries and procedures were approved by the Allen Institute
for Brain Science Institutional Animal Care and Use Committee.
Recordings were made in C57BL/6 male mice, >12 weeks old
(Jackson Laboratories, n = 2). Detailed descriptions of the experi-
mental apparatus and procedures are available in a previously pub-
lished report (Denman et al., 2016).

Briefly, an initial surgery was made to attach a headpost to the
skull. Following surgery, the animal was allowed to recover for at
least 7 days before habituation. Prior to recording, animals were
allowed to fully habituate to head-fixation in the experimental appa-
ratus over several sessions of increasing duration. The apparatus
consisted of a horizontal disk suspended in a spherical environment
onto which light was projected. Animals were allowed to run freely
on the disk while head-fixed.

On the day of recording, anesthesia was induced and maintained
with inhaled isoflurane (5% induction, 2—-3% maintenance). A small
craniotomy was made over primary visual cortex using stereotactic
coordinates and a reference screw was implanted as far from the
recording site as possible, rostrally, within the area of exposed skull.
The animal was transferred to the experimental apparatus and
allowed to recover from anesthesia. A high-density array of extracel-
lular electrodes, containing electrodes spaced every 20 um vertically
(Lopez et al., 2016), was lowered through the craniotomy; the dura
matter was pierced by the electrode array. The array insertion con-
tinued until some electrodes were below the cortex and within
underlying structures. At this level, several electrodes remained
above the pial surface, ensuring complete coverage of cortex. After
reaching this insertion depth, the electrode was allowed to rest
untouched for at least 30 min before data were recorded.

Visually activity was evoked in cortex using brief full-field lumi-
nance changes. Luminance changes were 50 ms in duration and
alternated between increases and decreases in luminance, returning

to a mean luminance (~3 cd/m?) for 3 s between changes. The mag-
nitude of luminance changes was 0.2 cd/m> for OFF and 5.8 cd/m>
for ON. Signals were acquired in two parallel data streams at 10-bit
resolution: a MUA data stream high-pass filtered at 500 Hz and
sampled at 30 kHz and a LFP data stream low-pass filtered at
300 Hz and sampled at 2.5 kHz. The analyses presented were per-
formed on the LFP data stream.

Estimation of the CSD

The array data were mapped to the cortical depth locations after
identifying the channel corresponding to the pial surface by visual
inspection of raw LFPs post hoc. Brief (~500 ms) chunks of raw
data from each channel were plotted in an arrangement that allowed
comparison of neighboring channels; the channel at which amplitude
dropped discontinuously and higher frequency components became
more homogenous was chosen as the pial surface.

The CSD was estimated from the trial-averaged cortical LFP
recordings for both ON (n = 50) and OFF (n = 50) luminance con-
ditions. To estimate the CSD we used a variant of the delta-source
iCSD method (Pettersen et al., 2006) assuming a radius of 0.5 mm
for the circularly symmetric sources around the recording electrode.
This method utilizes the solution of the Poisson equation, Eq. (22),
for the extracellular potential @; at the i-th cortical location. It can
be expressed as a linear superposition @; = Ajs; of sources s; at
each of j-th location, where A; is a forward operator. Correspond-
ingly, the CSD may be estimated as §5; = W;®;, where Wj; is the
regularized inverse of the forward operator, which suppresses the
contribution of the noise on the estimated sources (Gratiy et al.,
2011). The tissue conductivity was taken at 0.3 mS/mm (Wagner
et al., 2014).

The divergence of the diffusive current in Eq. (21) when expressed
in terms of the ionic concentrations, is given by —V - (Jdf) .
=F3%,;zV-(D;V{ci),), where (c;), is the coarse-grained extracellu-
lar concentration of the i-th ionic species. Assuming K+ and Na+ ions
dominate the changes in the ionic concentration and utilizing the con-
dition of electroneutrality (A[K+], + A[Na+], =0), we find
—V - (J9 = F(Dg, — Dnat)V?[K+],, which constitutes a Poisson
equation for [K+],. Therefore, the divergence of the diffusive current
(i.e., the apparent CSD resulting from diffusion) may be estimated
from measurement of [K+],, applying the same technique as for esti-
mating the CSD from the LFP recordings. Similarly, we assume that
the diffusion current is localized to the same cylindrical volume as the
CSD and varies only along the cortical depth. We use
Dy, =1.96 - 107° m*/s and Dy, = 1.33 - 10° m%/s (Grodzinsky,
2011).

Results
Equations of electromagnetisms of physiological origin

Our starting point is the set of macroscopic Maxwell’s equations
describing electro-magnetic field variables, which are spatially aver-
aged over volumes that are large compared to atomic volumes (Rus-
sakoff, 1970; Griffiths, 2012):

0
VxE=—2B (1)
VxH=-J+D (2)
o o’
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V.B=0, (4)

where p and J are the free (i.e., unbound) charge density and current
density, E and B are the electric and magnetic fields, respectively.
The effects of bound charges and currents are included in the auxil-
iary D and H fields, which may be expressed in terms of the funda-
mental £ and B fields using constitutive relations. For linear
materials with instantaneous response properties, it holds that
D = ¢E and H = 1B where ¢ is the electric permittivity and u the
magnetic permeability of the medium.

Spatial averaging over volumes including many atoms eliminates
references to individual atoms and removes the high spatial fre-
quency components of the field variables. Correspondingly, the
macroscopic description may be viewed as a description for which
the spatial Fourier component of the field variables above some lim-
iting frequency &, are irrelevant and eliminated by performing
averaging over volumes with the dimension ~1/&;,. The irrelevant
spatial frequencies are determined not by the physical structure of
the system, but rather by the particular problem we are attempting
to solve (Robinson, 1971). As such, the macroscopic equations for a
particular system may be formulated using different averaging vol-
umes—all depending on the spatial scales relevant for the applica-
tion to a particular problem.

Maxwell’s equations describe a host of electromagnetic phenom-
ena occurring across a wide range of spatial and temporal scales and
are difficult to analyze in a general form. To describe the electric
fields in the brain, we introduce two approximations which drasti-
cally simplify the mathematical treatment of electrodynamics.

Firstly, for fields of physiological origin, the typical temporal fre-
quencies are so low (less than a few thousand Hz) that the magnetic
induction gB has a negligible effect on the electric field (Plonsey &
Heppner, 1967; Rosenfalck, 1969). The error in the electric field E.,
at angular frequency « relative to the actual field £ made by
neglecting the magnetic induction is given by Eer/E~ (0Ten)’
(Haus & Melcher, 1989). Here, 7., = [/v is the time it takes the
electromagnetic wave to propagate across the characteristic length /
at velocity v = c¢/,/li¢, in a material having relative permittivity e,
and permeability u,, where ¢ is the speed of light in vacuum. For
example, in grey matter we may take the characteristic length
~1 mm, corresponding to the cortical thickness. Using measured
values of permittivity and permeability in mammalian grey matter
(e.g., Wagner et al., 2014), yields the relative error E.,/E<1077
for frequencies in a range of 10 Hz to 10 kHz, so that magnetic
induction can be safely neglected. Neglecting the magnetic induction
in Faraday’s law, Eq. (1), constitutes the electro-quasistatic approxi-
mation (Haus & Melcher, 1989):

VXE~0=E=-Vo, (5)

that is, the electric field is essentially conservative and can be
expressed as a gradient of a scalar potential ®. Consequently, using
the electro-quasistatic approximation to describe fields in the brain
tissue of physiological origin amounts to a negligible error when
compared to the exact solution using a full set of Maxwell’s equa-
tions. In contrast, the displacement current %D in Ampere—Max-
well’s law (Eq. 2) is responsible for the capacitive charging of
neural membranes and cannot be neglected.

Secondly, the macroscopic velocity # of ions in the brain and the
magnetic field of physiological origin are so low that the magnetic
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component of the Lorentz force F = q(E + u x B) is negligible.
Indeed, using the largest bulk flow velocity # ~ 1 m/s due to the
arterial blood flow (Bishop et al., 1986), the typical magnetic field
B ~ 100 fT (Hamalainen et al., 1993) and extracellular electric field
E ~1 V/m (Cordingley & Somjen, 1978) arising from neuronal
activity, yields uB/E ~ 107'3. Consequently, the effect of the mag-
netic field of physiological origin on the motion of free charges is
negligible in comparison to the effect of the electric field.

The negligibility of magnetic induction and magnetic component
of the Lorentz force results in the decoupling of the electric and
magnetic fields. As the current density is now independent of the
magnetic field, it is convenient to eliminate the H field from consid-
eration by taking the divergence of Eq. (2), resulting in a current
continuity statement:

Vg0, (6)

where the total current density J' % J + 9D is solenoidal, that is,
current travels along closed loops. Current continuity, Eq. (6), also
represents the principle of charge conservation, which may be cast
in a familiar form V~J+gtp = 0 by expressing the displacement
current in terms of the density of free charges p using Gauss’s law,
Eq. (3). Together with the constitutive relations, Egs. (3), (5) and
(6) determine the electric field, current density and charge density.
Then, if desired, the magnetic field can be determined from the
known current density by using Eqs. (2) and (4).

Fine-grained description of electric currents in the extracellular
space

The extracellular space occupies ~20% of brain tissue volume and
has a torturous geometry with a typical thickness of ~40-60 nm
(Sykova & Nicholson, 2008). It contains the interstitial fluid, which
constitutes a dilute solution of mobile ions as well as the extracellu-
lar matrix, which is composed of a mesh-work of long-chain macro-
molecules including fixed charges. To resolve the electric field
within the narrow confines of the extracellular space, we must select
the linear dimension of the averaging volume to be shorter than the
thickness of the extracellular space. On the other hand, here we will
not be concerned with the details of the electric field on the spatial
scale of the Debye length ~1 nm (Sykova & Nicholson, 2008) char-
acterizing the extent of electrostatic forces around individual charges
(Grodzinsky, 2011). Choosing the size of the averaging volume with
dimension ~10 nm allows both resolving the fields across the extra-
cellular space as well as averaging out the strong electrostatic forces
present at the shorter spatial scale. The chosen spatial scale is much
finer than the dimensions of dendritic diameters (~1 pm). Thus, for
the purposes of describing fields and currents in brain tissue, we will
refer to it as a fine-grained scale. Here, we present such a descrip-
tion and then motivate an alternative description at the coarser spa-
tial scale needed for the analysis of the multi-electrode LFP
recordings.

Typically, the extracellular space is treated as a volume conductor
by considering only the electromigration current arising in the pres-
ence of the electric field. However, more generally, the migration of
ions in the interstitial fluid may also occur even in the absence of
an electric field due to diffusion or advection (Probstein, 2005). The
role of the extracellular diffusion current on the extracellular poten-
tial is debated and has been the subject of recent theoretical (Bédard
& Destexhe, 2009, 2011) and modeling (Pods et al., 2013; Pods,
2017; Halnes et al., 2016) studies. In turn, the significance of advec-
tive mass transport within the bulk of the interstitial fluid is
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discussed in Abbott (2004), and was suggested to play a role for the
CSD analysis (Riera et al., 2012).

The electromigration of ions is described by Ohmic drift
J°hm = oFE, where ¢ is the electrical conductivity. The diffusion cur-

rent density of ions in a dilute solution Jaf = —F > ziD;V¢; is dri-
i

ven by the gradients of ionic concentrations c¢;, where D; and z; are

the diffusion coefficient and valence of the i-th ionic species, respec-

tively, and F is the Faraday constant. The advection current

JY =uF >~ zic; results from charge transfer within bulk flow in the
1

interstitial fluid with velocity u. Substituting the specific expressions
for each current mechanism into Eq. (6) we find:

0
V. (O'E — FZDiZiVCi + uFZz,-c,- 0 (FE)) 0, (7)

where we utilized the constitutive relation D = ¢E.

For physiological conditions in the extracellular space some of
the mechanisms contributing to the total current may be neglected,
which results in drastic simplification of Eq. (7). To compare the
importance of the different current mechanisms, we express the elec-
tric field in Eq. (7) via the charge density using Gauss’ law,
V-E = p/e, and find:

p 9
- +V ( FZD,lec, + uFZLC;) + 5P = 0, (8)

where for simplicity we neglect the possible inhomogeneity of con-
ductivity and permittivity in the extracellular space and define the
relaxation time constant 7, = ¢/¢. Charge relaxation is controlled by
the mobile ions in the interstitial fluid. Consequently, the relaxation
time constant is determined by the electrical properties of the inter-
stitial fluid. The interstitial fluid has typically been assumed to pos-
sess similar composition to the cerebrospinal fluid (Sykova &
Nicholson, 2008) and correspondingly similar electrical properties.
Using measured values of conductivity ¢ ~ 1.8 S/m (Baumann
et al., 1997) and permittivity ¢ ~ 9.6 - 107 '® F/m (Andreuccetti
et al., 1997) in the cerebrospinal fluid at physiological frequencies,
leads to 7, ~ 1077

The charge density in the extracellular space may be expressed as
asum p = p/ + p™, where p/ is the charge density of fixed charges
in the extracellular matrix and p™ = F Y z¢; is the charge density

of mobile ions in the interstitial fluid. Accounting for the incom-
pressibility of the interstitial fluid, V-u = 0, and that the density of
fixed charges does not change with time % p/ =0, Eq. (8) becomes:

(0 +p™) —‘ceFZZ,

(DiVe;) +‘ceddp =0, 9)

where %p’"éu -Vp™ —0—% p™ is the derivative with respect to the

moving fluid element (material derivative). For fields of physiologi-
cal origin, we find that wt, < 1, and so the term re%pm attributed
to the contributions of displacement and advection currents is negli-
gible in comparison to the term p/ + p™ attributed to the Ohmic cur-
rent. Correspondingly, neglecting the advection and displacement
components in Eq. (7) and utilizing the electro-quasistatic approxi-
mation, E = —V® , leads to the Poisson equation:

*FZZ:

where the source term on the rlght-hand side arises from diffusion
fluxes.

V.- (oV®) (D;Vei), (10)

Notably, derivation of Eq. (10) does not require assuming elec-
troneutrality. In fact, invoking electroneutrality would have resulted
in a contradiction between Eq. (10) and Gauss’ law Eq. (3), which
is, however, avoided when accounting for a non-zero charge density
(see Appendix B).

If the ionic concentrations are known, then the extracellular
potential may be found from Eq. (10), that is, the solution of the
forward problem, given the distribution of membrane currents along
the boundary of the extracellular space. More generally, the concen-
tration of ionic species would need to be determined from the solu-
tion of the Nernst—Planck equation (Probstein, 2005) simultaneously
with the solution of Eq. (10).

However, Eq. (10) does not provide a practical way for interpret-
ing the extracellular, multi-electrode recordings in terms of neuronal
currents, that is, solving the inverse problem, because it is severely
underdetermined. The spatial resolution of extracellular recordings is
limited by the distance between recording sites (typically 220 pum)
along modern multi-channel probes (Shobe et al., 2015; Lopez
et al., 2016) and is too sparse to infer the detailed distribution of
the boundary currents along the cellular membrane. The information
about neuronal currents, which may be inferred from such data
would be similarly limited in spatial resolution and could only repre-
sent some average measure over volume elements including multiple
neurites. Thus, to analyze extracellular multi-electrode recordings, it
is necessary to develop the description of the extracellular potential
in terms of currents in brain tissue at a much coarser spatial scale
comparable to the resolution of experimental recordings. We will
refer to it as a coarse-grained scale.

Coarse-grained description of currents in brain tissue

As discussed in the section ‘Equations of electromagnetisms of physi-
ological origin’, the macroscopic Maxwell’s equations describe field
variables which are spatially averaged over the macroscopic volume
elements to eliminate the unwanted high spatial frequencies. At the
coarse-grained scale, the size of the averaging volume is chosen large
enough to include components of multiple neurites, and thus would
average over both neurites and the extracellular space, that is, over
the neural tissue. Then, the corresponding macroscopic field variables
would characterize the tissue properties and could not be used for the
description of the extracellular space. To avoid blurring the distinc-
tions between the two spaces, we use the fine-grained macroscopic
field variable, and then perform the second averaging (i.e., coarse-
graining) separately over the cellular and the extracellular space.
We define the coarse-grained total current density:

T ) = / dw(r — PV (11)

as a convolution over the entire space with the averaging kernel
w(r) being a real, non-negative and continuous function normalized
to unity: [ d'w(r’) = 1. For the coarse-grained current density to
represent a smooth local average over multiple neurites, w(r) must
vary slowly over the dimension of dendritic diameter (d ~ 1 um)
and approach zero in some well-behaved fashion as shown in Fig. 1
A. Correspondingly, we demand the width of the kernel’s plateau,
that is, the effective radius R of the averaging spherical volume, to
be much larger than the size of dendritic diameter: R >> d.

To distinguish between the currents in cellular (including neurons,
glia and vasculature) and extracellular space (including interstitial
fluid and extracellular matrix), we formally express Eq. (11) as a
sum:
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F1G. 1. Spatial averaging of currents in brain tissue. (A) An example of a kernel w(r), which may be used in the spatial averaging procedure. The width of the
plateau R is much larger than the size of the dendritic diameter. The function transitions to zero monotonically in a well-behaved fashion to avoid jitter in the
averaged variables. (B) Schematic of a cross-section of neural tissue with neuropil (grey) surrounded by the extracellular space (white). Spherical averaging vol-
ume (shown by a dashed black circle) with an effective radius R corresponding to the width of the averaging kernel encloses multiple processes of several
nearby cells. The CSD at the central location (black dot) is computed by summing membrane currents over the spherical averaging volume. The CSD computed
over this volume may generally result from a combination of outward (red outline) and inward (blue outline) membrane currents. (C) Schematic of cellular cur-
rent from a dotted rectangular detail in right-hand corner in panel (B). The axial currents along the neuropil are shown as crosses or dots corresponding to the
flow into or out of the paper, respectively. Some of the cytoplasmic current diverts toward the membrane (black arrows) and results in the outward (red arrows)
or inward (blue arrows) transmembrane current. According to Eq. (15), the divergence of the averaged currents in the cellular space (black lines) may be found

as a weighted sum of the transmembrane currents J,,,.

J ) = T ), + T ). (12)

of the averaged cellular (J(r)), = fVL_ &Vw(r—r)J(r') and
extracellular  (J(r)), = ny dvw(r—r)J(r') current densities,
where the integration is performed only over the corresponding cel-
lular V. and extracellular V, volumes, respectively, as shown in
Fig. 1 B.

Both cellular and extracellular coarse-grained current densities are
defined over the whole tissue space, rather than only within their
corresponding spaces. Therefore, the coarse-graining procedure
effectively introduces the bi-domain representation, in which brain
tissue is viewed as consisting of two interpenetrating cellular and
extracellular domains with the corresponding two sets of field vari-
ables. A similar bi-domain representation is widely used in the mod-
eling of cardiac tissue and has successfully described the human
electrocardiogram (Geselowitz & Miller, 1983; Henriquez, 1992).
Such bi-domain models describe the coarse-grained extracellular and
intracellular potential, which are coupled through the cable equation.
In contrast, here, we present the formalism for describing the
coarse-grained extracellular potential in relationship with currents in
brain tissue as motivated by the method of CSD analysis (Mitzdorf,
1985).

Averaging to the current continuity, Eq. (6), and utilizing commu-
tativity between the differentiations and averaging operations over
the entire space (see Appendix A) yields:

V- {J¥(r) =0, (13)

which is the statement of current continuity at the coarse-grained
scale. Substituting Eq. (12) into Eq. (13) results in

V() + VT ), =0, (14)

stating that the divergences of the coarse-grained cellular and extra-
cellular currents sum to zero.

The divergence of the coarse-grained current density in the cellu-
lar domain may be expressed via a sum of transmembrane currents
(see Appendix A)

=V (Jr),. = / dd' J,,(r Y\w(r — 1), (15)

Se

weighted by the averaging kernel, where J,, is the transmembrane
current density, and S, is the surface of the cellular membrane. As
membrane currents in the surface integral in Eq. (15) are weighted
by the averaging kernel, the sum of membrane currents effectively
includes contributions only within a vicinity around r, where the
kernel is non-negligible. The benefit of Eq. (15) is in that it allows
us to express the confounding cellular currents averaged over the
cellular cytoplasm and membrane in terms of the weighted sum of
the transmembrane currents as shown in Fig. 1 C. Because the aver-
aging kernel is normalized, the integral on the right-hand side of
Eq. (15) has the units of current per unit volume and may be used
to define the transmembrane current-source density (CSD):

s™M(r) d:ef/s da' J,,(rY\w(r —r'), (16)

which represents a continuous and smooth measure of electric current
in and out of the extracellular space. The smoothness of the CSD is
determined by the choice of the averaging kernel, which should be
selected to achieve the desired spatial resolution for the description of
the currents in brain tissue. The membrane current J,, in Eq. (16) is a
sum of capacitive current C,, ‘?(.;/,'" and ionic currents J;,,, where C,, is
the specific membrane capacitance and V,, is the transmembrane volt-
age. The capacitive current is in fact the manifestation of the displace-
ment current within cellular membranes, while the ionic current is a
sum of diffusive, advective and drift currents.
With such a definition of the CSD, Eq. (14) yields:

V- (), = 5" (), (17)

which links the coarse-grained extracellular currents to the trans-
membrane CSD. Derived from charge conservation, Eq. (17) is in
turn a statement of charge conservation (or current continuity) on a
coarse-grained spatial scale. Quite intuitively, currents crossing cel-
lular membranes become the extracellular currents.
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Equation (17) expresses the relationship between extracellular cur-
rents and the CSD and does not require the introduction of an
equivocal impressed current, which is sometimes invoked to explain
the method of CSD analysis (Nicholson & Llinas, 1971; Hamaldinen
et al., 1993; Nunez & Srinivasan, 2006). As discussed in the section
‘Fine-grained description of electric currents in the extracellular
space’, any current in brain tissue may arise due to electromigration,
diffusion, advection and the displacement mechanisms, making any
additional notion of a current superfluous. Here, we obviate the need
for the impressed current because we explicitly perform the spatial
averaging, which allows us to relate the extracellular and transmem-
brane currents.

In the presence of extracellular stimulation, the boundary of the
extracellular space will also include electrode sites. Applying the
same averaging in the presence of the electrode current results in a
more general relationship:

V(IO ), = s ) + 57 (r), (18)

where s(r) represents the additional electrode’s current source.
When approximating the electrode sites as points without spatial
extent, after coarse-graining we find s°(r) = Lw(r — r$!), where I,
is the current leaving the electrode at the k-th site located at r'.

In the section ‘Fine-grained description of electric currents in the
extracellular space’, we established that for fields of physiological
origin, the advective and displacement currents in the extracellular
space may be neglected, so that the total current
J*°Y, = ("™ + JU, may include only the Ohmic drift and the
diffusion component. The extracellular electric field not only
depends on the material properties of the extracellular space but also
on the material properties of surrounding cells via the boundary con-
ditions. As such, the electric field and the corresponding drift current
in the extracellular space depend on the material properties of neural
tissue (i.e., including both cellular and extracellular space). As we
are interested in the coarse-grained description, we are not con-
cerned with the details of the electric field distribution in the extra-
cellular space and the many intricate physical phenomena
determining its dispersion properties (Foster & Schwan, 1995).
Instead, we introduce the phenomenological relationship between
the Fourier components of Ohmic current (Jf’uh’“>e and the extracellu-
lar potential (®,,), at the coarse-grained scale:

AL (19)
where ¢, = 6, + iwg, directly corresponds to the tissue conductiv-
ity, which may be seen by considering a four-electrode system for
measuring tissue impedance (Plonsey, 1969; Logothetis et al.,
2007).

In such a configuration, the four electrodes are inserted in the
extracellular space within the brain tissue and positioned along a
straight line at equal distances a. The outer electrodes carry the
applied current /,, at the angular frequency w, while the inner elec-
trodes are used to measure the extracellular voltage A(®,,),. When
the electrode current source is much stronger than the CSD of mem-
brane currents, Eq. (18) predicts the extracellular current to spread
radially (%, =1,/ (47r]r—rel{2) from the electrode for the loca-
tions deep within a volume of tissue. Considering the tissue with
relatively uniform ionic concentrations, we may neglect the diffusion
current as typically done in experiments for measuring tissue con-
ductivity, so that (J©°) = (Jm)  Applying Eq. (19), we find the
potential difference between the extracellular recording electrodes

A(D,), =1,/(4nac;)). This exact equation is used for calculating

tissue conductivity from the measurements of extracellular voltage
A(®,), in a four-electrode configuration experiment (Logothetis
et al., 2007). Consequently, ¢ in Eq. (19) corresponds to the
experimentally measured complex tissue conductivity.

Expressing Eq. (18) in the Fourier domain and utilizing Eq. (19)
in place of the Ohmic current density we finally arrive at

V- (0, V(®u),) = V- (I, —si =55, (20)

This is the governing equation for the coarse-grained extracellular
potential (®,,).. It states that, in general, the extracellular potential
is determined by the CSD of tramsmembrane currents s5°", the
divergence of the diffusive current —V - (Jfﬂ . as well as by the
stimulating electrode source. A unique solution to Eq. (20) within a
volume of brain tissue may be found for a given distribution of
CSD, diffusion current and electrode sources when supplemented by
the boundary conditions for the potential or its normal derivative on
the surface enclosing the volume.

In the absence of the electrode current and if the frequency
dependence of the tissue conductivity in the physiological range
may be neglected (Logothetis et al., 2007; Miceli et al., 2017),
Eq. (20) simplifies to:

V- (@V(@),) = V- (), — s, (21)

where now all terms have identical temporal dynamics. Finally,
when conductivity is uniform and isotropic, and the gradients of dif-
fusion currents are negligible in comparison to the CSD, Eq. (21)
further simplifies to

GVH(®), = —s™™, (22)

which recovers the result of the original theory of CSD analysis,
except that here the Poisson equation is explicitly formulated for the
coarse-grained extracellular potential.

Effects of extracellular diffusion on the LFP recordings

Typically, the diffusion component of the extracellular current is tac-
itly neglected in CSD analysis. Here, we give a crude estimate of the
impact that diffusive currents can have on the LFP under conditions
where extracellular concentration gradients become relatively large.
As obtaining high-resolution data of both extracellular potentials and
ion concentrations simultaneously from the same volume is not feasi-
ble, we based our estimate on comparing two independent experi-
ments: (1) We recorded the extracellular potential in vivo from the
mouse primary visual cortex with a high-density multi-electrode array
(inter-electrode spacing ~20 pm) in response to the repeated presenta-
tions of visual stimuli (see Materials and methods: Electrophysiologi-
cal recordings). For these data, the CSD was estimated (see Materials
and methods: Estimation of the CSD) from the trial-averaged LFP
responses based on Eq. (22), that is, under the assumption that trans-
membrane currents are the sole contributors to the extracellular poten-
tial (Fig. 2 A). (2) We used previously published data for the
extracellular [K+] transients in the mammalian cortex arising in
response to the electrical stimulation of the thalamus (Cordingley &
Somjen, 1978). Accounting for electroneutrality in the extracellular
space, we also assumed, as a first approximation, that increases in the
extracellular [K+] are compensated by the equal decreases in the
extracellular [Na+], which is in qualitative agreement with experimen-
tal findings (Dietzel et al., 1982). Using these data, we estimated the
divergence of the diffusive current (i.e., the apparent CSD resulting
from diffusion) —V - (J%T)  (Fig. 2B).
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F1G. 2. Estimation of the contribution of extracellular diffusion toward the LFP recordings. (A) Trial-averaged LFP recordings (left) and the corresponding
CSD estimates (right) from the mouse visual cortex in response to the presentation of the full-field 50 ms flash: ‘ON flash’ (top) and ‘OFF flash’ (bottom).
Black vertical line indicates the stimulus onset. (B) The experimentally recorded spatial profile of the extracellular [K+] in cat visual cortex in response to the
electrical stimulation of the thalamus (Modified with permission from Cordingley & Somjen (1978), Fig. 5) and the corresponding assumed [Na+] profile (top
left). The estimated spatial profile of the apparent CSD resulting from diffusion (top right). The modeled [K+] transients corresponding to the experimentally
recorded half-decay times (Cordingley & Somjen, 1978) for the post-stimulus clearance (bottom). (C) Comparison of the power spectral density of the estimated
apparent CSD resulting from diffusion (B) for the three modeled half-decay times (red, green and blue lines) and of the CSD from (A) averaged over the corti-
cal depths (mean: orange line, +/-SEM: black lines) for the ‘ON flash’ (top) and ‘OFF flash’ (bottom) stimulus conditions.

Finally, in Fig. 2C, we compared the spectral power of the esti-
mated CSD in (A) to the apparent CSD obtained from the diffusive
process in (B). We observe that the divergence of the diffusive cur-
rent has the highest power at frequencies <1 Hz, but rapidly attenu-
ates to become negligible at higher frequencies. Hence, under the
presence of relatively large extracellular concentration gradients, the
low frequency part of the LFP is likely to be influenced by diffusive
currents, which cannot be neglected when estimating the CSD. The
sharp drop off in the power spectrum of the apparent CSD due to
diffusion is determined by the relatively slow temporal dynamics of
the extracellular ionic concentration build-up and clearance observed
for different experimental conditions (Cordingley & Somjen, 1978;
Connors et al., 1979). As such, we expect this result to be more
generally applicable to a wide range of experimental conditions.

Discussion

The theory developed in this paper is motivated by the limiting and
implicit assumption of the theory of CSD analysis and the ensuing
challenges to its validity. The original theory of CSD analysis
(Nicholson, 1973) was developed in the limit of a quasi-stationary
approximation of Maxwell’s equations, assuming a frequency-inde-
pendent Ohmic extracellular material and neglecting the possible dif-
fusive, advective and displacement currents in the extracellular
space. Here, starting with the macroscopic Maxwell’s equations we
justify the application of the electro-quasistatic approximation to
describe fields in the brain of physiological origin, which neglects
only the magnetic induction but accounts for the displacement cur-
rent. Then, we describe a coarse-graining procedure by which the
field variables are averaged separately over cellular and the extracel-
lular spaces. This naturally leads to the notion of the CSD, which
describes the membrane current (both ionic and synaptic) at the
coarse-grained scale suitable for the analysis of sparsely sampled

experimental recordings. Accounting for all possible mechanisms of
charge transfer we show that, in general, both the CSD as well as
gradients of extracellular diffusion currents determine the coarse-
grained extracellular potential, which satisfies the Poisson equation.
The advective and displacement current in the extracellular place
may be neglected for frequencies of physiological origin. On the
other hand, the displacement current in the cellular space is included
as a part of CSD.

The practice of CSD analysis

Depending on the assumptions about properties and processes occur-
ring in brain tissue, either Eq. (20), (21) or (22) could be used to
estimate the CSD of membrane currents from the recorded extracel-
lular potential. When neither the frequency dependence of conduc-
tivity nor the diffusion currents can be neglected, Eq. (20) must be
used to estimate the CSD of membrane currents separately at each
temporal frequency. Only if the frequency dependence of extracellu-
lar conductivity is negligible can Eq. (21) be used. In the simplest
situation of constant conductivity and no diffusion currents, Eq. (22)
may be used instead. Conversely, when diffusion currents cannot be
neglected, one must estimate them independently and, per Eq. (21),
subtract them from the Laplacian to arrive at the CSD of membrane
currents.

When applied to experimental data, one must overcome a number
of issues (Freeman & Nicholson, 1975): 1) electrical recordings are
rarely available to evaluate the Laplacian across all three spatial
dimensions, necessitating additional assumptions regarding the
source distribution; 2) noise in the experimental data is significantly
amplified by spatial differentiation, requiring the use of noise regu-
larization strategies. These challenges motivated the development of
several methods and respective software tools for estimating the
CSD (Pettersen et al., 2006; Leski et al., 2007, 2011; Potworowski
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et al., 2012) which have been successfully applied to analyze exper-
imental recordings.

Both the coarse-grained extracellular potential and the CSD in
the governing equation utilize the same averaging kernel and cor-
respondingly have the same spatial resolution. Therefore, the spa-
tial resolution of the estimated CSD is determined by the spatial
resolution of the data, that is, the inter-channel spacing on the
electrode shank. Whether the selection of a particular spacing is
sufficient for a particular application depends on the spatial fre-
quencies of interest, which need to be resolved. The spatial local-
ization of the underlying neuronal currents is in part determined
by the temporal dynamics of the electrical activity because of the
frequency dependence of the membrane impedance. For instance,
the membrane length constant in passive dendrites is inversely
proportional to the temporal frequency (Koch, 2004) such that
membrane currents at higher temporal frequencies decay faster
along the cable (i.e., more localized) than those at lower temporal
frequencies (Lindén er al, 2010; Anastassiou et al., 2015).
Correspondingly, as manufacturing technology continues to
advance toward increasing channel density, more localized current
sources can be resolved, which are typically characterized by
faster temporal dynamics.

Difference between the fine-grained and coarse-grained
descriptions of extracellular potential

The limited spatial resolution of extracellular recordings dictates the
need for a coarse-grained description of membrane current sources
and the extracellular potential in brain tissue. Here, we developed
such a description by performing spatial averaging of currents while
distinguishing between the cellular and extracellular spaces. Apply-
ing the mathematical identity developed in Appendix A, the coarse-
grained currents within the cellular space were expressed via a vol-
ume density of transmembrane currents, that is, the CSD. Conse-
quently, we find that generally the Poisson equation describing the
coarse-grained extracellular potential, Eq. (21), includes both the
CSD of transmembrane currents and the divergence of the diffusion
currents as sources on the right-hand side. In contrast, Eq. (10)
describes the fine-grained extracellular potential and may only
include the divergence of diffusion currents as a source on the right-
hand side. The difference between the two descriptions lies in the
way they account for the boundary conditions, that is, the transmem-
brane currents. The solution of Eq. (10) for the extracellular poten-
tial is sought within the narrow confines of extracellular space and
the effects of the transmembrane currents are included through the
boundary conditions. On the other hand, the solution of Eq. (21) is
sought within the tissue and the contribution of the membrane cur-
rents is included in the CSD. Furthermore, Eq. (10) includes the
conductivity of extracellular space while Eq. (21) includes tissue
conductivity.

Diffusion currents in the extracellular space

Several pathological conditions, such as hypoxia, anoxia, ischemia
and spreading depression are associated with significant ion concen-
tration changes in the extracellular space (Sykova & Nicholson,
2008). Also during non-pathological conditions, neural signaling
may cause local ion concentration changes. For example, [K+]. ele-
vations in the cat striate cortex in response to bright bars moving
across the receptive field amount to ~0.1 mM (Connors et al.,
1979), whereas strong repeated cortical stimulation may locally ele-
vate [K+]. up to 10 mM (Pumain & Heinemann, 1985).

Extracellular ion concentration changes are typically inhomoge-
neous across the cortical depth (Cordingley & Somjen, 1978;
Nicholson et al., 1978; Pumain & Heinemann, 1985). The presence
of ionic concentration gradients results in ionic diffusion, which in
turn gives rise to electrical current in the extracellular space. As for
temporal dynamics, extracellular [K+] builds-up and clears with a
time constant *1 s (Cordingley & Somjen, 1978; Connors et al.,
1979). Diffusion currents due to extracellular concentration gradients
are thus likely to change at a slow time scale of seconds and corre-
spondingly are expected to contribute only to the low frequency
components of the LFP. In the present application, we found that
extracellular diffusion may be of importance for determining the
LFP at frequencies <1 Hz (see section ‘Effects of extracellular diffu-
sion on the LFP recordings’) for physiological conditions accompa-
nied by strong (R1 mM) changes in the extracellular ionic
concentrations. Similar results were found in a previous computa-
tional study, where diffusive currents were found to influence LFP
frequency components up to a few Hz in the case of large extracel-
lular concentration gradients (Halnes et al., 2016).

How do these findings change our interpretation of the depth LFP
with regard to ongoing activity? Being a low-frequency effect, extra-
cellular diffusion is unlikely to play a role in oscillations such as
theta (2-12 Hz), beta (12-30 Hz), gamma (30-80 Hz), etc. On the
other hand, several slower oscillatory patterns exist with their main
frequency component being below 1 Hz such as slow neocortical
rhythms and delta waves (Gloor et al., 1977; Buzsédki et al., 1988;
Steriade et al., 1993). These patterns have been shown to play key
role in neural functioning and coordination. For example, slow neo-
cortical activity with its accompanying UP-DOWN states critically
contributes to the temporal organization of other cortical patterns,
such as sleep spindles, gamma oscillations and K-complexes (Acher-
mann & Borbely, 1997; Steriade & Amzica, 1998; Molle et al.,
2002; Mukovski et al., 2007) as well as hippocampal sharp wave
ripples (Sirota et al., 2003; Sirota & Buzsaki, 2005). Hitherto, the
source of the extracellular signal associated with slow neocortical
oscillations has been chiefly ascribed to intracellular UP-DOWN
dynamics and rhythmic polarization (extending 10-20 mV) of corti-
cal neurons. Yet, a progressive decrease in extracellular calcium
concentration by approximately 20% has also been measured during
UP states. It has been hypothesized that such Ca concentration
changes can lead to decrease in neurotransmitter release probability
and, eventually, promote the subsequent DOWN state (Massimini &
Amzica, 2001). Yet, our work suggests an additional role of such
Ca concentration change, as they can affect the CSD estimates. Our
study suggests an alternative interpretation of the signals associated
with slow neocortical activity where a significant part of the signal
below 1 Hz may be contributed by ionic diffusion with the rest of it
associated with neural membrane polarization.

Here, we propose a way to account for the effects of extracellular
ionic diffusion on the extracellular potential. The theory shows that
the extracellular potential at the coarse-grained scale is governed by
Poisson’s equation (Eq. 21) with the source term generally including
the membrane currents and contributions from extracellular diffu-
sion. When the diffusion current gradients can be neglected, the
extracellular potential is still determined by Poisson’s equation in
accordance with the original theory of CSD analysis (Nicholson,
1973). As such, our theory is the generalization of the original the-
ory of CSD analysis.

Nevertheless, our findings contrast with the theory of Bédard &
Destexhe (2011), who predicted that the coarse-grained extracellular
potential is governed by Poisson’s equation only when the diffusion
effects are included (see Eq. (11) in Bédard & Destexhe (2011)),
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otherwise the extracellular potential is governed by the Laplace
equation. Consequently, it would follow that the CSD estimated by
computing a Laplacian of the extracellularly recorded potential must
be interpreted as the divergence of the extracellular diffusion cur-
rents. Naturally, such a finding would suggest an essential role for
extracellular ionic diffusion currents in determining the extracellular
potential. However, we believe that this conclusion is erroneous.
Equation (11) in Bédard & Destexhe (2011) has the same physical
meaning as Eq. (10) in this paper. As discussed in the section ‘Fine-
grained description of electric currents in the extracellular space’,
the application of Eq. (10) to describe the extracellular potential
requires solving it within the narrow confines of the extracellular
space and consequently requires specifying the boundary conditions
along the cellular membrane. The need for the explicit boundary
condition along cellular membrane makes Eq. (10) and correspond-
ingly Eq. (11) in Bédard & Destexhe (2011) unsuitable for the anal-
ysis of extracellular recordings at the coarse-grained scale. In
contrast, here we developed the formalism for describing the extra-
cellular potential at the coarse-grained scale within a tissue space by
incorporating the membrane currents into the CSD term in the
Poisson equation that makes it suitable for the analysis of LFP
recordings.
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Appendix A: Coarse-graining

Here, we develop the expression for the divergence of a vector field
averaged over a volume bound by a generally convoluted and tortu-
ous surface (or a collection of surfaces) such as neuronal mem-
branes. Subsequently, we will use the derived expression to
formally define the transmembrane CSD.

Let us consider an arbitrary differentiable vector field F(r) and
define the averaged field over the volume V,:

(F(r)), & /v AF w(r —r) (23)

bounded by an arbitrarily torturous surface S. such as cellular mem-
brane. To simplify the notation, we will use Einstein’s convention
for index summation such that the divergence V- F = V,F;, where
Vi= di, is the derivative with respect to the r; component of the
position r = (ry, r,, r3). Taking the divergence of the vector field in

Eq. (23) we find:

ViFi(r), = /V W)l =), (24)

where the derivative may be moved inside the integration because
differentiation and averaging act on different variables. Noting that
Viw(r —r) = =Viw(r —r’) we have

Vi{Fi(r)), = —/V AVFi (" )\Viw(r —r'), (25)

where now the differentiation and integration are performed with
respect to the primed coordinates #. Since the integrand on the
right-hand side may be expressed as:

—F,(r)\Viw(r —r) = =Vi(wr —rF,{)) + wr —rF)VIFi(r),

(26)
we find that

ViF(r), = — /v WVl = F) + / dw(r —F)VE(F).

Jv,

(27)

Applying Gauss’ theorem to the first term and the definition of
the averaged field, Eq. (22), to the second term on the right-hand
side, we arrive at the identity expressed in vector notation:

V- (F(r)),=— /S da -F(r'Yw(r —r') + (V- F(r)),, (28)

where we put da’' M dd with n being a unit surface normal. The
appearance of the surface term on the right-hand side indicates that,
in general, the averaging and differentiation do not commute!
Commonly, averaging is performed over the entire space such
that the bounding surface S, is infinitely removed from the region of
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interest in space. As the averaging kernel is non-zero only within a
neighborhood |r — /| <R around each field point r, the surface term
vanishes, resulting in commutativity between averaging and differen-
tiation:

V- (F(r)) = (V- F(r)). (29)

Conversely, when the bounding surface crosses the neighborhood
[r — r| < R, we must use a general identity, Eq. (28). In particular,
this applies when averaging fields over the cellular space, because
there the averaging volume includes many bounding surface (i.e.,
surface membranes) as illustrated in Fig. 1 B.

The surface term in Eq. (28) is essential when applied to the total
current density J'(r). As the total current density is solenoidal,
V. J®° =0, we find:

V. < tot(r)>c — /S: da’])n(r/)w(r — r/)7 (30)

where we defined the boundary current density de;fn - J*°'. Equa-
tion (30) states that current density averaged over a volume V.
equals a negative sum of the currents—weighted by the averaging
kernel—over the surface S. bounding the volume. If S, represents a
cellular membrane, then Eq. (30) states that the current density aver-
aged over the cellular volume V- (J(r)). equals the negative
weighted sum of the transmembrane current density J,,(r).

Appendix B: On the use of the electroneutrality
assumption in the presence of diffusion fluxes

In the section ‘Fine-grained description of electric currents in the
extracellular space’ we used the current continuity Eq. (6) to derive

The theory of current-source density analysis 1023

Eq. (10) describing the extracellular potential in the presence of dif-
fusion. On the other hand, applying the electro-quasistatic approxi-
mation to the Gauss’s law we find:

V. (eV®) = —p, (31)

which must also be satisfied by the extracellular potential. For phys-
iological frequencies w1, < 1 and consequently from Eq. (9), we
find the charge density:

p= Tp,FZZiV (DiVei), (32)

where p = p/ + p™ includes the contributions of the fixed charges p’

on the extracellular matrix and mobile charges p" = F Zi ZiCj, in
the interstitial fluid. Assuming, for simplicity, the homogeneous
electrical properties and substituting the expression for the charge
density in Eq. (32) into Eq. (31) we find:

oV = —F Y V- (DiVc), (33)

which is the special case of Eq. (10) with constant conductivity.
Thus, both Gauss’s law and the charge continuity result in consis-
tent equations for describing the extracellular potential.

On the other hand, if exact electroneutrality were to be assumed,
that is, p =0, then from Eq. (31) we would end up with the
Laplace equation V2 = 0, leading to an inconsistency with
Eq. (33) and, correspondingly, a more general Eq. (10). Thus, strict
electroneutrality cannot be assumed for the purposes of describing
the electric field in the presence of diffusion fluxes.
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