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Abstract: Oligodendrocytes produce myelin, which provides insulation to axons and speeds up
neuronal transmission. In ischaemic conditions, myelin is damaged, resulting in mental and phys-
ical disabilities. Recent evidence suggests that oligodendrocyte damage during ischaemia can be
mediated by Transient Receptor Potential Ankyrin-1 (TRPA1), whose activation raises intracellular
Ca2+ concentrations and damages compact myelin. Here, we show that TRPA1 is constitutively
active in oligodendrocytes and the optic nerve, as the specific TRPA1 antagonist, A-967079, decreases
basal oligodendrocyte Ca2+ concentrations and increases the size of the compound action potential
(CAP). Conversely, TRPA1 agonists reduce the size of the optic nerve CAP in an A-967079-sensitive
manner. These results indicate that glial TRPA1 regulates neuronal excitability in the white matter
under physiological as well as pathological conditions. Importantly, we find that inhibition of TRPA1
prevents loss of CAPs during oxygen and glucose deprivation (OGD) and improves the recovery.
TRPA1 block was effective when applied before, during, or after OGD, indicating that the TRPA1-
mediated damage is occurring during both ischaemia and recovery, but importantly, that therapeutic
intervention is possible after the ischaemic insult. These results indicate that TRPA1 has an important
role in the brain, and that its block may be effective in treating many white matter diseases.

Keywords: transient receptor potential ankyrin-1 (TRPA1); oxygen and glucose deprivation; is-
chaemia; oligodendrocytes; optic nerve; myelin; compound action potential

1. Introduction

Oligodendrocytes (OLs) wrap fatty myelin sheaths around axons to decrease the
capacitance across the axonal membrane and increase the action potential speed. Myelin
loss in diseases such as periventricular leukomalacia, leukodystrophies, multiple sclero-
sis, and stroke, leads to failure of neuronal transmission and thus mental and physical
impairment. We have recently shown that cerebellar oligodendrocytes express transient
receptor potential ankyrin-1 (TRPA1), whose activation during ischaemia causes excessive
Ca2+ influx and myelin damage [1].

TRPA1 is one of a large family of tetrameric non-selective cation channels that are
widely expressed in the grey and white matter of the CNS and are increasingly considered
as potential therapeutic targets in brain disorders [2]. TRPA1 is sensitive to environmen-
tal irritants and endogenous electrophilic compounds that are formed during oxidative
stress [3], which have been shown to evoke pain, cold, itch, and inflammation [4]. These
compounds can activate TRPA1 by covalent modification of cysteine or lysine residues at
distinct regions on its intracellular N-terminal; however, TRPA1 can also be activated by
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several other agonists that interact with regions within the pore. Like many TRP channels,
TRPA1 is highly permeable to Na+ and Ca2+, which in turn can deregulate cell function and
cause apoptosis. In cerebellar OLs, TRPA1 was shown to be activated during ischaemia via
acidification of the cytosol [1]. However, until now we did not know whether OLs in other
areas of the brain express functional TRPA1 and whether TRPA1 block is protective against
loss of white matter function in ischaemia.

Here, we show by patch-clamping corpus callosum OLs, that they also respond to
TRPA1 agonists by raising their intracellular Ca2+ concentrations ([Ca2+]i), and that TRPA1
inhibition with A-967079 (20 µM) reduces the resting [Ca2+]i. Furthermore, the TRPA1
antagonist also increases the amplitude of optic nerve compound action potential (CAP)
recordings under normal physiological conditions and prevents a large proportion of the
oxygen and glucose deprivation (OGD) -induced loss of action potential. This shows that
TRPA1 may play a role in regulating neuronal excitability and TRPA1 inhibition may be a
possible treatment for white matter damage in diseases where acute or chronic ischaemia
has been implicated.

2. Results
2.1. Oligodendrocytes Express Tonically Active TRPA1

The corpus callosum (CC) is a white matter tract spanning across the two hemispheres
that is often thinned or demyelinated as a result of local hypoperfusion occurring in
periventricular leukomalacia or stroke victims [1]. Therefore, our first aim was to determine
whether OLs in the CC also express functional TRPA1. To do this, we whole cell patch-
clamped OLs identified at first by their morphology (light oval somata laid in lines within
parallel axons) and then by their dye-filled morphology (n = 28, Figure 1a). Using the patch-
pipette, the OLs were dye filled with the Ca2+ sensitive dye Fluo-8 (200 µM). This method
ensures that the measured [Ca2+]i changes are in OLs only. As previously reported in
cerebellar OLs [2], the TRPA1 agonists flufenamic acid (FFA, 100 µM) and carvacrol (2 mM),
evoke a [Ca2+]i increase in OLs in the corpus callosum (P12-17; Figure 1b,d). However,
while the patch pipette was present, the TRPA1 agonists AITC (500 µM) and polygodial
(100 µM) did not evoke a calcium increase. When we repeated the experiments with the
patch-pipette removed, a short while after loading the cell with the Ca2+ indicators, we
then found that AITC and polygodial were able to activate TRPA1 (Figure 1c,d). This lack
of response to the electrophilic, covalently binding TRPA1 agonists (AITC and polygodial,
Table 1) during patch-clamping techniques has been found previously [3] and suggests
that a necessary intracellular component may be washed out or chelated in these instances,
thus modifying the availability of the agonist binding site. Importantly, application of the
TRPA1 antagonists A-967079 (20 µM) or HC-030031 (100 µM), whose mechanisms of action
do not involve the N-terminal, decreases the resting [Ca2+]i in both corpus callosum and
cerebellar OLs, as it does in astrocytes [4], suggesting that TRPA1 in OLs is tonically active
(Figure 1e) and regulates normal cell functions.

Table 1. TRPA1 agonist binding sites.

TRPA1 Agonist Covalent Binding
(N-Terminal) Non-Covalent Binding

Carvacrol - Unknown other site [5]
Flufenamic Acid (FFA) - Unknown other site [6]

Menthol - TM5 [7]
Isoflurane, propofol - TM5, TM6 and the pore helix 1 [8]

A-967079 (antagonist) - TM5, TM6 and the pore helix 1 [8]
Polygodial (PolyG) Lys residues [9] -
AITC (mustard oil) Cys and Lys residues [10] -
Cinnemaldehyde Cys and Lys residues [10] -

JT010 Cys621 only [11] -
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agonists with the patch‐pipette remaining: FFA 100 μM (n = 6); carvacrol 2mM (n = 8); 500 μM AITC (n = 4); polygodial 

100 μM (n = 6). (c) Δ [Ca2+]i to TRPA1 agonists with the patch‐pipette removed: AITC 500 μM (n = 5); polygodial 100 μM 

(n = 6). (d) Mean ± SEM maximum Δ [Ca2+]i in response to TRPA1 agonists (p‐values compared with and without patch 

pipette, one‐way ANOVA test with Holm‐Bonferroni correction for multiple comparisons). (e) The graph shows a de‐
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Table 1. TRPA1 agonist binding sites. 

TRPA1 Agonist 
Covalent Binding 

(N‐Terminal) 
Non‐Covalent Binding 

Carvacrol  ‐  Unknown other site [5] 

Flufenamic Acid (FFA)  ‐  Unknown other site [6] 

Menthol  ‐  TM5 [7] 

Isoflurane, propofol  ‐  TM5, TM6 and the pore helix 1 [8] 

A‐967079 (antagonist)  ‐  TM5, TM6 and the pore helix 1 [8] 

Polygodial (PolyG)  Lys residues [9]  ‐ 

AITC (mustard oil)  Cys and Lys residues [10]  ‐ 

Cinnemaldehyde  Cys and Lys residues [10]  ‐ 

JT010  Cys621 only [11]  ‐ 

2.2. Tonic TRPA1 Activation Regulates the Compound Action Potential Amplitude in the Optic 

Nerve 

White matter Ca2+ concentrations, and receptors that allow Ca2+ flux, have been sug‐

gested  to regulate action potential propagation  in disease  [12–16]. As TRPA1 regulates 

intracellular Ca2+ concentrations in oligodendrocytes, we hypothesised that tonic TRPA1 

activity may influence oligodendrocyte function in maintaining fast neuronal action po‐

tential propagation. We used the optic nerve to measure CAP amplitude as described pre‐

viously ([15,17]; Figure 2a) because it is a heavily myelinated, easily accessible CNS white 

matter tract [13]. Interestingly, we discovered a modest regulation of CAP amplitude by 

tonic TRPA1 activity in the optic nerve as TRPA1 inhibition with A‐967079 (20 μM) in‐

creased the amplitude by 12 ± 4% within 10 min (n = 9; Figure 2b,c). Conversely, the TRPA1 

agonists AITC (500 μM; n = 8; Figure 2d,g), and polygodial (10 or 100 μM; n = 6–7; Figure 

Figure 1. Corpus callosum oligodendrocytes express TRPA1. (a) High magnification of a whole-cell patch clamped OL in
corpus callosum (CC) with Alexa dye in the soma and processes. (b) Representative ∆ [Ca2+]i trace responses to TRPA1
agonists with the patch-pipette remaining: FFA 100 µM (n = 6); carvacrol 2mM (n = 8); 500 µM AITC (n = 4); polygodial
100 µM (n = 6). (c) ∆ [Ca2+]i to TRPA1 agonists with the patch-pipette removed: AITC 500 µM (n = 5); polygodial 100 µM
(n = 6). (d) Mean ± SEM maximum ∆ [Ca2+]i in response to TRPA1 agonists (p-values compared with and without patch
pipette, one-way ANOVA test with Holm-Bonferroni correction for multiple comparisons). (e) The graph shows a decrease
in resting [Ca2+]i that occurs in the presence of TRPA1 antagonists: A-967079 20 µM in CC Ols and HC-030031 100 µM in
cerebellar (Cer) OLs.

2.2. Tonic TRPA1 Activation Regulates the Compound Action Potential Amplitude in the
Optic Nerve

White matter Ca2+ concentrations, and receptors that allow Ca2+ flux, have been
suggested to regulate action potential propagation in disease [12–16]. As TRPA1 regulates
intracellular Ca2+ concentrations in oligodendrocytes, we hypothesised that tonic TRPA1
activity may influence oligodendrocyte function in maintaining fast neuronal action po-
tential propagation. We used the optic nerve to measure CAP amplitude as described
previously ([15,17]; Figure 2a) because it is a heavily myelinated, easily accessible CNS
white matter tract [13]. Interestingly, we discovered a modest regulation of CAP amplitude
by tonic TRPA1 activity in the optic nerve as TRPA1 inhibition with A-967079 (20 µM)
increased the amplitude by 12 ± 4% within 10 min (n = 9; Figure 2b,c). Conversely, the
TRPA1 agonists AITC (500 µM; n = 8; Figure 2d,g), and polygodial (10 or 100 µM; n = 6–7;
Figure 2e,f,h,i) reduced the CAP amplitude (n = 5–14; Figure 2j). The TRPA1 agonist-
induced decrease in compound action potential amplitude was reduced in the presence
of A-967079, which was preincubated for over 15 min to allow for the initial increase in
CAP amplitude before application of the agonists (n = 5–14; Figure 2j). As optic nerves do
not include neuronal somata, these results indicate glial TRPA1 regulates retinal ganglion
cell CAP propagation in physiological conditions. Whether this is due to OL or astrocyte
TRPA1 is yet to be determined.
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Figure 2. TRPA1 agonist and antagonist effects on optic nerve compound action potential amplitude. (a) Compound
action potentials (CAPs) were measured in young adult optic nerves (P42–P70). (b) A-967079 (A96, 10 µM) block of TRPA1
increases the CAP amplitude (black trace at start; with time this increases (grey traces), and the red trace is the final trace).
The arrows indicate the direction of change in CAP measurements with time. (c) Mean (± SEM) CAP amplitude increases
after application of A-967079 (10 µM; n = 7) compared to vehicle (DMSO; n = 12), and decreases after TRPA1 agonist
application: AITC (500 µM, (d,g,j), n =8); and polygodial (10 µM, (e,h,j), n = 7; and 100 µM, (f,i,j), n = 6). TRPA1–evoked
decreases can be significantly inhibited by over 15 min of preincubation with A-967079 (20 µM, g–j). (j) Bar graph showing
the mean (± SEM) changes in CAP amplitude (each n is depicted as a diamond data point) after application of agonists and
antagonists for 10 min. p-values are from multiple comparisons using a one-way ANOVA with Holm–Bonferroni correction.
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2.3. TRPA1 Block Protects against Loss of the Compound Action Potential during OGD

In the past, CAP recordings have demonstrated that simulated ischaemia results in a
reduction in action potential propagation, with only a partial recovery [14,15,18–20]. This
reduction in CAP amplitude is thought to be mediated by Ca2+ influx through different
channels; therefore, TRPA1 inhibition may protect against loss of CAPs during ischaemia.
To simulate ischaemia we removed O2 and glucose for 30 min, and continually recorded
the CAP during a recovery period of 30 min (Figure 3). The area under the curve of the
CAP was measured throughout. To understand the time at which TRPA1 activation may
cause the most damage, we applied A-967079 at different times during the experiment.
Firstly, we preincubated A-967079 (20 µM) and administered it throughout the experiment
and found it significantly reduced the loss of the CAP during ischaemia (Figure 3b, and
Figure 4a,d; p = 0.02) and improved the recovery from 61 ± 3.7% to 89 ± 7.4% (Figure 4a,e;
p = 7.5 × 10−5). As therapeutics are more often than not given either during or after
the event rather than prophylactically, we applied A-967079 during either the ischaemic
insult or only the recovery period (Figure 3c,d and Figure 4b–e). A-967079 application
during the ischaemic insult or the recovery period alone resulted in an improved CAP
recovery (77 ± 8%; p = 0.02 and 73.7 ± 4%; p = 0.05, respectively) suggesting that the
TRPA1-mediated damage is occurring during both the ischaemic and recovery periods.
These results suggest that TRPA1 activation during ischaemia is a major cause of white
matter damage and that TRPA1 antagonists may be effective in treating white matter in the
many diseases involving ischaemia.
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Figure 3. Ischaemia-evoked changes in optic nerve compound action potential (CAP). (a) Top row, traces from the left are:
CAP in control solution, after 30 min ischemia, after 30 min recovery to control solution, after application of 500 nM TTX to
record the stimulus artefact. Row b shows the same traces after the stimulus artefact has been removed from the traces.
(b–d) Artefact subtracted responses with A-967079 (20 µM) preincubated and added throughout the experiment (b) during
ischaemia only (c) or during the recovery only (d).
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Figure 4. Ischaemia-evoked changes in optic nerve compound action potential (CAP) are reduced by TRPA1 block with
A-967079. (a) Normalised area of CAP before, during, and after ischaemia, simulated by removing oxygen and glucose
and replacing them with nitrogen and sucrose, showing how preincubation of the TRPA1 antagonist (A-967079, 20 µM)
can prevent the loss of the CAP during ischaemia and improve the recovery after replacement of oxygen and glucose.
Application of A-967079 during ischaemia (b) or during recovery (c) only is also protective. (d) Normalised CAP area
after 30 min in OGD or after 30 min recovery (e). p-values in (d) are from Mann–Whitney tests with Holm–Bonferroni
correction for multiple comparisons. p-values in (e) are from a one-way ANOVA with Holm–Bonferroni correction for
multiple comparisons.

3. Discussion

The presence of TRPA1 in glial cells is a new concept, but the evidence for functional
TRPA1 in both astrocytes [4,21] and OLs is growing [2,22–25], reviewed in [26]. In astrocytes
and OLs, TRPA1 activation and inhibition raises and decreases basal intracellular Ca2+ (and
Mg2+) concentrations, respectively [2,21] (Figure 1e). Astrocyte TRPA1 regulates neuronal
function [4,21], and TRPA1 knockout appears to modify the expression of myelinating
proteins [22]. Here, we add to this evidence by showing that TRPA1 expression in OLs is
conserved in other CNS brain areas, and that activation of TRPA1 in corpus callosum OLs
generates a substantial Ca2+ influx. Despite this, we did not find a large TRPA1-mediated
non-specific cation current (that would reverse at −10 to 0 mV) as you would expect
when TRPA1 is activated in large numbers on the cells [27]. Instead, we saw a TRPA1-
mediated decrease in potassium conductance indicating a TRPA1-mediated inhibition of
potassium channels. This has already been shown to occur when TRPA1 is activated during
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ischaemia [2]. This suggests that the levels of TRPA1 in OLs are low, which may be why its
expression is not picked up in bulk brain studies [28], but is in single cell sequencing [23]
and in situ hybridisation experiments [2]. Interestingly, TRPA1 was not found in mouse
optic nerves during qPCR experiments [29]. This discrepancy is hard to explain as the
mouse ages and strain were similar to those used here (C57BL6; P7, P30-40 vs. P12-18 and
P42-70 here). Nonetheless, our evidence clearly points to functional expression of TRPA1
in the mouse optic nerve, and we provide the first evidence for a role for glial TRPA1 in
regulating neuronal transmission through the white matter. Although the focus of this
paper was the expression of TRPA1 in OLs, the effect of TRPA1 on astrocytes and possibly
oligodendrocyte progenitor cells may be equally important. Future investigations will aim
to specifically assess oligodendrocyte TRPA1 activity through use of TRPA1-shRNA or
conditional knockouts.

How TRPA1 activity decreases the size of the CAPs under physiological conditions
has not been completely elucidated. We know that removing extracellular Ca2+ protects
against loss of CAPs during ischaemia [14], suggesting that influx of Ca2+ through TRPA1
may diminish the CAP. However, we also know that TRPA1 decreases oligodendrocyte
potassium permeability ([2], Giacco et al., unpublished), which would in turn decrease
the CAP amplitude by decreasing glial cell potassium syphoning away from the peri-
axonal space [30,31]. How the CAP is affected by inhibited OL potassium conductance
is dependent on the amount that this changes the perinodal potassium concentration.
Changes of a few mM can depolarise axons and lead to an increased excitability, but large
changes (>10 mM) can lead to conduction block [32,33]. In our model, it appears that tonic
TRPA1 activation in normal physiological conditions is already limiting axon excitability,
or causing conduction block of a small set of axons and increased TRPA1 activation with
exogenously applied agonists that builds upon that phenomenon. Therefore, it appears
that either perinodal potassium concentrations are already high enough to prevent action
propagation in some axons, or that the OL depolarisation or Ca2+ influx through TRPA1 is
decreasing the excitability of axons in another way. In support of the former, one action
potential is thought to increase the perinodal K+ concentration by 1 mM [34], and this may
increase quickly with successive action potentials if potassium syphoning is hindered.

As mentioned above, increased extracellular Ca2+ concentrations are correlated with
the amount of white matter damage occurring during ischaemia [12,14,35], and a large
proportion of the Ca2+-mediated damage has long been thought to be due to glutamate exci-
totoxicity driving Ca2+ influx through OL AMPA/KA [35–38] and NMDA [12,14,15,39–42]
receptors. However, our recent work indicates that the majority of the Ca2+ influx into
OLs during ischaemia is through TRPA1, which becomes activated when OLs acidify as
a result of raised extracellular potassium concentrations occurring during ischaemia [2].
Optic nerves subjected to ischaemia for 1 hour have TRPA1-mediated myelin damage
shown with electron microscopy [2]. In line with that, we find here that TRPA1 inhibition
is beneficial at protecting against white matter damage when applied during, after, or
throughout the ischaemic insult, suggesting that TRPA1 block may be used as a potential
prophylactic therapy, or one to improve recovery after a stroke. It is important to add,
however, that the CAP area never returned to its pre-ischaemic level. This residual loss of
the CAP may be due to activation of glutamate receptors, or due to underlying damage to
the axons [36], rather than OLs.

At present, there are a large number of patents for the use of TRPA1 antagonists in
human pathologies. A-967079 was chosen here because it is commercially available, highly
selective, more readily dissolved in aqueous solution than HC-030031, and can penetrate
the nervous system at therapeutic concentrations when administered peripherally, by
oral gavage and intraperitoneal injection [43]. This opens up possibilities for testing
the effects of A-967079 in vivo in stroke models. However, initial evidence suggests
that TRPA1 activation on capillaries may induce vasodilation of arterioles and protect
against widespread damage during stroke [44,45]. These results were determined using
a conditional endothelial cell TRPA1 knockout [46]. Nonetheless, the evidence of TRPA1-
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mediated pathology within the parenchyma is growing substantially and indicates that
targeted TRPA1 knockout or block within the parenchyma will have major benefits and
needs investigating further.

4. Materials and Methods
4.1. Animals

C57BL/6J mice of either sex were killed via schedule 1 (cervical dislocation) in ac-
cordance with the guidelines of the UK Animals (Scientific Procedures) Act 1986 and
subsequent amendments. The protocols were approved by the Animal Welfare Ethical
Review Body of Guy’s Campus, King’s College London (PPL number P7322191B, granted
on 26 April 2019 and amended on 11 November 2019).

4.2. Brain Slice and Optic Nerve Preparation

Coronal brain slices (225 µm thick) were prepared from the brains of P12-P17 mice in
ice-cold solution containing (mM) 124 NaCl, 26 NaHCO3, 1 NaH2PO4, 2.5 KCl, 2 MgCl2,
2 CaCl2, 10 glucose, bubbled with 95% O2/5% CO2, pH 7.4, as well as 1 mM Na-kynurenate
to block glutamate receptors. Optic nerves were dissected from P42-P70 mice. Brain slices
and optic nerves were then incubated at room temperature (21–24 ◦C) in the above solution
until used in experiments.

4.3. Cell Identification and Electrophysiology

Oligodendrocytes were identified by their location and morphology. All cells were
whole-cell clamped with pipettes with a series resistance of 8–35 MΩ. Electrode junction
potentials were compensated, and cells were voltage-clamped at −74 mV.

4.4. External Solutions

Slices and optic nerves were superfused with bicarbonate-buffered solution containing
(mM) 124 NaCl, 2.5 KCl, 26 NaHCO3, 1 NaH2PO4, 2 CaCl2, 1 MgCl2, 10 glucose, pH 7.4,
bubbled with 95% O2 and 5% CO2. Applications of TRPA1 channel agonists and antagonists
to brain slices were at room temperature. All CAP recording and OGD experiments were
performed between 33 ◦C and 36 ◦C. Data were excluded if changes in temperature
were observed during the experiment. Control and drug conditions were interleaved
and the experimenter was blinded to the solution contents. To simulate ischaemia, we
replaced external O2 with N2, and external glucose with 7 mM sucrose. The flow rate was
approximately 4 mL/min into a 1.5 mL bath, giving a turnover rate of under 25 s.

4.5. Intracellular Solutions

Cells were whole-cell clamped with electrodes containing K-gluconate-based so-
lution, comprising (mM) 130 K-gluconate, 2 NaCl, 0.5 CaCl2, 10 HEPES, 10 BAPTA,
2 NaATP, 0.5 Na2GTP, 2 MgCl, and 0.05 Alexa Fluor 594, and pH set to 7.15 with K-
OH (all from Sigma-Aldrich, Germany). For Ca2+ imaging experiments, BAPTA was
decreased to 0.01 mM and replaced with 10 mM phosphocreatine, CaCl2 was reduced to
10 µM, and 200 µM Fluo-4 or Fluo-8 was added to allow ratiometric imaging with the
above Alexa Fluor.

4.6. Single Cell Ion Imaging

Fluo-8 and Alexa Fluor 594 were used in the internal solution to measure [Ca2+]i
changes ratiometrically during experiments. Fluo-8 and Alexa Fluor 594 fluorescence were
excited sequentially using a monochromator every 3 s at 488 ± 10 nm and 585 ± 10 nm, and
emission was collected using a triband filter cube (DAPI/FITC/Texas Red, 69002, Chroma
Technology Corporation, Bellow Falls, VT, USA). The mean ratio of intensities (excited at
488 nm/excited at 585 nm) before applying the TRPA1 agonist was 1.010 (n = 28).
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4.7. Drug Application

Stock solutions of the following drugs were made up: Carvacrol (Sigma-Aldrich,
Darmstadt, Germany) was diluted in 100% ethanol, HC 030031 (Tocris Bioscience, Bristol,
UK), A-967079 (Boc Sciences, Shirley, NY, USA), flufenamic acid (Sigma-Aldrich, Darm-
stadt, Germany), polygodial (Tocris Bioscience, Bristol, UK), and AITC (Sigma-Aldrich,
Darmstadt, Germany) were made up in 100% DMSO. For CAP experiments, DMSO and
ethanol were also added to control solutions at the same concentrations and did not evoke
any changes in the CAP amplitude at the concentrations used (≤0.1%). For the patch-
clamping experiments, vehicle controls were tested on oligodendrocytes and did not evoke
any changes at the concentrations used. Stocks were kept at −20 ◦C apart from carvacrol
and AITC, which were made up fresh on each day of use. To minimise evaporation of
carvacrol, lids were kept on until the solutions were used. The control and test experiments
were interleaved, and for all CAP recordings, the experimenter was blinded to the contents
of the solutions.

4.8. Compound Action Potential Recording

Optic nerves were isolated from P42-P70 mice, and CAP recorded using suction
electrodes [13]. The optic nerve was stimulated using a suction electrode filled with
extracellular solution, using 0.2 ms, 50–100 V pulses, at 1 Hz to produce as supramaximal
a response as possible. Supramaximal stimulation (40% over the voltage producing the
maximal amplitude of CAP) was constrained by a maximum stimulation voltage of 100 V.
The CAP was recorded as a voltage using an Axon Axoclamp 2B amplifier, with the
recording suction electrodes placed as far away from the stimulating electrode as possible
to obtain a CAP waveform with three peaks, which denoted heavily myelinated axons
(peak 1), normally myelinated axons (peak 2) and unmyelinated axons (peak 3; [9]). At
the end of each experiment, TTX (500 nM) was applied to obtain the stimulus artefact
in the absence of action potentials, which were subtracted from all the records obtained
previously. The pre-stimulus baseline of the resulting traces was subtracted, then the traces
were rectified (squared, then square rooted), and either the area of the CAP was calculated
or the amplitude of the second peak was measured (see results).

4.9. Statistics

Data were mean ± s.e.m. p-values were from ANOVA tests (for normally distributed
data) and Mann–Whitney U or Kruskal–Wallis tests (for non-normally distributed data).
Normally distributed data were tested for equal variance (p < 0.05, unpaired F-test), and
paired t-Tests were adjusted accordingly. p-values quoted in the text were from ANOVA
tests unless otherwise stated. For multiple comparisons, p-values were corrected using the
Holm–Bonferroni or Tukey’s test. Small sample sizes were often able to achieve statistical
significance, so in those instances, power analysis of sample size was also measured for
soma data and determined to be greater than 0.75. Data normality was assessed using
Shapiro–Wilk tests. All statistical analysis was conducted using OriginLab or GraphPad
Prism software.

5. Conclusions

We provided the first evidence that TRPA1 activation in the white matter suppresses
axonal function in both health and disease. Whether depression of neuronal activity is
important for normal brain function is not known, but our results strongly indicate that
TRPA1 block may preserve white matter function during and after ischaemic episodes in
the brain. In light of the evidence provided above, it will be important to dissect the role of
TRPA1 expressed by the different cell types to enhance our understanding of how the CNS
is affected by TRPA1 activity in the brain.
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