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Abstract

Inflammatory and microenvironmental factors produced by cancer cells are thought to

directly or indirectly promote cancer cell growth. Prostaglandins, including prostaglandin E2,

have key roles as a microenvironment factor in influencing the development of tumors, and

are produced by the rate limiting enzyme cyclooxygenase 2 (COX-2). In this study, we used

canine melanoma cells treated with the proinflammatory cytokine interleukin 1β (IL-1β) and

investigated the transcriptional factor nuclear factor-κB (NF-κB) signaling in IL-1β-induced

COX-2 expression. IL-1β induced prostaglandin E2 release and COX-2 mRNA expression

in a time- and dose-dependent manner. In the cells treated with the NF-κB inhibitors BAY11-

7082 and TPC-1, IL-1β-mediated prostaglandin E2 release and COX-2 mRNA expression

were inhibited. IL-1β also provoked phosphorylation of p65/RelA and p105/NF-κB1, which

are members of the NF-κB families. The IL-1β-induced phosphorylation of p65 and p105

was attenuated in the presence of both NF-κB inhibitors. In melanoma cells transfected with

siRNA of p65 or p105, IL-1β-mediated COX-2 mRNA expression was inhibited. These find-

ings suggest that canonical activation of NF-κB signaling plays a crucial role for inflamma-

tory states in melanoma cells.

Introduction

Inflammation is associated with the promotion of cancer development [1–4]. Inflammatory

and microenvironmental factors, produced by the cancer cell themselves, the stroma, or

tumor-infiltrating leukocytes, have been considered to directly or indirectly promote cancer

cell growth. Prostaglandins are implicated in carcinogenesis by enhancing cancer cell survival,

proliferation, invasion, and angiogenesis [5, 6].

Prostaglandins are produced from arachidonic acid. Cyclooxygenases (COXs) are catalys-

ing enzymes for the conversion, which exist in two forms, COX-1 and COX-2 [7]. COX-1 is
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constitutively expressed in most tissues, whereas COX-2 is inducible in response to several sti-

muli, such as cytokines, growth factors, and tumor promoters [8–10]. COX-2 overexpression

has been reported in several cancers in humans [10, 11]. The inhibition of COXs by COX

inhibitors including nonsteroidal anti-inflammatory drugs (NSAIDs) has been demonstrated

to reduce the incidence and metastasis of various solid tumors and mortality [12–14]. These

observations imply that the activation of COX-2 and subsequently produced prostaglandins

are associated with the enhancement of cancer cell survival, growth, migration, angiogenesis,

and immunosuppression [5].

The effects of COX-2 in melanomas are largely thought to be caused by its role in the pro-

duction of prostaglandins, especially prostaglandin E2 [5]. In melanoma cells, prostaglandin E2

has been demonstrated to promote cell migration, because prostaglandin E2 receptor agonists

stimulated cell migration while a prostaglandin E2 receptor antagonist suppressed its migra-

tory capacity [15]. Furthermore, in the melanoma cells overexpressing COX-2, an increased in

prostaglandin E2 levels and expression of prostaglandin E2 receptors resulted in the promotion

of cell migration [16]. These observations suggest that prostaglandin E2 produced via COX-2

expression in melanoma cells functions as an autocrine or paracrine factor. Within the tumor

microenvironment, prostaglandin E2 produced by cancer cells has been demonstrated to

induce immunosuppression through the inhibition of differentiation, infiltration and activa-

tion of dendritic cells, induction of monocytes into an M2 macrophage phenotype, and induc-

tion of myeloid-derived suppressor cell differentiation [6].

The transcription factor nuclear factor-κB (NF-κB) regulates inflammatory responses by

enhancing the expression of specific cellular genes, which further links to the promotion of

carcinogenesis [17, 18]. COX-2 is a major molecular target of NF-κB. Various inflammatory

stimuli and mediators have been demonstrated to increase COX-2 expression via the activa-

tion of NF-κB, thus eliciting inflammation and consequent tumorigenesis [19–23]. In mam-

mals, the NF-κB family consists of five members: RelA (p65), RelB, Rel (cRel), NF-κB1 (p50

and its precursor p105), and NF-κB2 (p52 and its precursor p100) [24, 25]. The five family

members associate with each other to form homodimers or heterodimers with distinct func-

tions [26]. NF-κB signaling is composed of two distinct pathways: canonical and non-canoni-

cal pathways [27]. The canonical pathway mediates inflammatory responses, and the non-

canonical pathway contributes to immune cell differentiation and maturation as well as sec-

ondary lymphoid organogenesis [27].

Oral canine malignant melanoma is a spontaneously occurring aggressive tumor [28]. The

canine melanoma is highly metastatic and usually associated with a poor prognosis, and has a

propensity to behave in a biologically aggressive manner similar to human melanoma. There-

fore, the canine melanoma is considered a suitable model for human melanoma [29, 30].

Human and canine melanomas also share multiple molecular similarities and signaling path-

ways including the regulation of COX-2 expression, and upregulation of COX-2 expression in

melanoma cells has been demonstrated [31, 32]. In this study, we demonstrated that NF-κB

p65 and p105 were implicated in IL-1β-mediated COX-2 expression in canine melanoma cells.

Materials and methods

Materials

Canine melanoma cells (MCM-N1 cell line; 13-years-old male dog; chromosome number,

2n = 74) were purchased from DS Pharma Biomedical Co., Ltd. (Osaka, Japan). Lipofectamine

2000 and TRIzol were purchased from Life Technologies Co. (Carlsbad, CA). PrimeScript RT

Master Mix, SYBR Premix Ex Taq II, Thermal Cycler Dice Real Time System II, and TP900

DiceRealTime v4.02B were purchased from TaKaRa Bio Inc. (Shiga, Japan). Rabbit polyclonal
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anti-COX-1 and anti-COX-2 antibodies were obtained from Abcam (Cambridge, UK). Mouse

monoclonal anti-human lamin A/C (4C11) antibodies and Rabbit monoclonal anti-human

phosphorylated p65 (93H1), anti-human total p65, anti-human phosphorylated p105, and

anti-human total p105 antibodies were purchased from Cell Signaling Technology Japan, K.K.

(Tokyo, Japan). Mouse monoclonal anti-mouse β-actin antibody (AC74) was obtained from

Sigma-Aldrich Inc. (St Louis, MO). Horseradish peroxidase-conjugated (HRP-conjugated)

anti-rabbit IgG and anti-mouse IgG antibodies, ECL Western Blotting Analysis System and

ImageQuant LAS 4000 mini were purchased from GE Healthcare (Piscataway, NJ). Mini-

PROTEAN TGX gel and polyvinylidene difluoride (PVDF) membranes were obtained from

Bio-Rad (Hercules, CA). Block Ace and complete mini EDTA-free protease inhibitor mixture

were purchased from Roche (Mannheim, Germany). An enzyme-linked immunosorbent assay

(ELISA) kit was purchased from Cayman Chemical Co. (Ann Arbor, MI). The p65, p105, and

scramble siRNAs were purchased from Sigma-Aldrich Inc. (St Louis, MO). Dulbecco’s modi-

fied Eagle’s medium with 1 g/L glucose (DMEM-LG), phenylmethanesulfonyl fluoride

(PMSF), sodium fluoride, and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)

were purchased from Wako Pure Chemical Industries, Ltd. (Osaka, Japan). StatMate IV was

purchased from ATMS (Tokyo, Japan).

Cell culture

Canine melanoma cells were maintained in static culture in DMEM-LG supplemented with

10% fetal bovine serum (FBS), in an incubator with 5% CO2 and at 37˚C. The medium was

changed once a week. When the cells reached 90–95% confluency, the cells were harvested

with 0.25% trypsin-EDTA and suspended with CELLBANKER 1 plus medium at a density of

2 × 106 cells/500 μL for cryopreservation. The cell suspension (500 μL) was placed into steril-

ized serum tube, which were placed in a freezing vessel (BICELL) and cryopreserved at −80˚C.

Before experiments, the tubes were removed from the BICELL vessel and immersed in a water

bath at 37˚C. The thawed cell suspension was transferred into a centrifuge tube containing

DMEM-LG with 10% FBS and centrifuged at 300 ×g for 3 min. The pellet was resuspended in

DMEM-LG with 10% FBS and transferred into a 75-cm2 culture flask. Static culture was then

carried out under the same conditions as prior to cryopreservation. Cells were harvested using

0.25% trypsin-EDTA once they reached approximately 90% confluency, and the collected cells

were seeded at a density of 1 × 106/75-cm2 culture flask.

Real-time RT-PCR

Total RNA was extracted from canine melanoma cells with TRIzol reagent. The first-strand

cDNA synthesis was performed with 500 ng of total RNA using PrimeScript RT Master Mix.

Real-time RT-PCR was performed with 2 μL of the first-strand cDNA in 25 μL (total reaction vol-

ume) with SYBR Premix Ex Taq II and primers specific for canine COX-1 and -2, and the TATA

box binding protein (TBP), a house keeping protein used as a control. Table 1 shows sequences of

primers used for real-time RT-PCR. Real-time RT-PCR of no-template controls was performed

with 2 μL of RNase- and DNA-free water. In addition, real-time PCR of a no-reverse transcription

control was performed with 2 μL of each RNA sample. PCR was conducted using the Thermal

Cycler Dice Real Time System II with the following protocol: 1 cycle of denaturing at 95˚C for 30

s, 40 cycles of denaturing at 95˚C for 5 s, and annealing/extension at 60˚C for 30 s. The results

were analyzed by the second derivative maximum method and the comparative cycle threshold

(ΔΔCt) method using real-time RT-PCR analysis software. The amplification of TBP from the

same amount of cDNA was used as an endogenous control, while cDNA amplification from

canine melanoma cells at time 0 was used as a calibration standard.

NF-κB and IL-1β-mediated COX-2 expression in melanoma cells
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Western blotting

The melanoma cells were lysed with a lysis buffer containing 20 mM HEPES, 1 mM PMSF, 10

mM sodium fluoride, and a complete mini EDTA-free protease inhibitor cocktail at pH 7.4.

Protein concentrations were adjusted using the Bradford method [33]. Extracted proteins

were boiled at 95˚C for 5 min in SDS buffer. Samples were loaded into separate lanes of 7.5%

or 12% Mini-PROTEAN TGX gel and electrophoretically separated. Separated proteins were

transferred to PVDF membranes, treated with Block Ace for 50 min at room temperature, and

incubated with primary antibodies (COX-2 [1:1000], COX-1 [1:1000], p-p65 [1:1000], t-p65

[1:1000], p-p105 [1:1000], t-p105 [1:1000], and β-actin [1:10,000]) for 120 min at room tem-

perature. After washing, the membranes were incubated with an HRP-conjugated anti-rabbit

or anti-mouse IgG antibody (1:10000) for 90 min at room temperature. Immunoreactivity was

detected using ECL Western Blotting Analysis System. Chemiluminescent signals of the mem-

branes were measured using ImageQuant LAS 4000 mini.

Immunocytochemistry

The protein localization was investigated by immunocytochemical analysis as reported previ-

ously [34]. The cells were seeded at a density of 3 × 105 cells/mL culture medium into a

35-mm glass bottom dish (Iwaki, Tokyo, Japan) treated with IL-1β. The cells were fixed with

4% paraformaldehyde (Nacalai Tesque Inc., Kyoto, Japan) for 15 min and processed for

immunocytochemistry to examine the intra-cellular localization of t-p65 and lamin A/C. The

fixed cells were permeabilized by incubation with 0.2% Triton X-100 (Sigma-Aldrich Inc.) for

15 min at room temperature. Non-specific antibody reactions were blocked for 30 min with

Block Ace (DS Pharma Biomedical, Osaka, Japan). The cells were then incubated for 90 min at

room temperature with anti-t-p65 rabbit antibody [1:500] and anti-lamin A/C mouse antibody

[1:1000]. After the cells were washed with PBS containing 0.2% polyoxyethylene (20) sorbitan

monolaurate, they were incubated and visualized with Alexa Fluor 488-conjugated F(ab0)2

fragments of goat anti-rabbit IgG (H+L) [1:1,000] and Alexa Fluor 594-conjugated F(ab0)2

fragments of goat anti-mouse IgG (H+L) [1:1,000] for 60 min in the dark at 25˚C. The cells

were also incubated with only secondary antibodies as a control for nonspecific binding of the

antibodies. These samples were washed thrice with PBS containing 0.2% polyoxyethylene (20)

sorbitan monolaurate, dried, mounted with ProLong Gold Antifade Reagent, and visualized

using a confocal laser scanning microscope (LSM-510; Carl Zeiss AG, Oberkochen, Germany).

Prostaglandin E2 assay

The cells were seeded at a density of 3.0 × 105 cells per well in 6-well culture plates. The cells

were treated with IL-1β, and subsequently culture supernatants were collected. Prostaglandin

E2 concentrations in the culture supernatant were measured using an ELISA kit according to

the manufacturer’s instructions.

Table 1. Primers used for Real-time RT-PCR.

Gene Name Gene bank ID Primer sequences

COX-2 NM_001003354.1 F: 5'-TGTGTCTCATTAACCTGCATGTACC-3'

F: 5'-CAGTGATATTTGCACCTGTGTCCTC-3'

COX-1 NM_001003023.2 F: 5'-ACGTGGCTGTGGAAACCATC-3'

R: 5'-GGCATCAATGTCTCCATACAGCTC-3'

TBP XM_863452 F: 5'-ACTGTTGGTGGGTCAGCACAAG-3'

R: 5'-ATGGTGTGTACGGGAGCCAAG-3'

https://doi.org/10.1371/journal.pone.0208955.t001
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Transfection of siRNA

The siRNA transfection was performed as previously described, with slight modifications [34,

35]. Canine melanoma cells, seeded at a density of 1 × 105 cells/35-mm dish or 5 × 105 cells/

90-mm dish, were transfected using Opti-MEM containing 5 μL/mL Lipofectamine 2000 and

100 nM p65, p105, or scramble siRNA for 6 h. After the transfection, the medium was changed

to DMEM-LG containing 10% FBS, and the cultures were maintained in an incubator with 5%

CO2 at 37˚C for five days. The siRNA sequences are shown in Table 2. The efficiency of the

siRNAs was determined by western blotting.

Statistical analysis

The data from these experiments were presented as the mean ± standard error of measure-

ment. Statistical analysis was performed using StatMate IV. The data from the time course

study were analyzed using two-way analysis of variance, and the data from other experiments

were analyzed using one-way analysis of variance.

Results

IL-1β mediates prostaglandin E2 release and COX-2 expression

We first examined the effect of the proinflammatory cytokine IL-1β on prostaglandin E2

release in canine melanoma cells. Prostaglandin E2 release was provoked in the cells stimulated

with IL-1β (100 pM) from 0 to 48 h in a time-dependent manner as shown in Fig 1A. In the

cells stimulated with 0–200 pM IL-1β for 48 h, prostaglandin E2 release was provoked in a

dose-dependent manner as shown in Fig 1B. We also checked the effect of IL-1β (100 pM) on

the cell viability of canine melanoma cells. As shown in S1 Fig, IL-1β had no effect on the cell

viability for 0 to 48 h. Since the production of prostaglandins is regulated by COX-1 and COX-

2, which are rate-limiting enzymes, we examined the effect of IL-1β on the expressions of

COX-1 and COX-2 mRNAs. IL-1β (100 pM) enhanced COX-2 mRNA expression in a time-

dependent manner; the level peaked at 6 h (Fig 1C). On the other hand, IL-1β had no effect of

COX-1 mRNA expression (Fig 1D). When cells were stimulated with various doses of IL-1β
for 6 h, a dose-dependent enhancement of COX-2 mRNA was observed (Fig 1E). The dose

range of IL-1β was similar to that for prostaglandin E2 release. Next, the effect of IL-1β on

COX-2 protein expression was examined. IL-1β (100 pM) stimulated COX-2 protein expres-

sion in a time-dependent manner; the levels peaked at 6 h (Fig 1F and 1G). On the other hand,

no change in COX-1 protein expression was observed in the cells stimulated with IL-1β (Fig

1F and 1H). These observations strongly suggest that IL-1β provoked prostaglandin E2 release

via COX-2 expression in canine melanoma cells.

NF-κB inhibitors attenuated IL-1β-mediated prostaglandin E2 release and

COX-2 mRNA expression

Next, we examined the involvement of NF-κB signaling in IL-1β-mediated prostaglandin E2

release and COX-2 mRNA expression in canine melanoma cells by using NF-κB inhibitors.

When the cells were pretreated with NF-κB inhibitors BAY11-7082 (10 μM) or TPCA-1

Table 2. Sequences for siRNA transfection.

Gene Name Gene bank ID siRNA sequences

p65 XM_014121307.2 GCAUCUCCCUGGUCACCAA

p105 AB183419.1 CUGCAAAGGUUAUUGUUCA

https://doi.org/10.1371/journal.pone.0208955.t002
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(10 μM) for 1 h and subsequently stimulated with IL-1β (100 pM) for 48 h, IL-1β-mediated

prostaglandin E2 release was clearly reduced (Fig 2A). In the cells pretreated with the NF-κB

inhibitors, IL-1β-mediated COX-2 mRNA was significantly attenuated (Fig 2B). These results

suggest that NF-κB signaling is involved in IL-1β-mediated prostaglandin E2 release via COX-

2 expression.

Fig 1. Prostaglandin E2 release, and COX-2 mRNA and protein expressions induced by IL-1β in canine melanoma

cells. (a, b) After the treatment with (closed circle) or without (open circle) 100 pM IL-1β for the indicated time

periods (a), or with the indicated concentrations of IL-1β for 48 h (b), prostaglandin E2 (PGE2) release was increased in

a time- and dose-dependent manner. (c, d, e) In the cells treated with (closed circle) or without (open circle) 100 pM

IL-1β for the indicated time periods (c), or with the indicated concentrations of IL-1β for 6 h (d), mRNA expression of

COX-2 increased in a time- and dose-dependent manner, whereas IL-1β had no effect on COX-1 mRNA expression

(e). (f, g, h) In the cells treated with IL-1β (100 pM), protein expressions of COX-1, COX-2, and β-actin (an internal

standard) were examined (f). A time-dependent increase in the relative density of COX-2 expression was observed (g)

but not that of COX-1 (h). Values are expressed as the mean ± S.E. of three independent experiments. �P< 0.05.

https://doi.org/10.1371/journal.pone.0208955.g001
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IL-1β stimulates phosphorylation of p65 and p105

In response to pro-inflammatory cytokines such as IL-1β, phosphorylation of the p65 subunit

occurs, which has been shown to be important for the regulation of NF-κB transcriptional

activity [36–41]. Phosphorylation of p105 protein in the cells stimulated with cytokines has

also been shown to be involved in inflammation and cancer [37, 38, 40, 41]. Then, we exam-

ined the phosphorylation of the p65 subunit and p105 precursor in the cells treated with IL-1β.

When the cells were treated with IL-1β, both p65 and p105 proteins were transiently phos-

phorylated, reaching peak levels at 15 min (Fig 3A–3C). To confirm whether NF-κB signaling

was activated, we examined the degradation of IκBα in IL-1β-treated cells. As shown in Fig 3A

and 3B, IL-1β induced the degradation of IκBα in a time dependent manner, suggesting that

IL-1β activated NF-κB pathway. On the other hand, IL-1β had no effect on the activation of

the other members of NF-κB family, RelB, c-Rel and p100 (S3 Fig), suggesting that p65 and

p105 play a dominant role in IL-1β-induced COX-2 expression. It has been reported that p50

is generated by the 26S proteasome-mediated removal of C terminal consensus sequence of its

precursor p105. In canine melanoma cells, the expression of p50 was observed without IL-1β
treatment, and IL-1β had no effect on the expression of p50 (S2A Fig). In fact, in the cells

transfected with siRNA for its precursor p105, the decrease of p50 expression was confirmed

(S2B Fig). In addition, we examined IL-1β-induced nuclear translocation of p65 by immuno-

cytochemical analysis. As shown in Fig 3E, the nuclear translocation of p65 was observed in

the cells treated with IL-1β. Therefore, it is conceivable that IL-1β evoked the activation of NF-

κB signaling in canine melanoma cells.

When the cells pretreated with the NF-κB inhibitor BAY11-7082 or TPCA-1 for 1 h were

stimulated with IL-1β for 15 min, IL-1β-mediated phosphorylation of both p65 or p105 pro-

teins was clearly attenuated, as shown in Fig 4A–4H. These observations suggest that NF-κB, a

heterodimeric complex consisting of p65 and p50, was involved in IL-1β-mediated functions

in canine melanoma cells.

Attenuation of IL-1β-mediated COX-2 mRNA expression in p65 or p105

knockdown cells

To elucidate the involvement of p65 and p105 in IL-1β-mediated expression of COX-2, we

examined the effect of IL-1β on COX-2 mRNA expression in cells transfected with p65 and

p105 siRNA. In cells transfected with p65 or p105 siRNAs, the expression of total p65 (t-p65)

or p105 (t-p105) protein was clearly reduced compared with the control (cells transfected with

scramble siRNA), respectively (Fig 5A–5C), similar to the reduction in IL-1β-induced COX-2

mRNA expression (Fig 5D). The reduced level of IL-1β-induced COX-2 mRNA expression in

cells transfected with both p65 and p105 siRNAs showed no significant difference from that of

p65 or p105 siRNA-transfected cells (Fig 5D). These observations suggest that p65 and p105

contribute to IL-1β-induced COX-2 mRNA expression in canine melanoma cells.

Discussion

In this study, we demonstrated IL-1β-mediated COX-2 expression following prostaglandin E2

production in canine melanoma cells. The proinflammatory cytokine IL-1, including IL-1β,

has been reported to be significantly elevated in melanoma [42]. IL-1β is secreted from

immune cells, such as monocytes, macrophages, and dendritic cells [43]. Melanoma cells have

also been demonstrated to spontaneously produce and release IL-1β, which leads to constitu-

tive activation of the inflammasome [44]. Therefore, it is conceivable that IL-1β secreted from

immune and melanoma cells in the tumor inflammatory microenvironment contributes to

NF-κB and IL-1β-mediated COX-2 expression in melanoma cells
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progression of cancer, including angiogenesis, invasion, and metastasis, via COX-2 expression

and subsequent prostaglandin E2 production and release [45–47]. In fact, elevation of COX-2

Fig 2. Inhibitory effects of NF-κB inhibitors on IL-1β-induced prostaglandin E2 release and COX-2 mRNA

expression in canine melanoma cells. After pretreatment in the presence or absence of NF-κB inhibitors BAY11-7082

(10 μM) and TPCA-1 (10 μM) for 1 h, canine melanoma cells were further treated with or without 100 pM IL-1β for 48

or 6 h for the examination of prostaglandin E2 (PGE2) release (a) or COX-2 mRNA expression (b), respectively. Values

are expressed as the means ± S.E. of three independent experiments. �P< 0.05.

https://doi.org/10.1371/journal.pone.0208955.g002
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expression is a common characteristic of various cancers, which mediates the progression and

metastasis of tumors [48]. Regarding melanoma, the functional roles of COX-2 in invasion

[49] and metastasis [50] have been proposed. COX-2 expression depends on both the stage

and histopathologic type of melanoma [51, 52], and COX-2 expression has been suggested to

be correlated with neoplastic recurrence and metastasis [53]. The COX-2-specific inhibitor cel-

ecoxib attenuated proliferation of melanoma cells, supporting that COX-2 is linked with mela-

noma progression [54].

Fig 3. IL-1β induces the activation of canonical NF-κB pathway. Canine melanoma cells were exposed to 100 pM

IL-1β for the indicated time periods. At the end of the incubation, total (t-) IκBα, β-actin, total (t-) and phosphorylated

(p-) forms of p65 and p105 were detected by immunoblotting. For the immunoblotting, cell lysate (10 mg protein) was

used. Representative results of t-IκBα, β-actin, p-p65, t-p65, p105 and t-p105 expressions (a), and the relative density of

t- IκBα (b), p-p65 (c) and p-p105 (d) compared to the results at time point 0 (lower panel) are depicted. Values are

expressed as the mean ± S.E. of three independent experiments. �P< 0.05. (e) Canine melanoma cells were exposed to

100 pM IL-1β for 15 min. At the end of the incubation, t-p65 (green) and lamin A/C (red; nuclei) were detected by

immunocytochemistry.

https://doi.org/10.1371/journal.pone.0208955.g003

NF-κB and IL-1β-mediated COX-2 expression in melanoma cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0208955 December 18, 2018 9 / 17

https://doi.org/10.1371/journal.pone.0208955.g003
https://doi.org/10.1371/journal.pone.0208955


In this study, we also demonstrated that NF-κB p65 and p105 are involved in IL-1β-medi-

ated COX-2 expression in melanoma cells. NF-κB is a transcription factor that contributes to

the regulation of a wide range of host genes involved in physiological and pathological func-

tions. In cancer cells, NF-κB has been considered to play an important role for creating a

favorable microenvironment to protect the cells against immune rejection and its promotion

[55–57]. The NF-κB family is composed of five members, p65 (RelA), RelB, c-Rel, p50, and

Fig 4. Inhibitory effect of NF-κB inhibitors on IL-1β-induced phosphorylation of p65 and p105. After

pretreatment in the presence or absence of NF-κB inhibitors BAY 11–7082 (10 μM; a–d) and TPCA-1 (10 μM, e–h) for

1 h, canine melanoma cells were incubated with or without 100 pM IL-1β for 15 min, and then the phosphorylation

levels of p65 and p105 were determined by immunoblotting. For the immunoblotting, cell lysate (10 μg protein) was

used. Representative results (a, c, e, and g) and the relative density of p-p65 (b and f) or p-p105 (d and h) expression

compared to the results without the inhibitor and IL-1β are illustrated. Values are expressed as the mean ± S.E. of three

independent experiments. �P< 0.05.

https://doi.org/10.1371/journal.pone.0208955.g004
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p52, which associate with each other to form homodimers or heterodimers with distinct func-

tions [26]. Of these, the formation of the p50/p65 heterodimer is key to the activation of NF-

κB [58, 59]. In the resting state of the cells, the p50/p65 heterodimer exists in the cytoplasm as

an inactive complex form with the inhibitory protein IκBα. Furthermore, the NF-κB signaling

pathway can be classified into canonical and noncanonical pathways [60]. In the canonical

pathway, IκB kinase (IKK) is activated by exogenous signals such as IL-1β, which phosphory-

lates IκBα, inducing its ubiquitination and degradation by proteasomes. The heterodimer p50/

Fig 5. Inhibition of IL-1β-induced COX-2 mRNA expression in canine melanoma cells transfected with p65 and

p105 siRNAs. Protein expressions of total p65 (t-p65), total p105 (t-p105), and β-actin (an internal standard) were

detected by immunoblotting in canine melanoma cells transfected with p65, p105, or scramble siRNAs (control). For

the immunoblotting, cell lysate (10 μg protein) was used. Representative results (a) and the relative density of t-p65 (b)

and t-p105 (c) expression compared to the results in the control are illustrated. (d) The p65 and p105 siRNA

transfection clearly inhibited the IL-1β-induced COX-2 mRNA expression. Values are expressed as the mean ± S.E. of

three independent experiments. �P< 0.05. β-actin was used as an internal standard (a).

https://doi.org/10.1371/journal.pone.0208955.g005
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p65 dissociated from IκBα translocates to the nucleus and transcriptionally regulates NF-κB

target genes [60]. IL-1β-mediated COX-2 mRNA was reduced by selective inhibitors of IκBα
and IKK, BAY11-7082 and TPCA-1, respectively, and was attenuated by the knockdown of

p65 and p105 as the precursor of p50. These observations suggest that canonical activation of

NF-κB signaling is important for IL-1β-mediated COX-2 expression in canine melanoma

cells.

We observed that IL-1β transiently stimulated p65 phosphorylation in melanoma cells. The

p65 protein contains an N-terminal Rel homology domain (RHD) and a C-terminal transacti-

vation domain (TAD), and both domains and the linker region TAD to RHD have been

reported to possess more than eleven phosphorylation sites [38, 40]. Phosphorylation of p65

occurs both in the cytoplasm and in the nucleus, and is thought as an important post-transla-

tional modification of NF-κB to efficiently induce transcription of target genes [38, 39]. Phos-

phorylation of individual amino acids has been related to effects of DNA binding,

dimerization, association with transcriptional co-regulators, subcellular localization, stabiliza-

tion, and transcriptional activity, which ultimately results in an increase or decrease in tran-

scription depending on the amino acid modified [38–40, 61]. The transcriptional activity of

NF-κB via phosphorylation sites of p65 depends on the stimulus. IL-1β has been demonstrated

to regulate transcription of target genes via p65 phosphorylation [62–64]. Individual p65 phos-

phorylation induced by IL-1β have been considered to induce a conformational change and be

regulated following association with transcriptional cofactors and ubiquitination [65]. There-

fore, it is conceivable that phosphorylation of p65 is probably important for IL-1β-mediated

COX-2 expression in melanoma cells, although further studies with specific phosphorylation

sites are need.

Since IL-1β-mediated COX-2 mRNA expression was significantly reduced in p105-knock-

down cells, it is conceivable that p105 is an important factor for translational activity in mela-

noma cells in response to IL-1β. Furthermore, p105 is a large precursor protein, which is

partially processed by the proteasome to produce p50 subunit [24]. The p50 forms the p50/p65

heterodimer, which possesses transcriptional potential in the canonical pathway mediated by

inflammatory signals [58, 59]. Therefore, it is most likely that p105 functions as the precursor

of p50 in melanoma cells stimulated with IL-1β. Although p50/p65 is a dominant dimer, p50

can also form homodimers itself [66–68]. The p50/p50 homodimer exists in the nucleus, but

cannot act as a transcriptional activator, since the subunit lacks a transactivation domain.

Thus, the p50/p50 homodimer is thought to participate as the repressor in the NF-κB signaling

[66–68]. Thus, such a function of p50 may be not neglectable.

We also observed that IL-1β transiently induced p105 phosphorylation. Therefore, IL-1β-

induced phosphorylation appears to be involved in translational activity of NF-κB on COX-2

mRNA expression. Phosphorylation of p105 has previously been reported to be important for the

proteasomal processing of p105 [69]. However, it has been considered that a majority of the p105

to p50 processing occurs co-translationally in a constitutive manner [70], and phosphorylation of

p105 induces ubiquitination and results in the complete degradation of p105 without p50 genera-

tion [24, 71]. Currently, ubiquitination mediated by Kip1 ubiquitination-promoting complex 1

(KPC1), an E3 ubiquitin ligase, has been demonstrated to lead to proteasomal processing of p105

to p50, which is followed p105 phosphorylation by IKKβ [72]. However, the processing of p105 to

p50 by KPC1 is involved in the downregulation of the NF-κB pathway, suppressing the progres-

sion of tumors including melanoma [72, 73]. On the other hand, p105 has also been demonstrated

to have a role independent of the p50 precursor, which functions as a negative regulator in MAP

kinase signaling [74, 75]. The p105 protein is bound to tumor progression focus 2 (Tpl-2), an api-

cal kinase of the MAP kinase, for stabilizing Tpl-2 in an inactive form, which blocks the activation

of MAP kinase signaling [74, 75]. The phosphorylation of p105 and subsequent proteasomal
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degradation of p105 results in the liberation of the active form of Tpl-2. Consequently, free Tpl-2

phosphorylates and activates MEK1/2, which induces the MAPK ERK1/2 activation [74, 75]. We

previously reported that the NF-kB pathway contributes to ERK1/2 activation in canine dermal

fibroblasts [76]. Therefore, such a regulation of p105 appears to be involved in IL-1β-mediated

COX-2 expression in melanoma cells.

In conclusion, IL-1β mediated COX-2 expression and prostaglandin E2 release, in which

NF-κB p65 and p105 functioned as transcriptional factors in canine melanoma cells. Thus, it is

conceivable that the NF-κB pathway as well as IL-1β-mediated COX-2 expression is a thera-

peutic target for melanomas [18].
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