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Abstract
Background: Approximately 11 Mb of finished high quality genomic sequences were sampled
from cattle, dog and human to estimate genomic divergences and their regional variation among
these lineages.

Results: Optimal three-way multi-species global sequence alignments for 84 cattle clones or loci
(each >50 kb of genomic sequence) were constructed using the human and dog genome assemblies
as references. Genomic divergences and substitution rates were examined for each clone and for
various sequence classes under different functional constraints. Analysis of these alignments
revealed that the overall genomic divergences are relatively constant (0.32–0.37 change/site) for
pairwise comparisons among cattle, dog and human; however substitution rates vary across
genomic regions and among different sequence classes. A neutral mutation rate (2.0–2.2 × 10(-9)
change/site/year) was derived from ancestral repetitive sequences, whereas the substitution rate in
coding sequences (1.1 × 10(-9) change/site/year) was approximately half of the overall rate (1.9–
2.0 × 10(-9) change/site/year). Relative rate tests also indicated that cattle have a significantly faster
rate of substitution as compared to dog and that this difference is about 6%.

Conclusion: This analysis provides a large-scale and unbiased assessment of genomic divergences
and regional variation of substitution rates among cattle, dog and human. It is expected that these
data will serve as a baseline for future mammalian molecular evolution studies.

Background
Many mammalian species have long served our human
society by providing food, materials, and labor, providing
companionship as pets, and serving as model organisms
for biological studies. Besides the seven mammals
(human, mouse, rat, chimpanzee, macaque, dog and cat-
tle) whose genomic sequence data are already available,

16 eutherian mammals have been proposed for low-cov-
erage genome sequencing efforts [1]. Comparative
genomics has been proven to be a powerful strategy to
identify important evolutionary changes among these
mammalian species [2]. Evolutionary changes, which
have shaped the mammalian genomes, include both
small-scale (point mutations, microsatellite slippage,
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insertions/deletions) as well as large-scale events (trans-
positions, genomic rearrangements and segmental dupli-
cations). Knowledge of mutation rates is critical for
building evolutionary timescale, discovering conserved
noncoding functional elements, identifying evolutionary
processes like positive selection, and understanding herit-
able diseases [3].

Earlier studies on mammalian evolution were limited by
the lack of large-scale genomic sequence data and were
dependent upon PCR cross-amplification of limited num-
bers of mitochondrial and nuclear genes. Therefore, these
sampled sequences were often limited to closely related
species and had a bias towards conserved unique regions.
This also resulted in repetitive sequences being excluded
from genomic divergence calculations in these earlier
studies. As the remnants of transposition events, repetitive
sequences are one of the most predominant features of
mammalian genomes (for example, 40–50% of the
human genome are repeats) [4,5]. Repeats have been
shown to play an important role in mammalian genome
evolution [6,7]. Depending on their time of origin,
repeats can be divided into ancestral repeats (AR: arrived
before a speciation event, and thus shared by both spe-
cies) and lineage-specific repeats (arrived after a specia-
tion event). Recently it has been shown that virtually all
ancient repeats evolve neutrally [8]. As one class of non-
functional neutral sequences, ancient repeats have been
used to estimate neutral mutation rates [9-11]. Several
recent studies have indicated that neutral mutation rates
(not substitution rates which are the combined effects of
mutation and selection) in mammals have been relatively
constant [12], except for the discrepant results from
rodents, which were shown to mutate as much as 2-fold
faster than other mammals [9,11].

With the availability of the human, mouse, rat and chim-
panzee genome assemblies, whole genome-wide compar-
isons and analyses have been generated using primates
and rodents (such as human vs. non-human primates,
mouse, and rat) [4,5,9,13-15]. Targeted comparative
sequencing efforts (the ENCODE – ENCyclopedia Of
DNA Elements Project) also have generated megabases of
high-quality genomic sequence for dozens of mammalian
species [2,16,17]. Recent studies also have measured
mutation rates [18], their regional variation [19,20] and
their covariation with other genomic events in human,
mouse and rat[11,21]. A local alignment algorithm, blastz
[22], has been used to align human, mouse and rat
genomes [9,14,21]. On the other hand, a global align-
ment algorithm, mlagan, has been used to generate mul-
tiple alignments in the "greater CFTR region" [23]. A
comparison of results derived from local versus global
alignment algorithms would be of interest.

With the dog draft assembly (July 2004, canFam1)[24],
the cattle draft assembly (March 2005, bosTau2)[25] and
cattle BAC library resources [26] now available, a large-
scale genomic comparison was initiated to assess the
nature and pattern of genomic variation among other
mammalian orders; i.e. artiodactyls (Cattle, Bos taurus)
and carnivores (Dog, Canis familiaris) as compared to pri-
mates (Human, Homo sapiens). To avoid any potential
genome assembly artifacts, the project began with high-
quality finished genomic sequences from cattle BAC
clones, rather than the cattle draft assembly. The three-
way multi-species global alignments (ranging in align-
ment length from 67 to 491 kb) were generated from the
orthologous sequences of cattle, dog and human using an
optimized global alignment algorithm to provide a plat-
form for analyzing genomic variation. The lineage, which
led to the last common ancestor (LCA) of cattle and dog,
was estimated to have diverged from human approxi-
mately 92 million years ago (mya) followed by the esti-
mated separation of cattle and dog 83 million years ago
[27,28]. The overall objective of this study was to assess
patterns of single-nucleotide mutations across genomic
regions and among different sequence classes in the mam-
malian lineages.

Results
Orthologous sequences and alignment validation
A total of 84 ortholog trios were identified though a
sequence similarity search, which included 10.5 Mb of
cattle sequences, 9.3 Mb of dog sequences and 11.1 Mb of
human sequences. The putative ortholog trios were fur-
ther confirmed by reciprocal blast [29]. These ortholog
trios were placed to all human chromosomes (chr) except
for chr 9, 15, 19 and Y (see Additional file 1 Table S3).

Two strategies were implemented to align these ortholo-
gous sequences using the global alignment algorithm –
mlagan: 1) optimizing the alignment parameters and 2)
applying a post-alignment filter. In order to establish the
optimal parameters to treat indels in global alignment, 5
random sets of pairwise sequence alignments were ana-
lyzed between cattle-dog, cattle-human and dog-human.
Using the software lagan [23], a series of gap opening and
extension penalties were tested for their impact on the fre-
quency of single nucleotide and insertion/deletion events
(see Additional file 1 Fig. S1). The following tests were
performed to select the optimal alignment parameters
that minimized sequence divergence and the number of
indels. First, the natures of the sequences underlying
insertion/deletions were analyzed. Alignment parameters
(gap opening penalty of -1,000 and gap extension penalty
of -10) were favored because insertion/deletions were
effectively treated as a single event. Second, the overall
estimates of sequence divergence (Table 1) were com-
pared with earlier phylogenetic studies using conserved
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coding regions [12,30] or the greater CFTR region aligned
overall sequence divergences in our analyses (cattle-dog: 0.
0.3717 ± 0.0007, and dog-human: 0.3583 ± 0.0006 change
ble to previous studies [2,10,12,30]. Third, 73,728 rando
sequences (BES) from CHORI-240 [31] were mapped onto
Build35 [32]. Similar results were observed when alignmen
compared with our optimal global alignments. The variatio
BES alignments (400–500 bp) (G.E. Liu et al, unpublished r
to the distribution observed for non-overlapping 500-bp w
mal global alignments (see Additional file 1 Fig. S5B).

Despite the optimization of alignment parameters, subo
occasionally occurred. Suboptimal alignments were defin
exceeded 3 standard deviations of the mean pairwise K2 di
analysis (See Methods), which were removed using a post-a
suboptimal alignments composed less than 5% of aligned
not considered in our analysis to avoid overestimation of g

A total of 84 three-way multiple sequence alignments wer
alignment length of 15 Mb, consisting of 5.5 Mb of aligned
ping windows of 3 kb (Fig. 1 and Additional file 1 Fig. S5A
tiple alignment lengths ranged from 66,960 to 491,059 b
deviation of 184,608 ± 79,744 bp. All individual alignment
otide variation were manually inspected and are available o

Branch lengths in various sequence classes
Comparative genomic analyses were performed on these 8
bal alignments. The branch lengths and substitution rates 

ngths were 0.1681 ± 0.0003, 0.1547 ±
le, dog and human, respectively. Similar
ous studies [12,30]. The genomic diver-
ith a value of 0.3228 ± 0.0005 change/
 0.3583 ± 0.0006 change/site, which was
± 0.0006 change/site. As expected, these
are the closest relatives, with primates
otides occur frequently due to spontane-
 remove any variation caused by differ-

es were estimated after removing CpG
overall branch lengths decreased 5.1%
removing CpG dinucleotides from all
G). Alignments were further sorted into
and RepeatMasker coordinates using the
uences included 133 kb, 115 kb, 4.0 Mb
ue noncoding (i.e. not annotated), and

 of 193 well-annotated RefSeq genes
coding regions (cattle 0.0644 ± 0.0010,
9 change/site) were only half of the over-
 strong purifying selection. The branch
og 0.1538 ± 0.0003, and human 0.2021
an the coding branch lengths (t-test, for
ique noncoding portions (cattle 0.1676

021 ± 0.0004 change/site) were slightly
he aligned repetitive portions possessed
06, dog 0.1668 ± 0.0006, and human

ths decreased 4.4% (cattle), 5.2% (dog)
were excluded, suggesting higher substi-

Table 1: Nucleotide Divergence versus Sequence Class.

# loci Total length 
(bp)

Aligned 
(bp

bstitution rate* (change/site × 10-9)

le Dog Human

Overall† 84 15507060 5 0.003 1.864 ± 0.003 2.016 ± 0.003
Overall-CG 84 15507060 5 0.003 1.748 ± 0.003 1.919 ± 0.003
Coding 52 137748 0.012 0.780 ± 0.012 0.589 ± 0.009
UTR 55 152130 0.019 1.773 ± 0.022 1.059 ± 0.010
Unique 
noncoding

84 9073616 4 0.004 1.853 ± 0.003 2.001 ± 0.004

Repetitive 84 6409365 1 0.007 2.010 ± 0.007 2.199 ± 0.007
Repetitive-CG 84 6409365 1 0.007 1.905 ± 0.007 2.108 ± 0.007

Orthologous sequences were globally aligned with mlagan (Methods). A  divergence (window size 2 kb, slide 100 bp). 
These regions were not included in the analysis. Coding sequence was re TRs. Repetitive sequences were detected using 
RepeatMasker (version 3.0.8). Unique noncoding (i.e. not annotated) reg , substitutions without CpG dinucleotides 
(Overall-CG, Repetitive-CG) were considered in each alignment.
* Substitution rate calculations assume branch times of the cattle, dog an
†: If suboptimal alignments were included in the analysis, the overall bran
 by blastz [2]. The estimated
3228 ± 0.0005, cattle-human:
/site) were generally compara-
mly selected cattle BAC end

 the human genome assembly
ts of BAC end sequences were
n distribution pattern of these
esults) was remarkably similar
indows generated from opti-

ptimal or ectopic alignments
ed as those alignments that

vergences in a sliding window
lignment filter. Although such
 bases, these alignments were
enomic divergence.

e generated with a combined
 bases and 1,794 non-overlap-
). The cattle-dog-human mul-
p with a mean and standard
s and patterns of single-nucle-
nline [33].

4 three-way multi-species glo-
of cattle, dog and human are

shown in Table 1. The average overall branch le
0.0003, and 0.2036 ± 0.0003 change/site for catt
degrees of branch lengths were reported in previ
gence between cattle and dog was the smallest w
site. The dog-human evolutionary divergence was
less than the cattle-human divergence of 0.3717 
results confirm that artiodactyls and carnivores 
being the most distant. Mutations at CpG dinucle
ous deamination of methylated cytosines [34]. To
ences in levels of methylation, substitution rat
dinucleotides (Overall-CG, Repetitive-CG). The 
(cattle), 6.2% (dog) and 4.8% (human) after 
sequences within alignments (Table 1, Overall-C
four sequence classes based on NCBI RefSeq [35] 
software MaM [36]. The total 5.5 Mb aligned seq
and 1.2 Mb aligned bases from coding, UTR, uniq
repetitive regions, respectively. Coding regions
excluded both 3' and 5' UTR. Branch lengths in 
dog 0.0647 ± 0.0010, and human 0.0595 ± 0.000
all branch length, reflecting that they are under
lengths in UTR regions (cattle 0.1676 ± 0.0003, d
± 0.0004 change/site) were significantly larger th
each species p <0.0001). The branch lengths in un
± 0.0003, dog 0.1538 ± 0.0003, and human 0.2
less than the overall branch lengths. In contrast, t
the longest branch lengths (cattle 0.1830 ± 0.00
0.2221 ± 0.0007 change/site). These branch leng
and 4.1% (human) when CpG dinucleotide sites 

length 
)

Tree length Branch length Su

Cattle Dog Human Catt

521247 0.5265 0.1681 ± 0.0003 0.1547 ± 0.0003 0.2036 ± 0.0003 2.026 ± 
282306 0.4984 0.1595 ± 0.0003 0.1451 ± 0.0002 0.1938 ± 0.0003 1.921 ± 
133235 0.1886 0.0644 ± 0.0010 0.0647 ± 0.0010 0.0595 ± 0.0009 0.776 ± 
115467 0.3855 0.1223 ± 0.0016 0.1472 ± 0.0018 0.1161 ± 0.0015 1.473 ± 
061797 0.5235 0.1676 ± 0.0003 0.1538 ± 0.0003 0.2021 ± 0.0004 2.019 ± 

157484 0.5719 0.1830 ± 0.0006 0.1668 ± 0.0006 0.2221 ± 0.0007 2.205 ± 
112423 0.5460 0.1749 ± 0.0006 0.1581 ± 0.0006 0.2129 ± 0.0007 2.108 ± 

suboptimal alignment was defined as any alignment which exceeded 3 standard deviations of the mean K2
stricted only to well-annotated human genes (NCBI RefSeq database). UTR regions included 5'- and 3'-U
ions excluded both exonic and repetitive regions. Due to the higher mutation rate of CpG dinucleotides

d human lineages from the LCA of cattle and dog of 83, 83 and 101 mya, respectively [27,28].
ch length increases to 0.1707 ± 0.0003, 0.1567 ± 0.0003 and 0.2069 ± 0.0004, respectively (Methods).
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Distributions of Substitution Rates in Cattle, Dog and HumanFigure 1
Distributions of Substitution Rates in Cattle, Dog and Human. (A) Histograms of the local substitution rates in aligned 
sequences (84 loci, 5.5 Mb aligned bases, 1,794 windows). (B) Histograms of the local substitution rates in aligned ancestral 
repeats (84 loci, 1.2 Mb aligned bases, 353 windows). All measures were computed in non-overlapping 3-kb sliding windows for 
cattle-dog-human multiple sequence alignments. These rates were calculated in multiple comparisons assuming branch times of 
the cattle, dog and human lineages from the LCA of cattle and dog of 83, 83 and 101 mya, respectively. Suboptimal alignments 
were excluded. The cattle branch: blue; the dog branch: green; and the human branch: red. The dashed lines were computed 
after removing CpG dinucleotides.
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tution rates of CpG sites (Table 1, Repetitive-CG). The dif-
ferences were significant between the branch lengths in
unique noncoding vs. repetitive portions before and after
removing CpG dinucleotides from repetitive elements
(one-way ANOVA, cattle P = 0.0006, dog P = 0.0116, and
human P <0.0001) for all 83 autosomal alignments.

Regional variation of substitution rates
Substitution rates were calculated from the LCA of cattle
and dog assuming branch times of 83, 83 and 101 million
years for cattle, dog and human lineages, respectively
[27,28]. A dramatic variation of substitution rates was
observed between and within chromosomes according to
the human placement. Table S4 (see Additional file 1)
summarizes the substitution rates of AR for each individ-
ual clone or locus on each chromosome. Chromosome X
accumulated fewer substitutions than autosomal chromo-
somes (cattle 1.771 ± 0.045, dog 1.680 ± 0.043, and
human 2.083 ± 0.049 × 10-9 change/site/year), supporting
the existence of a higher mutation rate in the male than in
the female germline [34]. Among autosomal chromo-
somes, HSA10 (Human chromosome 10), showed higher
substitution rates (cattle 2.372 ± 0.057, dog 2.417 ±
0.058, and human 2.583 ± 0.059 × 10-9 change/site/year)
compared to rates in chromosome 11 (cattle 2.151 ±
0.028, dog 1.916 ± 0.025, and human 2.022 ± 0.025 × 10-

9 change/site/year). Substitution rates for HSA10 and
HSA16 were significantly higher, while those for HSA14,
HSA12 and HSA7 were significantly lower when com-
pared to the average substitution rates in repetitive regions
(t-test, all P <0.0001, see Additional file 1 Table S4).

Similarly, substitution rates varied significantly among
individual clones or loci within one chromosome (see
Additional file 1 Fig. S2, Table S4). For example, contig
01.01 (mapped to HSA7:30,585,342-30,707,957 and
CFA14:46,029,765-46,135,257) showed high substitu-
tion rates (cattle 2.371 ± 0.080, dog 1.788 ± 0.065, and
human 2.020 ± 0.068 × 10-9 change/site/year), while con-
tig 33.39 (mapped to HSA7:114,308,522-114,473,710
and CFA14:56,758,901-56,922,307) demonstrated low
substitution rates (cattle 1.998 ± 0.081, dog 2.092 ±
0.083, and human 2.264 ± 0.086 × 10-9 change/site/year),
even though both belonged to the same chromosomes
(HSA7 and CFA14).

Histograms of substitution rates in non-overlapping 3-kb
sliding windows for overall (A) and repetitive (B)
sequences (with and without CpG sites) are shown in Fig.
1. ANOVA tests were performed on variation in branch
lengths of 3-kb nonoverlapping windows between and
within autosomal chromosomes for each species. These
included 6 types of sequences: Overall, Overall-CG,
Unique noncoding, Unique noncoding-CG, Repetitive,
and Repetitive-CG. The overall sequence comprised 83

autosomal alignments containing 1761 windows; the
unique noncoding regions comprised 83 autosomal
alignments containing 1290 windows; and the repetitive
regions comprised 83 autosomal alignments containing
347 windows. All tests were statistically significant at P
<0.0001.

The relationships of overall substitution rate, branch
length, K2 divergence, indel rate per 10 kb, SINE% and
LINE% on GC% were complex and were best fit by a
quadratic function [9,11,21,37] (Fig. 2). It is worth noting
that branch lengths (i.e. substitution rates after normal-
ized by the divergence times) were well correlated among
species – almost as well as the GC% distribution (see
Additional file 1 Fig. S2), although branch lengths and
substitution rates did not seem to correlate with GC%
(Fig. 2). A positive coefficient for GC% but a negative
coefficient for the square of GC% was obtained in all
quadratic fit functions. The K2 divergences tended to
increase over the GC% interval below 45%, whereas the
plots tended to decrease above a GC% of 45%. However,
all substitution rate and branch length fitting curves were
relatively flat. This is consistent with an earlier observa-
tion of the discrepancy of rate estimation by the simple
parametric model vs. the complicated rate model and
maximum likelihood method at the high GC% isochores
[38]. The quadratic fits for substitution rate on GC% had
r2 values of 5.6%, 13.0% and 4.2% for cattle, dog, and
human, respectively. The quadratic fits for K2 divergence
on GC% had r2 values of 12.6%, 8.1% and 9.0% for cattle-
dog, cattle-human and dog-human comparisons, respec-
tively. Correspondingly, the quadratic fits for indel on
GC% had r2 values of 19.8%, 7.8% and 14.6%, respec-
tively. The dramatic differences between SINE and LINE
distribution relative to GC% agreed with the previous
observations of their differential insertion bias and reten-
tion behaviors [4,9,14].

Loci with lower overall divergences were inspected for the
presence of underlying RefSeq genes. As expected, many
protein coding genes were under functional constraints.
These constraints such as those on the FOXP2, MET and
SCAP2 genes within the great CFTR region may explain
the low overall divergences observed within that part of
HSA7 [2]. When loci with high overall divergences were
examined, it is interesting to note that a few protein cod-
ing genes were also detected. These included CSMD2 [39]
(contig 38.45, HSA1:33,820,824-33,883,038), FDFT1
[40,41] and CTSB (contig 03.03, HSA8:11698086-
11762835) [40,42,43]. These loci retained higher substi-
tution rates even if only the AR regions were considered
(see Additional file 1 TableS4).
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Scatter Plots and Quadratic Fits on Average GC% for Substitution Rate, Branch Length, K2 Distances, INDEL/10 kb, SINE% and LINE%Figure 2
Scatter Plots and Quadratic Fits on Average GC% for Substitution Rate, Branch Length, K2 Distances, INDEL/
10 kb, SINE% and LINE%. Scatter plots of substitution rate, branch length, K2 distance, INDEL/10 kb, SINE% and LINE% 
against average GC% in three-way alignments among cattle (C), dog (D), and human (H). Substitution rates (the top left panel) 
and branch lengths (the top right panel) were estimated for each species by the PAML package (Methods). For each pairwise 
comparison in three-way alignments, K2 distances (the middle left panel) and large indel frequency (>100 bp insertion/deletion 
event count per 10 kb, the middle right panel) were calculated. Other sequence properties in each species such as SINE% (the 
bottom left panel), LINE% (the bottom right panel) were also plotted. Quadratic fit curves are derived on each plot and their 
formulas are provided on the top of each panel.
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The differences of substitution rates between cattle and 
dog
The overall substitution rates were estimated to be 2.026
± 0.003, 1.864 ± 0.003, and 2.016 ± 0.003 × 10-9 change/
site/year for cattle, dog and human, respectively (Table 1).
Indeed, estimates of neutral mutation rates using ancient
repeats (cattle 2.205 ± 0.007, dog 2.010 ± 0.007, and
human 2.199 ± 0.007 × 10-9 change/site/year) were com-
parable to previous studies (2.1–3.7 × 10-9 change/site/
year) [11], agreeing almost perfectly with the estimates
from the human-mouse comparisons (i.e. 2.2 × 10-9 and
4.5 × 10-9 change/site/year in the human and mouse line-
ages) [9]. In all cases in Fig. 1 (Overall, Overall-CG, repet-
itive and repetitive-CG), the distributions of dog
substitution rates (green) were shifted slightly to the left
of those of cattle rates (blue), consistent with the faster
rate of substitution in the cattle branch compared with the
dog branch.

Relative rate tests were performed on a single merged
alignment and on each of the 84 multiple alignments
using Tajima's method [44,45]. Differences in mutation
counts were assessed using the χ2 test based on the
assumption that mutation would not show a species pref-
erence. When using human as an outgroup, cattle had
faster rates of substitution as compared to dog. Although
the difference was relatively small (6%), it was significant
by the χ2 test (P <0.0001) when the merged alignment was
tested. Almost two-thirds (54 out of 84) of the individual
alignment rate tests supported that cattle had faster rates,
while 11 of these rate tests supported that dog had faster
rates (including 5 from the greater CFTR region). The
remaining 19 out of 84 tests supported the molecular
clock hypothesis for the cattle and dog lineages (including
3 from the greater CFTR region).

Discussion
One of the fundamental challenges in large-scale compar-
ative genomic analysis is to build biologically meaningful
multiple sequence alignments [18,46]. A variety of biolog-
ical events are known to create insertion/deletions includ-
ing lineage-specific amplification of tandem repeats,
homology-mediated genomic deletions and transposition
events [34]. Local alignment algorithms, combined with
the removal and reinsertion strategy of repeat elements,
have been shown to reduce the number of gaps in DNA
alignments and increase sensitivity [22,47]. This is partic-
ularly important for aligning the species like rodents
which have high genome-wide substitution rates. How-
ever, the aligned ancient repeats may be enriched for those
in more slowly changing regions, while the fast changing
repeats may be too divergent for detection and alignment
[21]. On the other hand, global alignment algorithms
seem appropriate for species with low substitution rates
like cattle, dog and human. Comparative gene mapping

and chromosome painting studies have indicated that a
remarkably slow rate of chromosomal change exists
within several mammalian orders. Artiodactyls and carni-
vores are more conserved relative to humans than rodents
[48-53]. In terms of genomic divergence, previous data [2]
also suggests that cattle and dog are more conserved rela-
tive to human. But global alignment algorithms assume
colinearity between sequences and do not specifically
handle synteny breaking events like transpositions, rear-
rangements (such as microinversions) or duplications
[54]. For example, global alignment algorithms may be
ineffective to treat lineage-specific repeats which are
closely matched such as young SINEs and LINEs, creating
suboptimal alignments [21]. These suboptimal align-
ments may lead to less accurate estimates of sequence
divergence. Therefore, in this study, alignment parameters
were optimized and a post-alignment filter was applied to
overcome the above limitation of the global alignment
algorithm. The post-alignment filter effectively removed
the suboptimal alignments from the mlagan output. Such
suboptimal alignments appeared abnormal because they
had extreme fluctuations in genomic divergences com-
pared to their flanking sequences and were always associ-
ated with multiple gaps. Similar genomic divergence
results obtained in the current study compared to earlier
reports [10,12,30], confirm that our sequence datasets
were representative and our alignment strategies were suc-
cessful.

Our orthologous sequence datasets, comprised of 10.5
Mb of cattle sequences, 9.3 Mb of dog sequences and 11.1
Mb of human sequences, were placed on all human chro-
mosomes except for chr 9, 15, 19 and Y (see Additional
file 1 Table S3). As a control for sample bias and rate var-
iation among these genomic regions, we mapped ran-
domly selected cattle BAC end sequences onto the human
genome assembly Build35 (73,728 BES from CHORI-240
[31]). A comparison of these BES alignments to our large-
scale genomic alignments showed comparable results
(G.E. Liu et al, unpublished results). Therefore, it is rea-
sonable to believe that these datasets are sufficiently rep-
resentative and robust to draw sound conclusions
regarding rates and properties of mammalian genomic
mutation.

However, our estimates were consistently larger than
those in an earlier study of the greater CFTR region [2] and
revealed significant rate differences between the cattle and
dog lineages. Reanalysis of the alignments in that study
(116 kb cattle, 122 kb dog, and 332 kb human sequences,
68 kb aligned bases) indicated that the dog-human diver-
gence (0.3335 ± 0.0046 change/site) was significantly
higher than the cattle-human divergence (0.3237 ±
0.0045 change/site) (Relative rate test, p <0.001). Compa-
rable divergences were derived from our AR regions (369
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kb cattle, 369 kb dog, and 485 kb human sequences, 157
kb aligned bases) from the same region (dog-human:
0.3856 ± 0.0035 change/site and cattle-human: 0.3870 ±
0.0035 change/site). In our study, no significant rate dif-
ference was detected between cattle and dog (Relative rate
test, p = 0.251). One possible explanation is that the glo-
bal alignment algorithm mlagan was used to create multi-
ple alignments in the current study while pair-wise
alignments were constructed by the local alignment algo-
rithm – blastz in the earlier study. As discussed above,
local alignment algorithms are known to be less efficient
in identifying fast changing ancient repeats, which may be
too divergent to detect and align. This could lead to the
underestimation of the genomic divergences. On the
other hand, use of a global alignment algorithm can
recover the fast changing orthologous ancient repeats by
taking into consideration the conservation of nearby
unique flanking sequences. Discrepancies in the signifi-
cance of rate variation between the small and large data-
sets also further highlight the importance of a large-scale
sampling strategy.

As expected, different sequence classes were under differ-
ent purifying selection pressures. Coding regions were
under the strongest functional constraints with substitu-
tion rates at only half that of the overall substitution rates.
It is interesting to note that substitution rates in unique
noncoding portions were slightly less than overall substi-
tution rates suggesting they may be under weak negative
selection due to unidentified functional regions, regula-
tory domains, or unknown genes. Significantly higher
substitution rates in repetitive elements before or after
removing CpG dinucleotides indicate that CpG content is
only partially the reason for high substitution rates. In
addition, other factors like increased rates of gene conver-
sion, relaxed purifying selection and unequal crossover
among repeats may contribute to our observations.

The quadratic relationships between substitution rate,
branch length, K2 divergence, indel rate per 10 kb and
GC% were derived to explain regional variation. These
results suggest that fluctuations in GC% predict an appre-
ciable amount of the regional variation that was observed
in mutation and indel rates, but leave the majority of the
variation unexplained. Additional causes beyond GC%,
including CpG content, recombination and other as of yet
unknown factors are needed to explain the variation
among mutation rates. Significant variation in mutation
rates across genomic regions and among sequence classes
strongly demonstrates that future studies of genomic var-
iation should include multiple regions from different
chromosomes. Another important observation is that
regional variation in mutation rate is correlated among
cattle, dog and human lineages over time. Regional corre-
lations of mutation rates have been demonstrated and

quantified genome-wide in human-chimpanzee, human-
mouse and human-rat comparisons [9,14,20].

It is also interesting to note that a handful of protein cod-
ing genes were detected within a few cattle BAC clones
with high neutral mutation rates. Several possible nonex-
clusive explanations for this phenomenon exist. For
instance, the sequences compared may not have been
orthologous. Within one gene family, paralogous genes
could be confused with orthologous genes. Gene conver-
sion may have occurred, which could considerably
increase the genomic divergence [55]. In addition, high
mutation rates or relaxed purifying selection could have
occurred due to gene duplication [56,57]. These possibil-
ities warrant further investigation. However, these rare
events would not likely significantly change our estimates
of mutation rates.

Measurement of the neutral mutation rate is crucial for
validating molecular clock and neutral evolution theories
[58,59]. The neutral mutation rate has been approxi-
mately estimated from neutral or close to neutral non-
functional sites such as introns, pseudo-genes, unique
noncoding intergenic regions, four-fold degenerate sites
(4D sites) in coding regions (i.e. third codon position)
and shared ancestral repeats. One way to identify regions
under positive selection is to focus on DNA segments with
significantly higher mutation rates [56]. Genomic regions
that are changing significantly slower than the neutral rate
because of purifying selection contain potentially con-
served noncoding functional elements [11,21].

Estimates of the neutral mutation rates in this study,
which are in agreement with many previous reports
[2,12,30], show that mutation rates in the cattle and dog
lineages are slower as compared with those in rodents.
However, our estimates around 2.0–2.2 × 10-9 change/
site/year are in the lower end of the reported range (2.1–
3.7 × 10-9 change/site/year) [11]. These differences could
result from the usage of 4D sites in the earlier studies, as
nucleotides in coding regions may not be an ideal dataset
because of codon usage bias and potential weak selection
[34]. Regions that harbored large, low copy repeat
sequences were excluded in this study to unambiguously
determine the orthologous relationship. Such segmental
duplicated regions may significantly inflate estimates of
divergence due to non-orthologous sequence relation-
ships [46,60] or gene conversion [55].

The dataset presented here, though much large than those
used previously [2,12], is still a small part (0.4%) of the
cattle, dog and human genomes. It is also worth noting
that a number of the common assumptions made about
neutral mutation, genetic drift, generation-time and pop-
ulation size, can affect these estimates [34,61], and rate
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calculations could be confounded by incorrect estimates
of species divergence times. More comprehensive genome
sequences and polymorphism data will be required to fur-
ther clarify the important role of mutation rates in mam-
malian evolution. Further study of the molecular
mechanisms behind mutation will be essential to under-
stand the causes of mutation rate variation. Additional
analyses will become feasible as the bovine genome
approaches the finishing stage.

Additional note
After the completion of this study, a comprehensive com-
parative analysis of the domestic dog genome reported
similar genomic divergence estimates between dog and
human [10].

Conclusion
The unique features of this study include 1) optimal mul-
tiple (not pairwise) alignments were carefully constructed
using a global (not local) alignment algorithm; 2) the
scale was considerably larger as compared to earlier
reports using small datasets of protein coding sequences
or targeted genomic regions and 3) Our results were statis-
tically significant and unbiased as supported by the map-
ping results of genome-wide randomly selected cattle BAC
end sequences.

Therefore, this analysis provides a large-scale and unbi-
ased assessment of genome divergences and regional var-
iations of substitution rates among cattle, dog and
human. Cattle had faster average rates of substitution as
compared to dog and the difference was 6%. The global
molecular clock needs to be adjusted to fit rates among
mammalian species. These data will serve as a valuable
baseline for future molecular evolution studies, especially
in cattle and other livestock like sheep and pig.

Methods
The comparative analyses performed in the current study
were similar to those previously published [46]. However,
several improvements to the previous analyses were 1) the
use of three-way multiple sequence alignments instead of
comparison of several pairwise alignments; 2) the applica-
tion of REV rate matrices and ML methods using the
PAML package [62] in addition to the simple K2 calcula-
tion; and 3) the optimization of alignment parameters
and filter thresholds to deal with larger sequence diver-
gences.

Orthologous sequences
Large finished genomic sequences were retrieved from cat-
tle BAC libraries (CH240 and RP42) from GenBank. Cat-
tle sequence segments longer than 50 kb in length were
then extracted and masked for common repeat elements
[63,64]. Orthologous dog and human sequences were

identified by sequence similarity searches [65] of cattle
sequence queried against a formatted version of the
assembled dog (canFam1, July 2004) and human (hg17,
May 2004) genomes [32] using the following options
(blastall -p blastn -U T -e 1e-05 -q -2 -r 1 -W 11 -G 3 -E 1 -
b 25). Overlapping sequences within a species were
excluded based on the genome assembly coordinates and
sequence identity. We excluded any accession located
within a known duplicated region of the human genome
[60], because duplicated regions of the genome compli-
cate identification of orthologous segments and confound
genomic divergence estimates [18,46]. Because the assem-
bly of the dog genome is based on only seven-fold "shot-
gun" sequence coverage, our analysis was limited to
genomic sequences completely finished and containing
no gaps or internal ambiguous bases. A total of 84 cattle
clones and subclones (see Additional file 1 Table S3) met
these criteria: 69 were generated by Baylor College of Med-
icine Human Genome Sequencing Center [66]; 12 were
generated in National Institutes of Health Intramural
Sequencing Center [67] as a part of a targeted comparative
sequencing effort (the ENCODE – ENCyclopedia Of DNA
Elements Project) [2,16,17]; and the remaining 3 were
generated at the University of Oklahoma, Advanced
Center for Genome Technology [68]. A complete list of all
accessions, their consensus assemblies, their map loca-
tions with respect to the genomes of dog and human and
their sequence attributes are provided (see Additional file
1 Table S3).

Genomic sequence alignment
Orthologous sequences were extracted using parasight vis-
ualization software (J.A. Bailey, unpublished results) [69].
The mlagan algorithm [23] was used to construct all three-
way multiple sequence global alignments. A subset of gap
opening and gap extension penalties was chosen to mini-
mize the frequency of both single-nucleotide substitution
and insertion/deletion events in order to provide the most
biologically meaningful optimal global alignment (See
Results and Discussion). For equally parsimonious gap
parameters, selected parameters (gap opening penalty of -
1,000 and gap extension penalty of -10) were used so that
known "young" transposition events were treated as a sin-
gle insertion/deletion event. A total of 84 three-way mul-
tiple alignments for cattle, dog, and human (total
alignment lengths ~15.5 Mb) were constructed with mla-
gan using ~10 Mb of genomic sequence from each species.
All alignments were manually inspected for extreme fluc-
tuations in genomic divergence. A suboptimal alignment
was defined as any alignment which exceeded 3 standard
deviations of the mean pairwise genomic divergence
(window size 2 kb, slide 100 bp). These regions were con-
sidered separately in the analysis (Table 1). A total of 89
such subalignments were classified as suboptimal for cat-
tle (732 kb), dog (619 kb), and human (822 kb). Only a
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small fraction (<5%) of all aligned bases was classified as
suboptimal.

Genomic divergence estimates
The branch lengths were calculated by maximum likeli-
hood using version 3.15 of the PAML package, which
allows base frequency change, all bases exchangeability
and rate heterogeneity across sites (Table 1) [62]. The
most general reversible substitution model (REV) was
used (model = 7), rate variation among sites was allowed
(fix_alpha = 0 and ncatG = 5), no molecular clock was
assumed (clock = 0), unrooted trees were used, and ambi-
guity characters were discarded (cleandata = 1). Kimura's
two-parameter (K2) method, which corrects for multiple
events and transversion/transition mutational biases [70],
was used to estimate genomic divergences in pairwise
comparisons. Genomic divergences or branch lengths
were always reported as the means ± their standard devia-
tions. Insertion/deletion events were not factored into
these calculations [71]. Coding, UTR, unique noncoding
and repetitive regions from the sequence alignments were
extracted using MaM (Multiple Alignment Manipulator)
[36,72]. Repeat coordinates were identified using the slow
option of RepeatMasker v3.0.5 with an updated RepBase
library for cattle. Five major classes of repeats were consid-
ered in this analysis (LINEs, SINEs, LTR, DNA Trans-
posons, and others). In order to eliminate the possibility
that more divergent or novel common repeats may not
have been effectively masked by RepeatMasker, intraspe-
cific sequence-similarity searches were performed. Exon
definition was limited to well-annoted human genes
(NCBI RefSeq) [35,73]. Among these, a total of 1,909
exons corresponding to 193 genes were analyzed. The
coding regions were extracted from exonic sequences
between CDS start and end sites. The UTR regions con-
tained both 5'-UTR (between transcription start and CDS
start sites) and 3'- UTR (between transcription end and
CDS end sites). Unique noncoding regions excluded both
exonic and repetitive regions. Non-overlapping sliding
window analyses (3-kp in Fig. 1, Additional file 1 FigS5A
and 500-bp in Fig. S5B) were performed using align_slider
(J.A. Bailey, unpublished results). Substitution rates were
calculated from the LCA of cattle and dog using branch
length/time assuming branch times of the cattle, dog and
human lineages of 83, 83 and 101 mya, respectively
[27,28]. All alignment attributes were maintained within
a MySQL database which facilitated cross-referencing with
various properties of the genomic sequence. Tajima's rela-
tive rate tests were performed on multiple alignments
using MEGA3 [45]. ANOVA was performed to test varia-
tion in branch lengths of whole alignments or 3-kb non-
overlapping windows between and within autosomal
chromosomes in cattle, dog, and human. Quadratic
regression fits were implemented using the SigmaPlot
software package.
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