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Abstract

Noninvasive genetic sampling (NGS) is commonly used to study elusive or rare species

where direct observation or capture is difficult. Little attention has been paid to the potential

effects of observer bias while collecting noninvasive genetic samples in the field, however.

Over a period of 7 years, we examined whether different observers (n = 58) and observer

experience influenced detection, amplification rates, and correct species identification of

4,836 gray wolf (Canis lupus) fecal samples collected in Idaho and Yellowstone National

Park, USA and southwestern Alberta, Canada (2008–2014). We compared new observers

(n = 33) to experienced observers (n = 25) and hypothesized experience level would

increase the overall success of using NGS techniques in the wild. In contrast to our hypothe-

sis, we found that new individuals were better than experienced observers at detecting and

collecting wolf scats and correctly identifying wolf scats from other sympatric carnivores

present in the study areas. While adequate training of new observers is crucial for the suc-

cessful use of NGS techniques, attention should also be directed to experienced observers.

Observer experience could be a curse because of their potential effects on NGS data quality

arising from fatigue, boredom or other factors. The ultimate benefit of an observer to a proj-

ect is a combination of factors (i.e., field savvy, local knowledge), but project investigators

should be aware of the potential negative effects of experience on NGS sampling.

Introduction

Noninvasive genetic sampling (NGS) has been implemented with increased frequency in pop-

ulation ecology and conservation biology studies in recent years. NGS allows for the study of a

wide range of taxa [1–3] without disturbing or influencing the behavior of the study species

[3–6]. Without the use of NGS, invasive or lethal means are relied upon for the collection of

genetic samples [7]. Recently, biologists have demonstrated a desire to move away from these

invasive methods and are instead choosing to use non-invasive techniques when possible.

NGS has been used to study many species successfully, including the elusive gray wolf

(Canis lupus). Collecting genetic information non-invasively using scat and hair has been
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effective for long-term population monitoring and detecting occupancy over a large spatial

area [8–10]. Extracting and analyzing DNA from wolf scat and hair has been used as a method

to determine population size [9,11,12], pack structure [9,12,13], and dispersal patterns [14,15]

without the need for direct observation or capture and radiomarking. Collecting an adequate

number of samples can be difficult for species at low densities, however, and may require the

collection of hundreds of samples to ensure adequate detection rates [10,12]. Social species,

such as the gray wolf, allow for the opportunity to collect many samples of multiple individuals

in the same location. In summer, wolves use rendezvous sites, which are areas where members

of a pack congregate and provision relatively stationary pups for several weeks until the pups

are old enough to travel with the adults in the group [16]. Sampling efforts can be concentrated

in and around these rendezvous sites, where presence is easiest to detect and scat samples rep-

resenting each member of the pack can be found [8]. The successful collection of fecal samples

relies on two main factors, 1) the observer’s ability to correctly identify wolf sign, and 2) ade-

quately sampling feces to yield a consensus genotype.

While NGS has proven to be extremely useful, issues such as allelic dropout and observer

bias continue to resurface, though the impacts of these reoccurring issues can be minimized

over time with further examination [17]. Our study attempts to shed more light on one of the

most common yet difficult issues to address that continue to resurface in studies involving

NGS: observer bias. Due to the high frequency of genotypic errors typically associated with

NGS [18], minimizing potential sources of error such as observer bias is critical. Some studies

have examined this in scat detection for group surveys, but fewer have compared successful

data collection between individual observers [19]. Errors associated with fecal genetic sampling

in the field include incorrect species identification [20], improper sampling technique, and

poor tracking ability yielding low detection rates. Studies have documented inexperienced par-

ticipants to be a significant source of bias in the field but showing a decrease in error rates over

time [21]. In a study involving multiple observers, it is important that error is acknowledged

and assessed to maximize data accuracy and efficiency.

We evaluated NGS success rates for observers with varying experience levels to test how

experience influenced the ability to collect viable DNA from fecal samples of a target species.

We hypothesized that having previous experience on a project and familiarity with project

protocols would positively affect an observer’s ability to find and sample wolf scats effectively.

Specifically, we predicted that experienced observers would find more wolf fecal samples, have

higher DNA amplification rates of those samples, and be more likely to correctly identify wolf

scats from other sympatric carnivores (i.e., coyotes, Canis latrans; mountain lions, Felis conco-
lor; black bears, Ursus americanus) compared to new observers.

Study area

Trained observers collected samples in three main study areas, central Idaho (45.9500, -115.5349),

Yellowstone National Park, WY (44.4280, -110.5885), and southwestern Alberta, Canada

(49.2478, -114.0902) during June-August, 2008–2014. Observers sampled central Idaho (6,413

km2) annually during 2008–2014. Average annual precipitation in central Idaho typically ranged

420–710 mm with average summer daily temperatures between 4–31˚ C. Common vegetation

generally consisted of ponderosa pine (Pinus ponderosa), lodgepole pine (P. contorta), and spruce

(Picea englemannii) forests, and sagebrush (Artemesia tridentata) steppe [22].

Observers collected scats in Yellowstone National Park (8,983 km2) during 2012–2014. Yel-

lowstone has average temperatures of 5–27˚C and average precipitation between 33–53 mm

during the summer months. Yellowstone National Park is dominated by lodgepole pine (P.

contorta) forests and expansive meadow systems.
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Observers collected samples in the Canadian Rocky Mountains of southwest Alberta, Can-

ada from 2012–2014. We surveyed sites within an area of 12,950 km2 between the United

States border and Highway 1 and west of Highways 6 and 22, including an area known as Por-

cupine Hills. Some grazing lease lands could not be surveyed because we were denied access by

leaseholders. The western portion of the southwestern Alberta study area was mountainous

and dominated by Douglas fir (Pseudotsuga menziesii), lodgepole pine, and spruce mixed for-

ests, that transitioned through aspen (Populus tremuloides) to agricultural land and fescue (Fes-
tuca spp.) dominated grassland in the east [23].

Methods

Field methods

We employed paid observers and considered observers who had not been previously employed

on the project as “new” and those who had familiarity with the sampling protocols and had

worked on the project in previous years as “experienced”. All observers were enrolled in, or

recent graduates of, a natural resources program at a university. All observers had prior wild-

life-related field experience, although not necessarily using NGS. We trained all observers in

wolf sign identification and field navigation for three days prior to sampling. One day included

presentations showing pictures of various forms of wolf sign (i.e., tracks, scats, trails), measur-

ing exercises of wolf tracks using plaster molds, and observation of various wolf scat conditions

in the lab. We spent two additional days in the field showing observers wolf and coyote as well

as other sympatric carnivore tracks and scat. Each observer sampled wolf scats under the

supervision of project staff during training.

Observers conducted surveys for wolves at predicted rendezvous sites between mid-June

and late August. To target survey efforts, we used a habitat model emphasizing wet meadows

and areas with standing water as being consistent locations for rendezvous sites [10]. Observ-

ers surveyed sites at dawn and dusk, when wolves are active and more likely to respond to

human-mimicked howls [16]. Each survey consisted of driving and walking roads and hiking

off trail looking for tracks and scat in and around predicted rendezvous sites. Upon reaching a

site, observers used howling to detect the immediate presence of wolves [24]. If there was no

howl response from wolves, two observers separated for 30–45 minutes attempting to locate a

rendezvous site or wolf sign. If there was a howl response, observers estimated a count of indi-

vidual wolves and all observers on the crew (up to 6) attempted to locate the activity center,

where the majority of sign is concentrated [24]. We made no attempt to sample sites according

to experience level (i.e., experienced observes were not assigned more difficult areas to collect

scats). We defined scats collected by a single observer outside of an active rendezvous site

(>500m from the activity center) as “incidental”.

Observers collected canid scats >2.5 cm in diameter and labeled them as “wolf” in the field

[25]. Observers only collected scats believed to be deposited after the most recent winter to try

and eliminate the collection of samples left by individuals that may have been harvested during

the winter. For each scat, observers removed a small portion of the outer layer of fecal material

from the side of the scat with sterilized tweezers [8] and stored them in a 2-ml vial containing

DETs buffer [26].

During 2011–2014, wolves in Idaho and Yellowstone National Park were fitted with GPS

collars, which allowed for crews to hike directly into active rendezvous sites, leaving little

room for the collection of scats from non-target species. We did not include any scat samples

collected in Idaho and Yellowstone National Park during these years in our analyses of species

identification success rates.
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Fieldwork was conducted under the University of Montana’s Institutional Animal Care and

Use Committee (IACUC) protocol IACUC 008-09MMMCWRU-031009, and 001-

15MMMCWRU-011315. Four wolves were collared under the IACUC protocol numbers

listed above. Additional wolves were collared as part of state and tribal wildlife agency moni-

toring programs (see [27] for additional details), following recommended American Society of

Mammalogists guidelines, and the subsequent locations of radio collared wolves were shared

with the authors. Our survey locations were on public land (Canadian Crown land and United

States Forest Service land).

Lab and statistical analyses

We sent collected genetic samples to the Laboratory for Ecological, Evolutionary and Conser-

vation Genetics (LEECG) at the University of Idaho, USA, for DNA extraction and amplifica-

tion. The LEECG extracted DNA from scat samples using Qiagen kits (Qiagen Inc., Valencia,

CA) and included a negative control to test for contamination [8]. They first screened all sam-

ples with a species-identification test (SpID) using a 3-primer mitochondrial DNA (mtDNA)

control region polymerase chain reaction (PCR) [28–31] to remove non-target species (e.g.

coyote) and low-quality samples [14]. They attempted to genotype all remaining samples iden-

tified as wolf/dog using 9 nuclear DNA microsatellite loci as described in Stansbury et al.

(2014) and analyzed an additional 10 loci on samples matching at all but one locus. For geno-

typing, LEECG initially amplified all samples twice, and required successful amplification of

alleles at�5 loci for the sample to continue for an additional 1–3 replications; samples that

amplified at<5 loci were discarded. For each locus they required�2 independent PCR ampli-

fications for consensus of a heterozygote and�3 independent PCR amplifications for consen-

sus of a homozygote. LEECG included a negative control in all PCRs to test for contamination.

Given the potentially large number of first-degree relatives in our dataset, they required�7

loci to consider a sample successfully genotyped and�8 loci (P(ID)sibs ranging from 0.0004 to

0.0012 across study areas) [32] to confirm multiple detections of the same individual. LEECG

compared all consensus genotypes and all unique genotypes of previously identified individu-

als using GENALEX [33] to match samples and distinguish unique genotypes. They performed

a second species confirmation analysis on all unique genotypes in program STRUCTURE

v2.3.3 [34] at K = 3 under the general admixture model, with a burn-in of 100,000, and

500,000 Markov Chain Monte Carlo (MCMC) repetitions and 10 iterations to estimate indi-

vidual ancestry and remove highly probable dogs or coyotes from the dataset. To avoid overes-

timation and account for undetected genotyping errors, they grouped samples mismatching

by allelic dropout at only one locus (e.g. 102, 102 vs. 102, 106) as a single individual [35]. We

used RELIOTYPE [36] to test the accuracy of unique genotypes represented by only one non-

invasive sample (i.e. single detections) by ensuring the genotype attained a 95% accuracy

threshold.

We calculated successful DNA amplification frequency using the samples collected within

active rendezvous sites, where scats of non-target species are unlikely. Scats collected outside

of active rendezvous sites (incidental samples), which had the potential to be from non-target

species, were used to calculate correct (i.e., wolf) species identification frequency. Samples that

were collected but failed to amplify usable DNA, and therefore could not be identified to spe-

cies, were labeled as “failures”.

We used a t-test to assess whether new and experienced observers differed in, 1) the number

of scat samples collected, and 2) the number of scats samples collected at active rendezvous

sites that successfully amplified (i.e., yielded a consensus genotype). For incidental samples,

correctly identifying target species scat is a binary process. We had adequate sample size to use
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a mixed effects logistic regression model (GLMM) to test for differences in the probability of

correct species identification as a function of experience level. We treated year and observer

name as random effects and used the “lme4” package in Program R. We considered differences

significant when p<0.05.

Results

Thirty-four individuals participated in the collection of samples. Sixteen individuals partici-

pated in multiple years, beginning as a “new” observer and becoming “experienced” observers

in subsequent years; ultimately resulting in 58 observer/years (33 new and 25 experienced; 1

observer was the author and was defined as “experienced”).

We collected and analyzed 4,836 scat samples, 1,899 (39%) of which failed to yield amplifi-

able DNA. New observers collected more samples than experienced observers at active wolf

rendezvous sites (96.4 vs. 66.2 samples; t = 2.56, df = 54, p = 0.01; Fig 1). New observers also

collected more scats than experienced observers that successfully amplified (59.5 vs. 40.2,

t = 2.40, df = 52, p = 0.02; Fig 1. The proportion of scats that successfully amplified did not dif-

fer between the two observer groups (0.60, SD = 0.13 vs 0.62, SD = 0.11; Fig 2).

Ultimately, when sampling scats that had the potential to be of non-target species (i.e., inci-

dentals), new and experienced observers did not differ in the total number of incidental scats

collected (15.1, SD = 7.2 vs. 16.0, SD = 5.8). New observers, however, had a higher probability

(0.66 vs 0.50) than experienced observers of correctly identifying the target species from inci-

dental scats. This trend was statistically weaker than other differences we documented (β(expe-

rience) = -0.68, p = 0.08; (Fig 2).

Discussion

Contrary to what we hypothesized, we found that previous experience did not yield better

overall results during noninvasive genetic scat sampling. New observers collected more sam-

ples and identified the correct species slightly more often than experienced observers. Studies

have found that more intensive training protocols decreased error rates of inexperienced par-

ticipants [37], however our findings suggest that while new observers need rigorous training

initially, experienced observers may also need additional attention during (re)training.

Fig 1. Number of fecal samples collected and successfully amplified as a function of observer experience level

(n = 58), during genetic surveys for wolves in Alberta, Canada, central Idaho, and Yellowstone National Park,

WY, USA, 2008–2014. Error bars represent the SE.

https://doi.org/10.1371/journal.pone.0229762.g001
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We posit two explanations for why experienced observers performed more poorly than

expected. First, when sampling incidental scats, experienced observers may not be as tentative

as new observers and thus collect more “questionable” scats, which would result in more non-

target samples collected and therefore poorer identification rates. Collecting questionable scats

(i.e., those that may not be the target species) may be beneficial when surveying for rare or low-

density species, because it could decrease the chance an animal goes undetected. Alternatively,

collecting scats of non-target species can waste time and resources, potentially impacting the

efficiency of the study. Generally, for our study, sampling non-target species was undesirable.

Second, experienced observers may simply have been fatigued or bored and thus performed

more poorly than new observers. Boredom and fatigue have been known to influence observer

performance in wildlife surveys [38], but were not examined in this particular study.

Incidental samples represented 24% of all samples collected but provided critical informa-

tion about observer effectiveness. Species identification skills, as well as the ability to detect

tracks and scats on a road or trail, are crucial during noninvasive sample collection. Experi-

enced observers did not perform better than new observers in this regard, which suggests that

while tracking skills and knowledge of the target species’ habits are important, the tempera-

ment of human observers also plays an important role in sampling success [19,38]. The major-

ity (76%) of our fecal samples were collected at active wolf rendezvous sites, where accurate

species identification of samples is much less critical, as nearly all scats present are wolf. How-

ever, such samples are ideal for examining an observer’s collection technique, as the samples

are usually in good condition for DNA collection (recently deposited) and abundant.

The effect of individual variation in fatigue, boredom, visual acuity, and experience on sam-

ple success are difficult to evaluate [39]. These factors have the potential to bias results espe-

cially when implementing the same individual observers over time. The relationship between

experience level and both amplification rates and species identification of incidental scats

should be considered when implementing noninvasive DNA collection techniques.

DNA amplification rates did not differ between the two observer groups which suggests

project managers may want to emphasize other aspects of noninvasive fecal DNA projects (e.g.

Fig 2. Proportions of rendezvous site fecal samples that successfully amplified and proportions of incidental fecal

samples that were correctly identified in the field as wolf as a function of observer experience level (n = 58),

during genetic surveys in Alberta, Canada, central Idaho, and Yellowstone National Park, WY, USA, 2008–2014.

Error bars represent the SE.

https://doi.org/10.1371/journal.pone.0229762.g002
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tracking ability) during hiring and training of new individuals. However, the large range in

individuals’ amplification rates (0.29 to 0.89) and correct species identification rates (0.20 to

0.90) that we observed in our study suggests that biologists should consider the variability in

success when involving multiple observers in fecal DNA collection. Jenkins and Manly (2008)

also found a potential for high variation in detection rates in fecal surveys. The fact that such

differences are, in part, reflective of an observer’s experience level suggests that projects using

NGS would benefit by working to limit observer bias.

We used genetics to ensure that our target species was correctly identified. Some projects,

however, may not have resources for genetic analyses and thus rely solely on observer field

identification of target species scat. If observer experience can negatively affect NGS survey

success, studies relying on sign surveys and non-genetic approaches may discover ecological

consequences associated with observer experience and error. For example, new and experi-

enced observers collected equal numbers of incidental scats, but experienced observers mis-

identified the target species more often. If we had not verified species identification of

incidental samples, genetic sampling conducted by experienced observers would have yielded

false positive detections and biased occupancy high because of species misidentification. For

rare or imperiled species, such errors can have grave consequences.

An intensive 2-day training period in the field was implemented in this study and could be

replicated by others. We show that more seasons spent collecting fecal DNA did not apprecia-

bly improve sampling success, therefore the benefits of spending resources to increase in-field

training >2 days may be marginal. We recommend carefully weighing observer experience

against project goals (e.g., need to detect every individual) and assessing the potential for wast-

ing resources identifying non-target species or, in contrast, missing individuals that may be

present. Ultimately, an observer’s contribution to a project relies on a combination of factors

(i.e., field savvy, local knowledge) and project investigators should be aware that previous

experience collecting fecal genetic samples does not ensure greater success.
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29. Dalén L, Götherström A, Angerbjörn A. Identifying species from pieces of faeces. Conservation Genet-

ics. 2004; 5: 109–111.

30. Onorato D, White C, Zager P, Waits LP. Detection of predator presence at elk mortality sites using

mtDNA analysis of hair and scat samples. Wildlife Society Bulletin. 2006; 34: 815–820

31. De barba M, Adams JR, Goldberg CS, Stansbury CR, Arias D, Cisneros R, et al. Molecular species

identification for multiple carnivores. Conservation Genetics Resources. 2014; 6: 821–824.

32. Waits LP, Luikart G, Taberlet P. Estimating the probability of identity among genotypes in natural popu-

lations: cautions and guidelines. Molecular Ecology. 2001; 10: 249–56. https://doi.org/10.1046/j.1365-

294x.2001.01185.x PMID: 11251803

33. Peakall R, Smouse PE. GENALEX 6: genetic analysis in Excel. Population genetic software for teach-

ing and research. Molecular Ecology. 2006; 6: 288–295.

34. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype

data. Genetics. 2000; 155: 945–959. PMID: 10835412

35. Adams JR, Waits LP. An efficient method for screening faecal DNA genotypes and detecting new indi-

viduals and hybrids in the red wolf (Canis rufus) experimental population area. Conservation Genetics.

2007; 8: 123–131.

36. Miller CR, Joyce P, Waits LP. Assessing allelic dropout and genotype reliability using maximum likeli-

hood. Genetics. 2002; 160: 357–366. PMID: 11805071

37. Fitzpatrick MC, Preisser EL, Ellison AM, Elkinton JS. Observer bias and the detection of low-density

populations. Ecological Applications. 2009; 19: 1673–1679. https://doi.org/10.1890/09-0265.1 PMID:

19831062

38. Norton-Griffiths M. Further aspects of bias in aerial census of large mammals. Journal of Wildlife Man-

agement. 1976; 40: 368–371.

39. Neff DJ. The pellet-group count technique for big game trend, census, and distribution: A review. Jour-

nal of Wildlife Management. 1968; 32: 597–614.

PLOS ONE Observer bias in fecal genetic sampling

PLOS ONE | https://doi.org/10.1371/journal.pone.0229762 March 13, 2020 9 / 9

https://doi.org/10.1016/s0169-5347(99)01637-7
http://www.ncbi.nlm.nih.gov/pubmed/10407432
https://doi.org/10.1111/1755-0998.12250
https://doi.org/10.1111/1755-0998.12250
http://www.ncbi.nlm.nih.gov/pubmed/24620908
https://doi.org/10.1111/j.1523-1739.2008.01125.x
https://doi.org/10.1111/j.1523-1739.2008.01125.x
http://www.ncbi.nlm.nih.gov/pubmed/19183201
http://www.wrcc.dri.edu
http://www.wrcc.dri.edu
https://doi.org/10.1046/j.1365-294x.1998.00449.x
https://doi.org/10.1046/j.1365-294x.1998.00449.x
http://www.ncbi.nlm.nih.gov/pubmed/9787450
https://doi.org/10.1046/j.1365-294x.2001.01185.x
https://doi.org/10.1046/j.1365-294x.2001.01185.x
http://www.ncbi.nlm.nih.gov/pubmed/11251803
http://www.ncbi.nlm.nih.gov/pubmed/10835412
http://www.ncbi.nlm.nih.gov/pubmed/11805071
https://doi.org/10.1890/09-0265.1
http://www.ncbi.nlm.nih.gov/pubmed/19831062
https://doi.org/10.1371/journal.pone.0229762

