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Abstract: Fragaria nilgerrensis Schlecht. is a wild diploid strawberry species. The intense peach-like
aroma of its fruits makes F. nilgerrensis an excellent resource for strawberry breeding programs aimed
at enhancing flavors. However, the formation of the peach-like aroma of strawberry fruits has not
been comprehensively characterized. In this study, fruit metabolome and transcriptome datasets for
F. nilgerrensis (HA; peach-like aroma) and its interspecific hybrids PA (peach-like aroma) and NA
(no peach-like aroma; control) were compared. In total, 150 differentially accumulated metabolites
were detected. The K-means analysis revealed that esters/lactones, including acetic acid, octyl ester,
δ-octalactone, and δ-decalactone, were more abundant in HA and PA than in NA. These metabolites
may be important for the formation of the peach-like aroma of F. nilgerrensis fruits. The significantly
enriched gene ontology terms assigned to the differentially expressed genes (DEGs) were fatty acid
metabolic process and fatty acid biosynthetic process. Twenty-seven DEGs were predicted to be
associated with ester and lactone biosynthesis, including AAT, LOX, AOS, FAD, AIM1, EH, FAH,
ADH, and cytochrome P450 subfamily genes. Thirty-five transcription factor genes were predicted to
be associated with aroma formation, including bHLH, MYB, bZIP, NAC, AP2, GATA, and TCP family
members. Moreover, we identified differentially expressed FAD, AOS, and cytochrome P450 family
genes and NAC, MYB, and AP2 transcription factor genes that were correlated with δ-octalactone
and δ-decalactone. These findings provide key insights into the formation of the peach-like aroma of
F. nilgerrensis fruits, with implications for the increased use of wild strawberry resources.

Keywords: Fragaria nilgerrensis Schlecht.; transcriptome; peach aroma; fatty acid metabolism;
δ-octalactone; lactone biosynthesis

1. Introduction

Strawberry (Fragaria sp.) is cultivated worldwide. Aroma, which is one of the
major quality-related characteristics of strawberry, is the most important quality indi-
cator for consumers [1]. Modern cultivated strawberry varieties are mostly derived from
Fragaria × ananassa, which produces high yields of large, red, and firm fruits, but there is
relatively little diversity in their aromas [2,3]. Wild species have accumulated a broader
range of volatile compounds [2]. Because of the substantial diversity and strength of the
aromas of natural and domesticated populations, plant breeders consider wild strawberries
to be important donors of novel aromatic compounds [4]. Fragaria nilgerrensis Schlecht. is a
wild diploid strawberry species endemic to the eastern and southeastern regions of Asia; it
is an excellent material for breeding strawberry varieties with enhanced flavors because of
its intense peach-like aroma [5].
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Most of the studies on the fruity aromas of strawberries still focus on identifying
volatile compounds and determining the differences in these compounds among strawberry
cultivars [6]. The volatile compounds detected in strawberry include esters, aldehydes,
ketones, alcohols, terpenes, furanones, and sulfur compounds [7]. Esters are the largest
group of aromatic compounds in strawberry, and their contents and compositions vary
considerably among strawberry species and cultivars [1]. Usually, different species have
their own characteristic esters [8]. Methyl anthranilate is a major aroma compound in
Fragaria vesca L., whereas methylbutanoate, ethyl butanoate, ethyl hexanoate, and methyl
2-methylbutanoate are among the most important odorants in F. × ananassa [9,10]. The
aroma compound composition differs between F. nilgerrensis and F.× ananassa, with methyl
benzoate, benzyl acetate, methyl cinnamate, and ethyl cinnamate identified as the main
compounds in the former [11]. Previous studies revealed that F. nilgerrensis might be an
important donor of aromatic compounds, including the lactones that provide strawberry
fruits with a peach-like aroma [12,13]. Because aroma is a quantitative trait, the peach-
like scent of F. nilgerrensis fruits may be the result of the interactions between multiple
metabolites. Thus, further characterizing the development of the peach-like aroma of
F. nilgerrensis fruits is necessary for the breeding of strawberry varieties that produce fruits
with desirable aromas, but there has been limited related research.

Because of the importance of volatile compounds in fruits, the mechanisms regulating
volatile biosynthesis must be clarified. Transcriptional regulation is the most important
form of regulation in plants. Integrating transcriptome data with metabolic profiles is a
useful strategy for analyzing the synthesis of aromatic compounds as well as the associated
genes [14]; however, there has been minimal related research on strawberry. It is generally
believed that fruit aromatic formation involves various pathways, including those related
to fatty acids, amino acids, terpenoids, and carotenoids [15]. Accordingly, many studies
have focused on identifying and functionally annotating the key genes in these pathways
to elucidate the mechanism underlying the formation of specific aromatic compounds. To
date, only a few genes related to aroma compound synthesis have been identified in straw-
berry. For example, FaFAD1 encodes a fatty acid desaturase that controls γ-decalactone
production [12,16]. Other studies indicated FanAAMT is involved in the production of
methyl anthranilate [17], whereas FaOMT contributes to mesifurane synthesis [18] and
FaNES1 mediates linalool synthesis [19]. Additionally, some genes encoding transcrip-
tion factors (TFs) that help to regulate aroma formation pathways have been identified
in strawberry [20]. Thus, the regulated formation of aromatic compounds in strawberry
fruits is a complex process. These earlier studies increased our understanding of the links
between genes and metabolites, but they were insufficient for deciphering the regulatory
mechanism underlying strawberry aroma formation. Many key genes, including those
involved in known aroma compound synthesis pathways, still need to be identified and
functionally characterized.

In this study, F. nilgerrensis (HA) fruits, which have a peach-like aroma, and fruits
from the interspecific hybrids PA (with a peach-like aroma) and NA (without a peach-like
aroma) were examined. Their volatile compounds were detected by headspace solid-
phase microextraction coupled with gas chromatography/mass spectrometry (HS-SPME-
GC/MS). Additionally, their transcriptomes were analyzed by RNA-seq. The results of this
study provide insights into the formation of the peach-like aroma of F. nilgerrensis fruits,
which may be useful for maximizing the utility of wild strawberry resources.

2. Materials and Methods
2.1. Fruit Materials

Ripe fruit samples were collected from F. nilgerrensis Schlecht. (with a peach-like
aroma) and its interspecific hybrids PA (with a peach-like aroma) and NA (without a
peach-like aroma) at the Germplasm Strawberry Repository of the Guizhou Horticulture
Institute located in Guiyang (26.492310◦ N, 106.653870◦ E), Guizhou province, China. Six



Genes 2022, 13, 1285 3 of 17

biological replicates were collected in 2021. The fruit samples were immediately frozen in
liquid nitrogen and then stored at −80 ◦C.

The interspecific hybrids PA and NA were generated as follows:
Benihoppe (female, 8x) × F. nilgerrensis Schlecht. (male, 2x)

↓
5x

↓ Chromosome doubling
BF (female, 10x)

↓ Seedling selection
PA and NA

2.2. Qualitative and Quantitative Analyses of Extracted Volatiles

Frozen fruit samples were ground to a powder in liquid nitrogen and then 1 g powder
was transferred to a 20 mL headspace vial (Agilent, Palo Alto, CA, USA) containing a
saturated NaCl solution and 10 µL Furfural-3,4,5-d3 (CAS-53599-40-9), which was used
as an internal standard. The vials were sealed using crimp-top caps with TFE-silicone
headspace septa (Agilent). For the SPME analysis, each vial was incubated at 100 ◦C for
5 min and then 120 µm divinylbenzene/carboxen/polydimethylsiloxane fiber (Agilent)
was inserted into the headspace for 15 min at 100 ◦C.

Volatile organic compounds were identified and quantified using the 8890 gas chromato-
graph and the 5977B mass spectrometer (Agilent) equipped with a 30 m × 0.25 mm × 0.25 µm
DB-5MS (5% phenyl-polymethylsiloxane) capillary column. Helium was used as the carrier
gas at a linear velocity of 1.0 mL/min. The injector and detector temperatures were set
at 250 and 280 ◦C, respectively. The oven temperature program was as follows: 40 ◦C
for 3.5 min, increase to 100 ◦C at 10 ◦C/min, increase to 180 ◦C at 7 ◦C/min, increase to
280! ◦C at 25 ◦C/min, and then hold for 5 min. Mass spectra were recorded in the electron
impact ionization mode at 70 eV. The quadrupole mass detector, ion source, and transfer
line temperatures were set at 150, 230, and 280 ◦C, respectively. Mass spectra were scanned
in the range m/z 50–500 amu at 1 s intervals. The volatile compounds corresponding to
the mass spectra were identified using data system libraries (MWGC or NIST) and the
linear retention index. Differentially accumulated metabolites (DAMs) were identified for
each comparison (PA vs. NA and HA vs. NA) using the following thresholds: Variable
Importance in the Projection (VIP) value >1.0, fold-change >2.0 or <0.5, and p < 0.05.

2.3. Total RNA Extraction and Sequencing

Total RNA was extracted from 18 fruit samples using the TRIzol Plant RNA Extraction
Kit (Thermo Fisher Scientific, Waltham, MA, USA). A NanoDrop 2000 spectrophotometer
(Thermo Scientific, Pittsburgh, PA, USA) was used to determine the purity, concentration,
and integrity of the RNA samples. High-quality RNA was used to construct cDNA li-
braries, which were subsequently sequenced using the Illumina HiSeq platform to generate
125-bp/150-bp paired-end reads.

2.4. Transcriptome Analysis

The raw data were filtered using fastp (version 0.19.3) to eliminate low-quality reads.
The clean reads were mapped to the downloaded F. vesca L. genome and its annotation files
(https://www.ncbi.nlm.nih.gov/genome/?term=Fragaria+vesca+L (accessed on 3 July
2021)) by HISAT v2.1.0. Use StringTie v1.3.4d for new gene prediction. Additionally, gene
expression levels were calculated in terms of fragments per kilobase per million (FPKM)
values by featureCounts v1.6.2. The DESeq2 program (version 1.22.1) was used to analyze
genes that were differentially expressed between two sample groups (PA vs. NA and HA
vs. NA), with the p-value corrected according to the Benjamini–Hochberg method [21].
The corrected p-value and fold-change were used to detect significant differences in ex-
pression. The differentially expressed genes (DEGs) in each comparison (PA vs. NA and
HA vs. NA) were identified on the basis of the following criteria:|fold change| ≥ 1.2 and
false discovery rate (FDR) < 0.05. The hypergeometric distribution test was performed
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to identify the enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
(https://www.kegg.jp/ (accessed on 23 June 2021)) and Gene Ontology (GO) terms
(http://www.geneontology.org/ (accessed on 24 May 2021)) among the DEGs.

2.5. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) Analysis

To verify the accuracy and reliability of the transcriptome sequencing data, 8 DEGs
were randomly selected for a qRT-PCR assay. First-strand cDNA was synthesized using the
PrimeScript™ RT reagent Kit (TaKaRa, Dalian, China). The qRT-PCR assay was completed
using TB Green Premix Ex Taq™ II (TaKaRa) and the BioRad CFX96 Real-Time PCR System
(Bio-Rad Laboratories, Inc., Hercules, CA, USA). The qRT-PCR primer sequences designed
by Primer 6.0 are listed in Table S1. The relative expression levels of the DEGs were
calculated using the comparative Ct (2−∆∆Ct) method after normalizing the expression data
to the FaActin internal transcript control [22].

2.6. Correlation Analysis of the Transcriptome and Metabolome Data

For the combined analysis of the metabolome and transcriptome data, the COR pro-
gram from R was used to calculate Pearson’s correlation coefficient (PCC). The correspond-
ing correlation network was visualized using the Cytoscape software (version 3.7.0). Strong
correlations were determined on the basis of the following: PCC ≥ 0.8 and p ≤ 0.05.

3. Results
3.1. Metabolomic Profiling

The HS-SPME-GC/MS analysis resulted in the identification of 240 volatile com-
pounds in the 18 analyzed samples. These compounds included 80 esters, 29 terpenoids,
29 heterocyclic compounds, 19 aromatics, 16 ketones, 14 hydrocarbons, 11 alcohols, 10 alde-
hydes, eight amines, seven phenols, seven acids, four nitrogen compounds, one sulfur
compound, one ether, and four other compounds. Thus, esters were the most abundant
compounds (33.33%), followed by terpenoids (12.08%), heterocyclic compounds (12.08%),
and aromatics (7.92%) (Figure 1a). A principal component analysis revealed the overall
differences in the metabolites among the sample groups as well as the variability within
sample groups. Principal components 1 and 2 respectively explained 44.27% and 16.26%
(i.e., 60.53% combined) of the total variance among samples. The metabolites of the NA
samples differed significantly from those of the PA and HA samples. Additionally, there
was some overlap between the metabolites of the PA and HA samples, possibly because
both PA and HA fruits have a peach-like aroma (Figure 1b). The heatmap hierarchical
clustering results revealed that the biological replicates were grouped together and the
metabolite contents varied substantially among NA, PA, and HA (Figure 1c). These findings
indicated that the analysis was appropriate and the metabolome data were highly reliable.
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Figure 1. Analysis of all metabolites. Metabolite types (a). Two-dimensional principal component
analysis plot (b). Heatmap for the hierarchical clustering analysis (c).

3.2. Identification of DAMs

To identify DAMs among the examined samples, VIP ≥1 and fold-change ≥2 or ≤0.5
were used as the thresholds. The results of the orthogonal partial least squares-discriminant
analysis (OPLS-DA) (Figure 2a,b) and the 200-response sorting tests (Figure 2a′,b′) indicated
that the model was stable and reliable. Moreover, the VIP analysis could be used to screen
for DAMs. A total of 150 DAMs were revealed by the NA vs. HA and NA vs. PA
comparisons (Table S2). There were 55 DAMs that were common to both comparisons,
whereas 67 and 28 DAMs were exclusive to the NA vs. HA and NA vs. PA comparisons,
respectively. Thus, more DAMs were detected in the NA vs. HA comparison than in the NA
vs. PA comparison (Figure 3a). To study the change trend of relative contents of metabolites
in different samples, the relative contents of different metabolites were standardized and
centralized and then analyzed by K-means clustering. The results showed that the K-means
analysis divided the 150 DAMs into nine clusters (Figure 3b). The metabolites of Clusters 1,
2, 3, and 9 were significantly more abundant in PA and HA than in NA. These four clusters
contained 53 metabolites, of which 29 were esters/lactones, including acetic acid, octyl
ester, hexanoic acid, 1-methylethyl ester, octanoic acid, methyl ester, octanoic acid, octyl
ester, δ-octalactone, and δ-decalactone (Table S3).
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Figure 2. Metabolomics profiling. Orthogonal partial least squares-discriminant analysis (OPLS-DA)
of NA vs. HA (a) and NA vs. PA (b). The 200-response sorting tests of the OPLS-DA model for NA
vs. HA (a′) and NA vs. PA (b′). Q2 is an important parameter for evaluating the OPLS-DA model.
R2X and R2Y represent the percentage of the OPLS-DA model that can explain the X and Y matrix
information, respectively.
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3.3. RNA-seq Analysis and Assembly and Functional Annotation

Three biological replicates of the HA, PA, and NA fruit samples were used for an
Illumina RNA-seq analysis. Nine cDNA libraries were constructed and sequenced. After
the raw reads were filtered, 400.45 million high-quality clean reads (60.09 billion bases)
remained. More specifically, the Q20 and Q30 values for each library exceeded 97.49% and
92.99%, respectively. The GC content ranged from 45.45 to 46.54% (Table 1).

Table 1. Transcriptome sequencing data for the fruit samples from F. nilgerrensis Schlecht. (HA) and
its interspecific hybrids PA and NA.

Sample Raw Reads (M) Clean Reads (M) Clean Base (G) Q20 (%) Q30 (%) GC (%)

HA-1 47.30 44.37 6.66 98.17 94.54 45.75
HA-2 45.76 42.85 6.43 97.98 94.27 46.44
HA-3 47.59 44.11 6.62 97.49 92.99 46.14
NA-1 43.43 42.00 6.3 98.06 94.32 46.30
NA-2 48.95 47.23 7.09 97.95 94.14 46.54
NA-3 48.01 46.93 7.04 98.00 94.13 46.35
PA-1 45.89 43.92 6.59 98.09 94.39 46.08
PA-2 46.13 43.45 6.52 98.07 94.34 45.45
PA-3 47.79 45.60 6.84 98.05 94.27 45.97
Sum 420.86 400.45 60.09

To verify the RNA-seq results, the expression levels of 8 randomly selected DEGs were
analyzed in a qRT-PCR assay, which indicated that the changes in the expression of these
8 genes were basically consistent with the RNA-seq data (Figure S1). Hence, the RNA-seq
data were accurate and reliable.

3.4. Identification and Functional Analysis of DEGs

The RNA-seq data were compared as follows to identify DEGs among the examined
fruit samples: NA vs. HA and NA vs. PA. A total of 14,116 DEGs were identified, of
which 3230 were common to both comparisons, whereas 9315 and 1571 were specific to
the NA vs. HA and NA vs. PA comparisons, respectively. A Venn diagram was used to
illustrate the number of DEGs in both comparisons (Figure 4). These results suggested that
the DEGs revealed by the two comparisons may be related to the peach-like aroma of HA
and PA fruits.
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To clarify the biological functions of the DEGs, the significant DEGs identified by the
two comparisons were functionally categorized according to GO and KEGG enrichment
analyses. The GO functional analysis indicated that the DEGs in the NA vs. HA compar-
ison was associated with diverse biological processes (18 sub-categories) and molecular
functions (32 sub-categories) (Figure 5a), whereas the DEGs in the NA vs. PA compar-
ison were related to biological processes (25 sub-categories), cellular components (six
sub-categories), and molecular functions (19 sub-categories) (Figure 5b). Several aroma
component synthesis-related GO terms were assigned to the DEGs in both comparisons,
including flavonoid metabolic process, fatty acid metabolic process, fatty acid biosynthetic
process, α-amino acid biosynthetic process, α-amino acid metabolic process, and flavonol
3-O-glucosyltransferase activity.
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The 20 most enriched KEGG pathways among the DEGs revealed by the NA vs. HA
and NA vs. PA comparisons were determined (Figure 6a,b). The following six pathways 
were enriched among the DEGs in both comparisons: sesquiterpenoid and triterpenoid 
biosynthesis, phenylpropanoid biosynthesis, fatty acid degradation, β-alanine metabo-
lism, ascorbate, and aldarate metabolism, and amino sugar and nucleotide sugar metabo-
lism. Particularly, fatty acids are major precursors of aroma volatiles in most fruit [15], the 
DEGs related to fatty acid degradation in the two comparisons, α-linolenic acid metabo-
lism in NA vs. HA comparison (Figure 6a), and linoleic acid metabolism in NA vs. PA 
comparison (Figure 6b) may be associated with ester/lactone synthesis in strawberry. 
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The 20 most enriched KEGG pathways among the DEGs revealed by the NA vs. HA
and NA vs. PA comparisons were determined (Figure 6a,b). The following six pathways
were enriched among the DEGs in both comparisons: sesquiterpenoid and triterpenoid
biosynthesis, phenylpropanoid biosynthesis, fatty acid degradation, β-alanine metabolism,
ascorbate, and aldarate metabolism, and amino sugar and nucleotide sugar metabolism.
Particularly, fatty acids are major precursors of aroma volatiles in most fruit [15], the DEGs
related to fatty acid degradation in the two comparisons, α-linolenic acid metabolism in
NA vs. HA comparison (Figure 6a), and linoleic acid metabolism in NA vs. PA comparison
(Figure 6b) may be associated with ester/lactone synthesis in strawberry.
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3.5. Expression Patterns of Structural DEGs Related to Ester and Lactone Biosynthesis

The 27 DEGs predicted to be associated with the biosynthesis of esters and lactones
comprised two alcohol acyltransferase (AAT) genes, two lipoxygenase (LOX) genes, one
allene oxide synthase (AOS) gene, three fatty acid desaturase (FAD) genes, one hydroxyacyl-
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CoA dehydrogenase (AIM1) gene, two epoxide hydrolase (EH) genes, one fatty acid hydrox-
ylase (FAH) gene, 11 cytochrome P450 subfamily genes, and four alcohol dehydrogenase
(ADH) genes (Table S4, Figure 7). The ATT, LOX, EH, cytochrome P450 subfamily and ADH
genes had up-regulated expression levels, which was in contrast to the down-regulated
expression levels of the AOS and FAH genes. Interestingly, the omega-6 fatty acid desat-
urase (FAD2) and omega-3 fatty acid desaturase (FAD3) gene expression trends differed
(Figure 7). Therefore, these candidate genes will need to be further analyzed to elucidate
their potential roles in the molecular mechanisms mediating the formation of the peach-like
aroma of F. nilgerrensis fruits.
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3.6. Expression Patterns of TF Genes Involved in Regulating Aroma Formation

The significant DEGs included 35 genes encoding TFs that were predicted to be
associated with aroma formation. Of these DEGs, 12 and 23 had up-regulated and down-
regulated expression levels, respectively (Table S5). Additionally, these genes encoded
the following: four bHLH TFs, 11 MYB TFs, five bZIP TFs, four NAC TFs, eight AP2 TFs,
one GATA TF, and two TCP TFs (Figure 8). Among the TF genes, TCP9 (LOC101309200)
expression was up-regulated 36.85- and 31.62-fold, MYB (LOC105349995) expression was
up-regulated 34.02- and 3.95-fold, AP2 (LOC101302987) expression was down-regulated
4.89- and 19.15-fold and bZIP (LOC101311204) expression was down-regulated 3.78- and
7.72-fold in the NA vs. HA and NA vs. PA comparisons, respectively (Figure 8), implying
they may play a critical role in the formation of the peach-like aroma of F. nilgerrensis fruits.
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3.7. Correlation between the Transcriptome and Metabolome Data

To further clarify the relationships between the key DEGs and DAMs, we analyzed
whether the 29 esters/lactones were more abundant in the HA and PA fruits (i.e., with a
peach-like aroma) than in the NA fruits (i.e., without a peach-like aroma) were correlated
with 27 structural DEGs related to ester/lactone biosynthesis or 35 TF-encoding DEGs.
Among the structural genes, AIM1, FAH, and AOS were negatively correlated with the
esters/lactones, whereas AAT, cytochrome P450 family genes, and ADH were positively
correlated with esters/lactones (Figure 9a, Table S6). Of the TF genes, only the GATA family
genes were positively correlated with esters/lactones. In contrast, the bHLH, MYB, bZIP,
NAC, AP2, and TCP family members were differentially correlated with esters/lactones
(Figure 9b, Table S7). We subsequently focused on the structural genes and TF genes
associated with two lactones.

The four structural genes significantly correlated with δ-octalactone were FAD
(LOC101307465), AOS (LOC101312801), ADH (LOC101304719), and a cytochrome P450
family member (LOC101305403); the correlation was positive for ADH (Figure 10a, Ta-
ble S6). The five structural genes significantly correlated with δ-decalactone were FAD
(LOC101307465), AOS (LOC101312801), and three cytochrome P450 family members
(LOC101294153, LOC101305403, and LOC101309785); the correlation was positive for
the three cytochrome P450 family members (Figure 10a, Table S6). Eleven TF genes
were strongly correlated with δ-octalactone, including genes in the NAC (LOC101306695,
LOC101306109 and LOC101314939), MYB (LOC101296534 and LOC101307372), bZIP
(LOC101302803 and LOC101311204), AP2 (LOC101295120 and LOC101291457), TCP
(LOC101296182), and bHLH (LOC101303990) families; the correlation was positive for
NAC (LOC101314939) and bHLH (LOC101303990) (Figure 10b, Table S7). Six TF genes were
strongly correlated with δ-decalactone, including genes belonging to the NAC (LOC101306109
and LOC101314939), MYB (LOC101296534 and LOC101303116), bZIP (LOC101302803), and
AP2 (LOC101295120) families; the correlation was positive for NAC (LOC101314939) and
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MYB (LOC101303116) (Figure 10b, Table S7). Accordingly, the TFs encoded by these genes
might regulate the synthesis of aromatic compounds by controlling the expression of key
genes involved in aroma compound synthesis pathways.

Figure 9. Analyses of the correlation between 27 key structural genes and 29 key metabolites (a) and
between 35 key TFs and 29 key metabolites (b).
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TFs, whereas red circles represent the two key lactones. The solid and dotted lines indicate positive
and negative correlations, respectively.

4. Discussion
4.1. Metabolome Analysis

F. nilgerrensis is a suitable donor for improving the flavor-related qualities of cultivated
strawberry varieties through breeding [23]. For example, Noguchi used F. nilgerrensis and
F. × ananassa to obtain an interspecific decaploid hybrid (‘Tokun’) that produces fruits
with a unique blend of peach-like and coconut-like aromas [24]. However, little is known
about the composition of the aromatic compounds that provide F. nilgerrensis fruits with
their characteristic peach-like aroma. In the present study, we analyzed the aroma-related
metabolic profiles of the ripe fruits from F. nilgerrensis (HA) and its interspecific hybrids
PA (with a peach-like aroma) and NA (without a peach-like aroma). The results showed
that 29 esters were more abundant in PA and HA than in NA (Table S3). Esters are a very
important component of strawberry aromas [1,25]. Consistent with previous studies, this
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study also detected two esters unique to F. nilgerensis fruits, namely octanoate, ethyl ester,
and trans-4-decanoate ethyl ester [26]. Lactones also influence the aromatic characteristics
of F. nilgerrensis fruits and provide fruits with a fruity, sweet, or peach-like aroma and fla-
vor [13,27]. Zhao et al. (2014) identified δ-decalactone and γ-dodecalactone as two lactones
responsible for the characteristic aroma of F. nilgerrensis fruits, with γ-dodecalactone con-
tributing substantially to the peach-like scent [26]. Additionally, δ-decalactone was detected
as one of the compounds associated with the characteristic aroma of peach fruits [28]. Con-
sistent with the findings of these earlier studies, the δ-decalactone content was revealed to
be significantly higher in PA and HA fruits than in NA fruits, implying it may be crucial for
the formation of the peach-like aroma of F. nilgerrensis fruits. Previous research confirmed
γ-decalactone is another lactone related to the peach-like flavor of strawberry fruits [12,29]
and also one of the compounds that contributed most to the aroma of peach juice [30]. In
contrast with earlier studies, γ-decalactone and γ-dodecalactone were not significantly
or down-regulated in F. nilgerrensis (Table S2), respectively. Therefore, whether they are
the primary aromatic compounds responsible for the characteristic aroma of F. nilgerrensis
fruits remains to be confirmed. Moreover, In this study, the NA vs. HA and NA vs. PA
comparisons revealed δ-octalactone was among the lactones that were more abundant in
HA and PA than in NA. We believe that it may also be related to the peach-like aroma of
F. nilgerrensis fruits. Therefore, the significant increase in δ-decalactone and δ-octalactone
contents may be critical for the formation of the peach-like aroma of F. nilgerrensis fruits. The
characteristic aroma of strawberry fruits may be related to the changes in the proportion of
key aroma components [31]. Furthermore, other esters, such as acetic acid, octyl ester, may
also contribute to the formation of the peach-like aroma to some extent [6].

4.2. Transcriptome Analysis

Strawberry has highly complex fruit aromas, which are the result of hundreds of
volatile compounds [32]. However, only a few genes and TFs controlling the formation of
these volatile compounds have been identified [19,33–35], and genes responsible for the
peach-like aroma of F. nilgerrensis fruits have hardly been reported. In the present study,
27 DEGs were associated with ester and lactone biosynthesis (Table S4). The KEGG and
GO analyses indicated most of these genes (e.g., LOX, ADH, AAT, FAH, and FAD) are
involved in fatty acid pathways (Figures 5 and 6). Both omega-6 fatty acid desaturase
and omega-3 fatty acid desaturase may be associated with the production of a precursor
of lactones/esters [36,37]. Interestingly, the genes encoding these two enzymes had the
opposite expression patterns, suggesting they may have different roles in the formation
of strawberry fruit aromas. This phenomenon is similar to that observed in previous
studies examining peach fruit volatile formation [12,37]. According to published reports,
the accumulation of γ-decalactone, which has a peach-like flavor, is highly correlated with
the activities of AAT, FAD, FAH, ACX, and cytochrome P450 hydroxylases [12,16,27,38–40].
Additionally, the observed increase in the lactone content following the transient over-
expression of Mi9LOX and MiEH2 reflected their probable role in the lactone biosynthesis
in mango fruits [41]. Therefore, the above-mentioned genes may be important for the
formation of the peach-like aroma of F. nilgerrensis fruits. Previous studies revealed that
several TFs, such as NAC, ERF, bHLH, MYB, bZIP, TCP, GATA, and HSF family members,
help regulate the biosynthesis of fruit flavor-related components [42–46]. Recent research
demonstrated that AP2 and FaMYB9 are key TFs that regulate the production of aromatic
compounds in strawberry [20,35]. In this study, 35 TFs that reportedly mediate the biosyn-
thesis of compounds associated with fruit flavors were identified (Table S5). These results
may help elucidate the regulatory factors involved in the formation of the peach-like aroma
of F. nilgerrensis fruits.

4.3. Key Metabolites and Candidate Genes Associated with the Peach-like Aroma

Metabolites are the intermediate or final products of the cell biological regulatory
process [47], and their accumulation, which substantially influences fruit flavor-related
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traits, is controlled by many functional genes and TFs. Transcriptomics and metabolomics
experimental techniques have been applied to elucidate the metabolic pathways of interest
in many plants [48–51]. To clarify the formation of the peach-like aroma of F. nilgerrensis
fruits, we performed an integrated analysis of the transcriptome and metabolome, which
identified many DEGs involved in linoleic acid metabolism, α-linolenic acid metabolism,
and fatty acid degradation as well as the production of many DAMs of esters and lactones.
Two lactones related to the peach-like aroma (δ-decalactone and δ-octalactone) were identi-
fied in this study, but the genes encoding these two lactones and the related factors that
regulate the expression of these genes have not been reported. A total of 18 DEGs were
significantly correlated with these two lactones in strawberry, including functional genes
(AOS, ADH, FAD, and cytochrome P450 family members) and TF-encoding genes (MYB,
NAC, TCP, bZIP, bHLH, and AP2) (Figure 10). These findings may reflect the complexity
of the regulatory mechanism linking the changes in metabolite accumulation and gene
expression in strawberry. To improve our understanding of the mechanism mediating the
formation of the peach-like aroma of F. nilgerrensis fruits, the candidate gene functions, and
the related regulatory mechanisms will need to be characterized via gene over-expression
or silencing experiments as well as ChIP-seq and yeast one- or two-hybrid assays. Notably,
we revealed that two NAC family genes (LOC101302803 and LOC101314939) are signifi-
cantly correlated with two lactones in strawberry fruits for the first time. This suggests
that the NAC gene family might be critical for the formation of the peach-like aroma of
F. nilgerrensis fruits. Considered together, the results of this study illustrate the correlation
between metabolites and genes and provide insights into the formation of the peach-like
aroma of strawberry fruits.

5. Conclusions

To identify the key aroma components, candidate genes, and pathways that contribute
to the characteristic aroma of F. nilgerrensis fruits, we analyzed the fruits of F. nilgerrensis
(with a peach-like aroma) as well as the fruits of its interspecific hybrids PA (with a
peach-like aroma) and NA (without a peach-like aroma; control) at the metabolome and
transcriptome levels. A total of 150 DAMs were detected. More specifically, the fruits
of HA and PA contained significantly more esters/lactones (e.g., acetic acid, octyl ester,
δ-octalactone, and δ-decalactone) than the fruits of NA. Hence, these metabolites may
be crucial for the formation of the peach-like aroma of F. nilgerrensis fruits. Moreover,
DEGs significantly enriched in two GO terms of fatty acid metabolic process and fatty acid
biosynthetic process, and three KEGG pathways of linoleic acid metabolism, α-linolenic
acid metabolism, and fatty acid degradation that may be associated with ester/lactone
synthesis. Furthermore, 27 DEGs were predicted to be associated with esters and lactones
biosynthesis, including AAT, LOX, AOS, FAD, ATM1, EH, FAH, ADH, and cytochrome P450
subfamilies genes. Additionally, the 35 TFs predicted to be involved in the production of
aromatic compounds included bHLH, MYB, bZIP, NAC, AP2, GATA, and TCP TFs. On
the basis of a co-expression analysis, differentially expressed FAD, AOS, and cytochrome
P450 family genes as well as TF genes in the NAC, MYB, and AP2 families were revealed
to be closely related to δ-octalactone and δ-decalactone. The contributions of these key
metabolites, pathways, and genes to the formation of the peach-like aroma of F. nilgerrensis
will need to be experimentally verified. Nevertheless, the results of this study provide
insights into the peach aroma formation of F. nilgerrensis fruit and may be relevant for
optimizing the application of wild strawberry germplasm resources in breeding programs.
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