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When a rare pathogen emerges to cause a pandemic, it is critical to understand
its dynamics and the impact of mitigation measures. We use experimental data
to parametrize a temperature-dependent model of Zika virus (ZIKV) trans-
mission dynamics and analyse the effects of temperature variability and
control-related parameters on the basic reproduction number (R0) and the
final epidemic size of ZIKV. Sensitivity analyses show that these two metrics
are largely driven by different parameters, with the exception of temperature,
which is the dominant driver of epidemic dynamics in the models. Our R0 esti-
mate has a single optimum temperature (≈30°C), comparable to other published
results (≈29°C). However, the final epidemic size is maximized across a wider
temperature range, from 24 to 36°C. The models indicate that ZIKV is highly
sensitive to seasonal temperature variation. For example, although the model
predicts that ZIKV transmission cannot occur at a constant temperature below
23°C (≈ average annual temperature of Rio de Janeiro, Brazil), the model pre-
dicts substantial epidemics for areas with a mean temperature of 20°C if there
is seasonal variation of 10°C (≈ average annual temperature of Tampa, Florida).
This suggests that the geographical range of ZIKV is wider than indicated from
static R0 models, underscoring the importance of climate dynamics and vari-
ation in the context of broader climate change on emerging infectious diseases.
1. Introduction
Vector-borne viruses (arboviruses) are emerging threats to both human and
animal health. The global expansions of dengue virus (DENV), West Nile
virus (WNV), chikungunya (CHIKV) and most recently Zika virus (ZIKV) are
prominent examples of how quickly mosquito-transmitted viruses can emerge
and spread through naive host populations. Currently, 3.9 billion people living
within 120 countries are at risk of mosquito-borne arboviral diseases [1] with
effects on human well-being that can be devastating (e.g. death, illness, as well
as social and human ramifications of Zika-induced microcephaly and other con-
genital disorders) [2]. Anticipating and preventing outbreaks of emerging
mosquito-borne viruses across these host populations is a major challenge.
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Despite growing research to develop new therapeutics
and vaccines, mitigating arbovirus disease spread still
depends on conventional mosquito control methods, often
with mixed success. Developing tools that allow us to suc-
cessfully predict outbreaks of these viruses and efficiently
target current and future interventions to specific times and
locations can aid effective mosquito and disease control.
Such efforts are often limited by gaps in knowledge on the
relationships among mosquito vectors, pathogens and the
environment, especially for emerging arboviruses such as
CHIKV and ZIKV. Even in well-researched disease systems
(e.g. malaria and DENV), key transmission parameters are
only estimated from a few studies [3–5].

Variation in environmental temperature has a strong impact
on the environmental suitability for transmission risk across a
diversity of vector-borne disease systems [6–9]. Mosquitoes
are small ectothermic organisms, and their fitness [10,11], life
history [12–17] and vectorial capacity [3–5,16,18–21] exhibit
nonlinear, unimodal relationshipswith environmental tempera-
ture. Recent work by Tesla et al. [19] demonstrates such
temperature–transmission relationships for ZIKV, a recently
emerging pathogen. These temperature–transmission rela-
tionships have significant ramifications on how disease
transmission varies seasonally, across geographical locations,
and with future climate and land use change. Control tools
being considered for use within integrated vector management
strategies may also be affected by temperature, such as conven-
tional chemical insecticides that target a diverse range of insect
pests [22–27], including mosquitoes [28,29]. Furthermore, there
is evidence that temperature could modify the efficacy of novel
control interventions, such as mosquito lines transinfected with
the intracellular bacteria Wolbachia [30–33].

Several modelling frameworks have been used to
predict environmental suitability for vector-borne disease
transmission, including, most recently, temperature-dependent
R0 models [3–5,18,19] and compartmental models of vector-
borne disease dynamics [8,34,35]. The parameter R0 is broadly
considered to be themost important summarystatistic in epide-
miology and disease ecology. It is defined as the expected
numberof newhuman (respectively,mosquito) cases generated
by a single infectious human (respectively, mosquito) intro-
duced into a fully susceptible human (respectively, mosquito)
population throughout the period within which that human
(respectively, mosquito) is infectious [36]. As a simple metric,
it can easily incorporate the nonlinear influence of multiple
temperature-dependent mosquito and pathogen traits, and
has been applied to define the thermal optimum and limits
for malaria [4,5,37], DENV, CHIKV [3,38,39], ZIKV [3,19] and
Ross River virus [18]. However, temperature-dependent R0

formulations only define the relative risk of disease emergence
and do not predict the final epidemic size (or incidence).
The derivation, interpretation, and validation of R0 models
are thus problematic in highly variable systems [40]. Dynamical
models of transmission that track densities of infectious
individuals over time, on the other hand, can more readily
capture the impact of varying environmental conditions.

To better understand potential climate effects on control
strategies for ZIKV, we developed a temperature-dependent
dynamical model based on recent experimental work character-
izing temperature–trait relationships between ZIKV vector
competence, extrinsic incubation rate, and the per capita daily
mosquito mortality rate [41]. Unlike other published results in
the literature (e.g. R0 model in Tesla et al. [19]), we model ZIKV
transmission dynamics between humans and vectors and the
flow of humans and vectors between various classes explicitly
through a compartmental SEIRmodel for the human population
and SEI model for the vector population. Because the model is
dynamic, we are also able to account for seasonal temperature
variation. The model and analysis differ from Huber et al. [8] in
that, through numerical and sensitivity analyses, we explicitly
analyse the simultaneous effects of parameters that are influ-
enced by control measures (including vaccination) on both the
basic reproduction number R0 and the final epidemic size. Our
analysis thus addresses the following questions: (1) How do the
thermal optima and ranges for R0 compare to those for the
human final epidemic size? (2) How does seasonal temperature
variation affect the final epidemic size relative to aconstant temp-
erature environment? (3) Which parameters have the greatest
impact on R0 and the final epidemic size that can inform control
efforts? (4) Are different thermal environments more or less
suitable for specific control strategies?

Our results show thatR0 and the final epidemic sizewere lar-
gely driven by different sets of parameters, with the exception of
temperaturebeing thedominantdriverofboth. Furthermore, the
human final epidemic sizewas maximized across awider range
of temperatures than what would have been predicted from the
temperature-dependent R0 model. The human final epidemic
size was highly sensitive to seasonal temperature variation,
suggesting the potential invasion map of ZIKV may be wider
than previously reported. Furthermore, the effectiveness of
potential control strategies (e.g. vaccines, drug treatment, and
insecticides, assessed through model parameters that are influ-
enced by those strategies) is predicted to be sensitive to such
differences in seasonal temperature variation.
2. Methods
We construct a temperature-dependent compartmentalized
model of ZIKV dynamics with and without seasonal tempera-
ture change. Where possible, model parameters are estimated
from the most recent laboratory experiments on temperature
effects on the life cycle of the virus [3,19]. We first compare
how temperature dependence affects R0, the human ‘final epi-
demic size’ (total number of infected individuals over the
course of the epidemic), and key ecological characteristics of
the system, such as extrinsic incubation period, the probability
of transmission from the mosquito to the human, the probability
of transmission from the human to the mosquito, and daily rates
of mosquito and egg to adult survival. To understand how temp-
erature change can influence the effects of control measures, we
then analyse the combined effects of temperature and parameters
that correspond to disease control measures on R0 and the final
epidemic size. These ‘control parameters’ include vaccination,
recovery, vector biting rates, vector-to-human transmission,
vector carrying capacity, egg survival, and adult mosquito survi-
val. Through a Latin hypercube sampling-based sensitivity
analysis [42], we identify key parameters that most drive the
epidemiological outcomes (R0 and the final epidemic size). All
simulations were carried out using MATLAB R2019b.

2.1. The basic dynamic model
The model apportions humans into four groups based on ZIKV
infection status that changes over time, t: susceptible Sh (not
infected), latent Eh (contracted the virus, but not yet infectious),
infectious Ih (contracted the virus and can transmit it), and recov-
ered Rh with lifelong immunity. The mosquito population is
divided into similar classes, where the state variables have
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Figure 1. Compartmental model of Zika virus transmission. Compartments are divided into humans (blue), and vectors (red), representing disease status, with
transitions between compartments (rates) in solid lines. The transmission of Zika virus from humans to vectors is denoted by dashed lines, and from vectors
to humans by the double dashed (short and long dashed) line. Rates of demographic change (births and deaths) in the vector population are denoted by
dotted lines.
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subscript v, but without an immune class since it is assumed that
infectious mosquitoes do not clear the virus once it is in the sali-
vary glands. The total human and mosquito populations are
Nh = Sh + Eh + Ih +Rh and Nv = Sv + Ev + Iv.

The model assumes a constant human population during the
epidemic. Susceptible humans acquire the virus at rate (force of
infection) lvh(Iv, Nh) ¼ bvbvhIv=Nh, while susceptible mosquitoes
acquire the virus at rate λhv(Ih, Nh) = bvβhvIh/Nh, where bv is the
number of human bites per mosquito per unit time, βvh is the
probability that an infectious mosquito successfully transmits
the virus while taking a blood meal from a susceptible
human (i.e. the transmission rate), and βhv is the probability
that an infectious human successfully transmits the virus to
a biting, susceptible mosquito (i.e. the infection rate). The
respective average residence times of infected humans and
mosquitoes in the latent classes are 1/σh and 1/σv, while the
respective rates at which humans and mosquitoes become
infectious are σh and σv. Humans are infectious for approxi-
mately 1/γh days before recovering with permanent immunity
(γh is the per capita human recovery rate), while infectious mos-
quitoes remain infectious until they die. Mosquito recruitment
occurs at a per capita rate f (Iv) = αv(1− (Nv/κv)), where κv is the
carrying capacity (maximum number of mosquitoes a breeding
site can support). Furthermore, αv = θvνvϕv/μv consists of θv, or
the number of eggs a female mosquito produces per day; νv,
the probability of surviving from egg to adult; and ϕv, the rate
at which an egg develops into an adult mosquito. Mosquitoes
die naturally at per capita rate μv, where 1/μv is the average life-
span of mosquitoes. See figure 1 for a schematic of the model
and table 1 for descriptions and baseline values of the par-
ameters. The dynamic model for the Zika virus is described by
the equations

_Sh ¼ � bvbvhIv
Nh

Sh,

_Eh ¼ bvbvhIv
Nh

Sh � shEh,

_Ih ¼ shEh � ghIh,

_Rh ¼ ghIh,

_Sv ¼ avNv 1�Nv

kv

� �
� bvbhvIh

Nh
þ mv

� �
Sv,

_Ev ¼ bvbhvIh
Nh

Sv � (sv þ mv)Ev

and _Iv ¼ svEv � mvIv:

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;

(2:1)
Dots denote differentiation with respect to time, t (in days).
The dynamics of the total human population and mosquito
populations are described, respectively, by the equations

_Nh ¼ 0 and _Nv ¼ av 1�Nv

kv

� �
� mv

� �
Nv: (2:2)

Without Zika virus, the mosquito population grows accord-
ing to equation (2.2), or Nv(t) ¼ N�

v=(1þ (N�
v=N

0
v � 1)e�(av�mv)t),

where N0
v is the initial mosquito population and

N�
v ¼ kv(1� (mv=av)) . 0 for αv > μv is the positive equilibrium

obtained by setting the right-hand side of the equation to zero.
Observe that Nv(0) ¼ N0

v , and that when αv > μv, the total mos-
quito population relaxes on the equilibrium population (N�

v ) in
the long run. Therefore, the equilibrium point N�

v is stable
when αv > μv and vanishes when αv < μv. The case for which
αv < μv results in a trivial mosquito equilibrium represents a situ-
ation in which the mosquito population becomes extinct. Since
_Nh ¼ 0, Nh(t) is constant. To illustrate the dynamics of the
system, we set Nh = 1000.

The next generation operator approach [36,51,52] is used to
compute the basic reproduction number of the model (2.1).
This involves re-writing equations (2.1) as two sub-systems—a
disease-free sub-system (consisting of the equations for the sus-
ceptible human and vector classes and the recovered human
class) and a disease sub-system (consisting of equations for the
exposed and infectious human and mosquito classes—i.e. the
second, third, sixth and seventh equations of the model (2.1)).
The disease system is expressed as the difference of two vec-
tors—a vector of new infections F = ((bvβvhIv/Nh)Sh, 0, (bvβhvIh/
Nh)Sv, 0) and a vector of transitions V = (σhEh, − σhEh + γhIh,
(σv + μv)Ev,− σvEv + μvIv). The corresponding matrices of new
infections F and transitions V (given by the Jacobians of the
vectors F and V), as well as the inverse of the matrix V are

F¼

0 0 0 bvbvh

0 0 0 0

0 bvbhvN�
v

Nh
0 0

0 0 0 0

0
BBB@

1
CCCA, V¼

sh 0 0 0

�sh gh 0 0

0 0 sV þmv 0

0 0 �sV mv

0
BBB@

1
CCCA,

V�1 ¼

1
sh

0 0 0
1
gh

1
gh

0 0

0 0 1
svþmv

0

0 0 sv
(svþmv)mv

1
mv

0
BBBB@

1
CCCCA,



Table 1. Parameter definitions, baseline values, and ranges of values for the system (2.1) without temperature dependence.

parameter description value range source

g�1
h human infectious period 5 days 4–7 days [43]

s�1
h intrinsic incubation period 5.9 days 3–14 days [44,45]

s�1
v extrinsic incubation period 10 days 8–12 days [46,47]

βvh probability of a mosquito infecting a human 0.33 0.1–0.75 [48,49]

βhv probability of a human infecting a mosquito 0.33 0.1–0.75 [48,49]

m�1
v mosquito lifespan 14 days 7–30 days [50]

κv mosquito carrying capacity 2 × 104 (1− 5) × 104 assumed
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where N�
v ¼ kv(1� (mv=av)), αv> μv. The next generation matrix is

FV�1 ¼
0 0 bvbvhsv

(svþmv)mv

bvbvh
mv

0 0 0 0
bvbhvN�

v
Nhgh

bvbhvN�
v

Nhgh
0 0

0 0 0 0

0
BBB@

1
CCCA:

The spectrum (set of eigenvalues) of the next generation matrix
FV�1 is

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2vbvhbhvsv

ghmv(sv þ mv)
N�

v

Nh

s
, 0, 0,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2vbvhbhvsv

ghmv(sv þ mv)
N�

v

Nh

s( )
:

The basic reproduction number of the model (2.1) is the spec-
tral radius, i.e. the largest eigenvalue of the matrix FV�1.
Hence, in the presence of the Zika virus, the basic reproduction
number of system (2.1) is

R0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2vbvhbhvsv

ghmv(sv þ mv)
N�

v

Nh

s
: (2:3)

The main difference between this R0 calculation and that from
the Ross–MacDonald model [53,54] is in the probability that the
mosquito survives the latent period. The Zika virus can spread
when R0 > 1 and can be contained when R0 < 1.

Variants of the model (2.1) have been used to assess the
impact of various control measures including insecticide-treated
bed nets on vector-borne diseases such as malaria [55–60]. For
the purposes of exploring control strategies, we also consider a
variant of this model that includes vaccination, where vaccinated
susceptible humans are assumed to enter the immune class
directly. For this special case, the first and fourth equations
of (2.1) are replaced by _Sh ¼ �((bvbvhIv=Nh)þ dh)Sh and
_Rh ¼ dhSh þ ghIh, respectively, where δh represents the per capita
human vaccination rate.

2.2. Introducing temperature
The majority of the parameters associated with the mosquito
vector (θev, νv, ϕv, bv, μv), as well as ZIKV transmission (βhv) and
replication (σv), are known to be influenced by environmental
and climate conditions [3,19]. We investigate the effects of temp-
erature variation on the dynamics of the mosquito population
and ZIKV transmission over time. We follow the approach in
[8] and model temperature-dependent parameters with the func-
tional forms presented in equation (2.4). We rely on values and
ranges of temperature-dependent parameters from recent labora-
tory-generated analyses for Zika virus [19] and Ae. aegypti life-
history parameters (i.e. the biting rate of mosquitoes, the
number of eggs a female mosquito lays per day, the probability
of an egg surviving to an adult mosquito, and the rate at
which an egg develops into an adult mosquito) [3] as specified
in table 2. As in [8], the temperature dependent parameters
are based on the quadratic and Briere [61] functional forms,
c(T− Tm)(T− T0) and cT(T � T0)(Tm � T)

1
2, respectively, where T,

c, T0 and Tm are the temperature, rate (or scaling) constant,
critical thermal minimum temperature and critical thermal
maximum temperature, respectively:
Eggs per female mosquito per day: uv(T) ¼ cuvT(T � T0
uv
)(Tm

uv
� T)1=2,

Egg–adult survival probability: nv(T) ¼ cnv (T � T0
nv
)(T � Tm

nv
),

Egg–adult development rate: fv(T) ¼ cfv
T(T � T0

fv
)(Tm

fv
� T)1=2,

Mosquito biting rate: bv(T) ¼ cbvT(T � T0
bv )(T

m
bv � T)1=2,

Infectivity of infectious humans: bhv(T) ¼ cbhv
(T � T0

bhv
)(T � Tm

bhv
),

Extrinsic incubation rate: sv(T) ¼ csvT(T � T0
sv
)(Tm

sv
� T)1=2,

Vector mortality rate: mv(T) ¼
1

cls(T � T0
ls)(T � Tm

ls )
:

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

(2:4)
The subscripts θv, νv, ϕv, bv, βhv, σv and ls on c, T0, and Tm

indicate that the temperature-related parameter (c, T0 or Tm) is
associated with the corresponding original model parameter
(θv, νv, ϕv, bv, βhv or σv,). These relationships between some
model parameters, model outcomes, and temperature are
illustrated in figure 2.
We further introduce seasonal variation in the system by
modelling temperature through the sinusoidal functional form:

T(t) ¼ Tm þ Ta sin
2p
365

� �
t, (2:5)

where Tm is the mean annual temperature and Ta is the ampli-
tude (divergence from mean temperature or mid-point between



Table 2. Parameter values for temperature-dependent functional forms. The temperature in degrees Celsius is denoted by T, the rate scaling factor is denoted
by c (main Column 2), the minimum critical thermal temperature is denoted by T0 (main Column 3), and the maximum critical thermal temperature is denoted
by Tm (main Column 4). The subscripts denote the corresponding traits, e.g. cuv , T

0
uv
and Tmuv are for the number of eggs laid by a female mosquito per day,

θv. See equation (2.4) for brief descriptions of the temperature-dependent parameters.

c T0 Tm

trait mean range mean range mean range source

θv(T ) 8.56 × 10−3 [3.78, 14.1] × 10−3 14.58 [8, 08, 20.60] 34.61 [34, 35.77] [3]

νv(T ) −5.99 × 10−3 [−6.82,−5.13] × 10−3 13.56 [12.56, 14.51] 38.29 [38.29, 39.02] [3]

ϕv(T ) 7.86 × 10−5 [5.75, 9.93] × 10−5 11.36 [7.19, 15.03] 39.17 [39.17, 39.54] [3]

bv(T ) 2.02 × 10−4 [1.2, 2.8] × 10−4 13.35 [5.84, 14.82] 40.08 [36.60, 40.51] [3]

βhv(T ) −3.54 × 10−3 [−5.6,−1.8] × 10−3 22.72 [21.09, 24] 38.38 [36.46, 40.25] [19]

σv(T ) 1.74 × 10−4 [5.4, 30.4] × 10−5 18.27 [7.68, 24] 42.31 [39.26, 45] [19]

1/μv(T ) −3.02 × 10−1 [−4.68,−1.34] × 10−1 11.25 [6.3, 15.06] 37.22 [34.79, 39.57] [19]
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the lowest and highest annual temperatures, i.e. Ta = (Tm− T0)/2,
where Tm and T0 are the respective average maximum and mini-
mum temperatures across the year), and the period is 365 days.
Here, we are assuming that at the onset of an epidemic outbreak,
the phase is set to zero.

2.3. Control strategies
To analyse the relationship between temperature and Zika con-
trol, we identified the following parameters of the system that
correspond to potential control strategies: vaccination (δh)
decreases susceptibility and is directly incorporated into the
models as described above; recovery rates (γh) can, for example,
be increased through treatment with antiviral medication;
vector biting rates (bv) can be reduced through decreasing
exposure to mosquitoes with personal protection or household
improvements; vector-to-human transmission probability (βvh)
can decrease with transmission-blocking Wolbachia; the vector
carrying capacity (κv) can be reduced by eliminating vector
breeding grounds near human habitats; egg–adult survival prob-
ability (νv) can be reduced through larvicides; and adult
mosquito survival rate (μv) can be decreased through indoor
spraying and the use of adulticides. We investigate the effects
of the interaction between temperature and these parameters
that are influenced by common disease control methods on R0

and the final epidemic size (total Ih).

2.4. Sensitivity analysis
Two types of sensitivity analyses—local and global—were used
to explore the impact of temperature and selected parameters
that are affected by disease control measures on the basic repro-
duction number (R0) and the human final epidemic size (total Ih).
The local sensitivity analysis was conducted by varying only one
parameter while holding all other parameters fixed, or varying
both temperature and a control-sensitive parameter while hold-
ing the other parameters fixed. Each parameter that was varied
was divided into 50, 100 and 250 equally spaced points within
biologically feasible bounds. See figures 2–6 for results. As the
human vaccination rate (δh) does not appear explicitly in the
expression of R0, we could not assess how temperature modified
the effect of this parameter on the basic reproduction number.
However, we explore the impact of temperature on the human
vaccination rate and associated implications for Ih, the human
final epidemic size (figure 3).

Global sensitivity analysis is presented in figure 7. The analy-
sis is carried out using the Latin hypercube sampling and partial
rank correlation coefficient (PRCC) technique [42]. The process
involves identifying a biologically feasible mean, minimum
and maximum value for each of the parameters (e.g. [3,19])
and subdividing the range of each parameter into 1000 equal
sub-intervals, assuming a uniform distribution between the mini-
mum and maximum values of each parameter. We then sample
at random and without replacement from the parameter distri-
butions to generate an m × n Latin hypercube sampling matrix,
whose m rows (i.e. 1000 rows) consist of different values for
each of the model parameters and the n columns (corresponding
to the number of parameters in the system) consist of different
values for the same parameter. Thus, each row of the Latin
hypercube sampling matrix provides a parameter regime that
is used for computing the basic reproduction number, solving
the dynamic system, and computing the human final epidemic
size. The parameters, basic reproduction number, and the
human final epidemic size are then ranked with partial corre-
lation coefficients estimated for each parameter along with
corresponding p-values. PRCCs range from −1 to 1 and are
used to examine the correlation between model parameters and
model outputs (R0 and the final epidemic size). This method
thus identifies parameters with the most significant influence
on model outputs; it does not quantify the effect of a change in
a parameter on the output.

2.5. Mapping seasonal control
We mapped the R0 as a function of monthly mean temperature
(figure 5). Globally gridded monthly mean current temperatures
were downloaded from WorldClim.org [62], at a 5 arc-minute
resolution (approx. 10 km2 at the equator), and predicted rates
as a function of temperature at 0.2°C were mapped to the
global grids. All raster calculations and graphics were conducted
in R, using package raster [63].
3. Results
3.1. Impact of temperature on model parameters and

key outputs
The models show unimodal relationships between tempera-
ture and the temperature-dependent parameters, resulting
in an optimal temperature that maximizes parameter values
and a critical minimum and maximum temperature at
which parameter values go to zero. Figure 2 presents the
effects of temperature on mosquito and pathogen parameters,
the final epidemic size in humans (total number of infected
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individuals over the course of the epidemic) and mosquitoes,
and the basic reproduction number, R0 (via temperature
effects on mosquito and ZIKV parameters).

The response of R0 to temperature is strongly peaked
(with an optimum around 30°C) as has been demonstrated
for Zika and other systems (e.g. dengue, malaria, Ross
River virus) [3,5,18,19]. By contrast, the relationship between
the final epidemic size and temperature is flat; i.e. within the
thermal range of disease transmission, the final epidemic size
does not change (figure 2i versus 2j ). At temperatures associ-
ated with lower epidemic peaks, there are longer epidemic
periods, resulting in the same total number of infected
individuals over the course of the epidemic (figure 2l).
3.2. Zika virus control
The effects of static temperature (i.e. not including seasonal-
ity) and control-related parameters on final epidemic size
are presented in figure 3. The most striking feature of these
plots is that the difference between very small and very
large epidemics (represented by blue and red areas, respect-
ively) is discrete for most parameters. Crossing these
thresholds, the most significant changes occur not from incre-
mental changes in control parameters at a given temperature,
but when temperatures move into the suitable thermal range,
in which case the models predict widespread transmission
(this concept is more rigorously explored in the sensitivity
analysis below). However, vaccination (δh) and recovery (γh)
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have more incremental effects (within their feasible ranges)
on final epidemic size even within the suitable thermal
range; i.e. proportion of the population that needs to be vac-
cinated is higher at optimal temperatures than at sub-optimal
temperatures to achieve a given reduction in the overall final
epidemic size (figure 3d ). Thus, warming temperatures (for
most countries) will require greater vaccination coverage
and treatment rates in order to maintain control of Zika.
The effects on the basic reproduction number (R0) of most
parameters that are sensitive to control measures were more
dependent on temperature (figure 4) than was the case for
the final epidemic size (total Ih), with the greatest effect invol-
ving the clearance rate of infection (γh), the probability of
transmission from an infectious human to a susceptible mos-
quito (βhv), mosquito carrying capacity (κv) and the mosquito
mortality rate (μv).
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3.3. Seasonal variation
Seasonal temperature variation affects outcomes by provid-
ing transient temperatures (variation from the annual mean;
equation (2.5)) where the basic reproduction number can
rise above (or fall below) 1, allowing for transmission to
occur (or cease). At constant temperatures, epidemics only
occur in humans between ≈23−37°C (figure 3). Such average
annual temperatures are only found in tropical countries.
However, the model shows the potential for epidemics in
areas with mean temperatures below 23°C if there is adequate
seasonal variation. This would be the case, for example,
for a subtropical area, such as Tampa, FL, with a mean
annual temperature of ≈20°C and an amplitude of ≈10°C
(figure 6a). In contrast to the models without seasonal
variation (figure 3), the models with seasonal variation
(figure 6) indicate that the effectiveness of parameters on
the final epidemic size is generally sensitive to changes
in temperature (e.g. the colour bands in the subplots of
figure 6 are diagonal in more of the parameter space than
they are in figure 3). Figure 5 shows how the thermal con-
ditions that are suitable for Zika (where R0 > 1) change with
seasonal temperature variation across the globe.
3.4. Global uncertainty and sensitivity analysis
A global sensitivity analysis using Latin hypercube sampling
showed that R0 and the final epidemic size are largely sensitive
to different parameters (as indicated by differences in figures 3
and 4). However, temperature is a dominant driver of variation
in both the basic reproduction number (R0) and the final
epidemic size (total Ih) when it is included in the model
(figure 7c–e). The human recovery rate, γh, was a consistently
influential driver of the final epidemic size. By contrast, the
basic reproduction number was not sensitive to recovery in
the models with and without variable temperature. While R0

was also sensitive to vector competence (βvh and βhv), biting
rate (bv), and mosquito lifespan (1/μ), total infection burden
was far less sensitive to these parameters and was mainly sen-
sitive to human recovery rate (γh) (figure 7a,b).
4. Discussion
We are interested in what drives arbovirus epidemics, with
Zika as a model, and how to reduce the burden of these dis-
eases, focusing on temperature and key parameters that
correspond to existing or potential control methods (e.g. pes-
ticides, reduced breeding habitats, vaccines or treatment). We
investigated temperature-dependent dynamic transmission
models that incorporated recent empirical estimates of the
relationships between temperature and Zika infection, trans-
mission, and mosquito lifespan [19]. These dynamical models
that can measure final epidemic size and account for temp-
erature variation generate qualitatively different results
from static R0 models. Temperature had an overwhelmingly
strong impact on both R0 and the final epidemic size (total
infectious individuals, equivalent to area under the Ih epi-
demic curve), but the response was much more gradual
and had a clear optimum for R0, while the final epidemic
size responded as a threshold function (figure 2i,j ). This is
because, while epidemics have a higher peak at the maxi-
mum R0 (at optimal temperatures), the epidemics are
longer at sub-optimal temperatures (lower R0). Thus, Zika
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virus is capable of spreading efficiently through the host
population (high Ih) across a broad range of temperatures
for which R0 > 1, spanning from 17 to 37°C in constant
environments (figure 6a) [8]. This is broadly consistent with
the high seroprevalence of Zika found in a number of
countries [64,65]. This suitable temperature region expanded
and shifted toward cooler mean temperatures under season-
ally varying environments (figure 6a).

These results have two key implications. First, large
epidemics can occur under realistic, seasonally varying, temp-
erature environments even in regions where the mean
temperature alonewouldbe expected to suppress transmission,
for example in a location with a mean of 20°C and a seasonal
amplitude of 10°C (e.g. Tampa, FL). Second, temperature deter-
mines both upper and lower thresholds for whether or not
epidemics are possible [8]. However, within the predicted suit-
able temperature range defined byR0, the final epidemic size is
largely limited by the densityof susceptible hosts (figures 2 and
6a) [8]. More broadly, the results highlight the important
principle that metrics of transmission (e.g.R0) have a nonlinear
relationship with the human final epidemic size (total Ih) and
contribute distinct implications for our understanding of the
transmission process.

Whether or not temperature affects the potential for disease
control is an important applied question for designing public
health campaigns (either via vector control, reduction in host
biting rate, vaccination, or drug administration). Temperature
did not strongly affect the impact of most control-related par-
ameters on the final epidemic size when the models did not
include seasonal variation. In the more realistic situation
where models included seasonal variation, the effectiveness
of most parameters that are sensitive to disease control
measures depended on temperature. In all models, human vac-
cination rate required to control epidemics varied stronglywith
mean temperature (figures 3–6). Achieving herd immunity and
thereby suppressing transmission via vaccination is more diffi-
cult when temperatures are highly suitable (20−35°C under
constant temperatures or 15−32°C under varying tempera-
tures; figures 3–6). By contrast, the effects of the human
recovery rate (γh) and the vector mortality rate (μv) on R0 were
sensitive to temperature, but their effects on the final epidemic
size were not sensitive to temperature.

Similar to previous work on dengue [8], our results show
that Zika can invade and cause large outbreaks during the
summer in seasonally varying environments with lower aver-
age temperatures, such as temperate regions of the USA,
Europe, andAsia. This implies that differences in the size of epi-
demics in tropical versus temperate locations occur not just
because of differences in temperature (and its impacts on R0)
but also because of differences in vector breeding habitat avail-
ability, humidity, human mosquito exposure, and other socio-
ecological factors. Much of the globe—including regions in
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temperate, subtropical, and tropical climates—is already suit-
able for Zika transmission for all or part of the year, and
climate change is likely to expand this suitability geographically
and seasonally [66]. However, processes that increase the den-
sity of susceptible human populations and their exposure to
mosquitoes, including urbanization and urban poverty,
human population growth, and the growth and geographical
expansion of vector populations, are likely to expand the
burden of Zika even more dramatically in the future.

There are several limitations of such a modelling study.
First, the parameters are determined by a combination of
laboratory-based estimates as well as from the literature on
dengue, instead of being fitted to empirical data on the
spatio-temporal dynamics of Zika from the field. Such diver-
gent approaches can generate different parameter estimates.
Furthermore, the projections of the model on potential geo-
graphical distribution of Zika are based on the average of
temperatures by country and seasonwith constant parameters.
In reality, there is substantial heterogeneity of temperature and
parameters over time and space, which have important impli-
cations for disease dynamics. For this reason, further
investigation of Zika models that are calibrated from field
based dynamics will be valuable for a fuller understanding of
effects of temperature variation on Zika control.
5. Conclusion
The unexpected emergence and global expansion of Zika in
2015–2017 and its association with Zika congenital syndrome
and Guillain–Barre syndrome revealed once again how poorly
prepared the global community is for the looming and
expanding threat of vector-borne diseases. Given the recent
historyof the rapidglobal expansionofAedes aegypti-transmitted
viruses (e.g. DENV, CHIKVandZIKV), as well as the challenges
of controlling these epidemics, understanding the ecological dri-
vers of transmission and their effects on potential disease control
tools is crucial for improving preparedness for future vector-
borne disease emergence. If a Zika vaccine becomes available,
then the precisely defined temperature thresholds for large epi-
demics predicted in our model imply that vaccination targets
should be set based on climate. By contrast, because other poten-
tial interventions that would reduce vector population sizes,
biting rates, and human recovery rates act more independently
of temperature, targets could be set based onother socio-ecologi-
cal factors in a given epidemic setting. This dynamic
temperature-dependent modelling framework, which depends
most strongly on vector and host parameters that are virus-inde-
pendent, may be a useful first step for responding to future
Aedes-borne disease epidemics.
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