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Abstract

Motivation: Log-rank test is a widely used test that serves to assess the statistical significance of observed differen-
ces in survival, when comparing two or more groups. The log-rank test is based on several assumptions that support
the validity of the calculations. It is naturally assumed, implicitly, that no errors occur in the labeling of the samples.
That is, the mapping between samples and groups is perfectly correct. In this work, we investigate how test results
may be affected when considering some errors in the original labeling.

Results: We introduce and define the uncertainty that arises from labeling errors in log-rank test. In order to deal
with this uncertainty, we develop a novel algorithm for efficiently calculating a stability interval around the original
log-rank P-value and prove its correctness. We demonstrate our algorithm on several datasets.

Availability and implementation: We provide a Python implementation, called LoRSI, for calculating the stability
interval using our algorithm https://github.com/YakhiniGroup/LoRSI.

Contact: benga9@gmail.com or anatsamohi@gmail.com or zohar.yakhini@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The comparison of different treatments or, more generally, policies or
protocols, in terms of survival rates or in terms of success rates is a
central aspect of investigating these regimes and of taking related
decisions. There are two approaches that are generally taken in ana-
lyzing survival data. The first uses a permutational null distribution
(Heimann and Neuhaus, 1998; Vandin et al., 2015) and is more ap-
propriate for imbalanced data. The second, more popular approach,
uses a conditional null model, based on the hypergeometric distribu-
tion. This second approach is also the focus of this article. The log-
rank test was introduced by Mantel (1966) and is extensively used
since then. It is a standard tool in survival analysis, e.g. Kleinbaum
and Klein (2012). In Tourneau et al. (2015), reporting on the SHIVA
study, the log-rank test was used to determine whether the use of sev-
eral targeted therapies outside their intended indications will improve
progression-free survival in cancer. In Pitt et al. (1999), the authors
used log-rank test to conclude that the use of Spironolactone is effect-
ive to lower the risk of death in patients who suffered from severe
heart failure. Galili et al. (2021) investigate efficient gene signatures
that characterize a breast cancer subtype related to the patient’s im-
mune response. The signature is optimized using a survival criterion
based on the log-rank test. Levy-Jurgenson et al. (2020) report how
cancer intratumor heterogeneity can affect patient survival.

When applying the log-rank test to a set of data, we are implicit-
ly assuming that the association of a subject, or, more generally, a
sample, to one of the two labels, is not in doubt. In reality, however,

this assumption is often compromised. In some cases, the label as-
signment is, indeed, rather straight forward. This is typically the
case in the assignment to treatment arms. In other situations, it may
be much less well defined.

This is the case, as a first example, when label assignment is deter-
mined by a human judgment, e.g. based on inspection by pathologists,
which is often prone to errors. Literature explicitly reports inconsist-
ency in pathology. Jackson et al. (2017) report a study that found that
the decision of the same pathologist varied when examining the same
samples in different times. They showed that two diagnostic calls of
the same pathologist, separated by at least 9 months, on the same bi-
opsy, have an agreement rate of 92% (95% CI 88–95%) for invasive
breast cancer and even less for other breast cancer types. Jackson et al.
(2017) also showed that for different pathologists testing the same bi-
opsy the agreement rates dropped by additional 3–10%. Elmore et al.
(2017) reported similar results. In a different context, any subjective
scoring approach, such as the Eastern Cooperative Oncology Group
(ECOG) score, as used in Loprinzi et al. (1994), depends, based on the
same principles, on the individual making the calls.

As a second example consider labeling that follows a machine
decision. Three recent studies (Ha et al., 2019; Islam et al., 2020;
Jaber et al., 2020) introduce machine-learning models to determine
breast cancer subtypes. They all reported around 70% accuracy.

Finally, consider sample labeling, which is based on the results of
some molecular measurement assay. Ebbert et al. (2011) showed
how intrinsic errors in the laboratory process, specifically in gene
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expression profiling, affect the final results. They test this on
PAM50 results and reported around 5% error in the classification.

In the context of survival analysis, wrong sample labels can lead
to dramatically different statistical assessments. Consider the
MAINZ cohort, Schmidt et al. (2008), that describes survival data
for breast cancer patients. As extensively reported, including in
Fallahpour et al. (2017) and Howlader et al. (2018), Luminal A
patients have better prognosis than the other types. This can be seen
also in the MAINZ cohort, see the left panel in Figure 1. We note a
significant difference in the Luminal A prognosis with P-value
¼0.014. Now, what will the effect be, on the resulting P-value, of
changing one Luminal A label out of the 200 samples (0.5%) in the
MAINZ cohort? Figure 2 shows the original data and the data after
one label change. Figure 1 shows the Kaplan–Meier graphs, before
(left) and after (right) the change, and the corresponding P-values.
Examining Figure 1 shows a dramatic change in the P-value from
0.014 to 0.029, when it is not so simple to notice any change in the
plots themselves. Expanding this observation to the actual labeling
error, e.g. as reported in Ebbert et al. (2011) for breast cancer sub-
types, can lead to even more dramatically changes in the P-value.

Previous investigations addressed several aspects of uncertainty in
survival analysis. Heterogeneity between individuals is not taken into
account in the basic form of log-rank test. To address this bias,
Hougaard (1995) introduced the concept of frailty models for survival
analysis. Under this approach, the null model does not assume that the
distribution of time to event is the same for all subjects. In order to
overcome the unobserved heterogeneity in the survival data the frailty
models use random effect to create different time to event distributions.

Addressing a different issue, it is common to report (and plot) confi-
dence intervals for each of the observed hazard ratios, resulting in a
confidence envelope around the survival lines. In Vandin et al. (2015),
the authors demonstrated that asymptotic approximation, as in log-
rank test, can be misleading when the two groups under consideration
have very different sizes. They introduced a novel approach to accur-
ately calculate the log-rank P-value regardless of the group sizes.
Splitting subjects to two groups, in order to determine an association
between the split and, potentially, low risk and high risk, is an import-
ant task in the context of survival analysis. Standard studies use treat-
ment types, protocols etc. When studying a quantitative potential
determinant of survival, we are often interested in splitting according
to that quantity. For example, the expression level of some gene or
maybe BMI. Trying all possible cut-points (thresholds) is not practical
due to multiple testing problems. In an important paper treating this
issue, Hothorn and Lausen (2003) developed a method for calculating
an upper bound on the log-rank test P-value, which efficiently takes
into account multiple testing. This approach checks different label
assignments, similar to our work, but limits the splits being considered.
In addition, it focuses on finding the best split. In this work, we address
general labeling and not necessarily such which is driven by a quantita-
tive feature. Our study also considers completely general labeling
changes and not ones related to consistent threshold splits.

In this work, we address, for the first time, the uncertainty that
arises from general labeling errors and label instability. Given sur-
vival data with n samples and an error rate, a, we find the minimum
and maximum log-rank P-values that can result from changing
the labels of at most an samples. These minimum and maximum

Fig. 1. Kaplan–Meier curve and log-rank P-value on the MAINZ cohort—Luminal A versus not Luminal A. On the left the original data and on the right the data after one

change

Fig. 2. MAINZ cohort data, before and after one change in the labels
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P-values, PL and PU, define a stability interval [PL, PU]. To make
our analysis less sensitive to extreme cases, we support the use of a
confidence level, 1� d, to further narrow our interval. The main
contributions of our work are as follows:

• A definition of labeling errors stability intervals for statistical

tests.
• A procedure that, given data and a bound on the labeling error,

calculates a stability interval for the log-rank test.
• A software implementation of the above procedure.
• https://github.com/YakhiniGroup/LoRSI.
• Applications to several example cases.

2 Materials and methods

2.1 The statistical framework for log-rank stability
2.1.1 Preliminaries

We first set the notation for the log-rank test, in the context of the
conditional null distribution (Mantel, 1966), as will be used in the
rest of the manuscript.

• Consider time and event data D (survival data) with a partition

labeling k0 [a binary vector mapping subjects into the groups

A (0) & B (1)] over n subjects.
• Let j ¼ 1; . . . ; J be the distinct times of observed events in either

group.
• Let nA;j; nB;j be the number of subjects ‘at risk’ (who have not yet

had an event nor have been censored) at the time of occurrence

of the jth event in the two groups, respectively.
• Let OA;j; OB;j be the random variables representing the observed

number of events in each group at time j.
• Denote nj ¼ nA;j þ nB;j, the number of at-risk subjects at time j.
• Denote oj ¼ OA;j þOB;j, the number of actual events observed at

time j.
• Let T be the time of failure of a subject. PðT ¼ tÞ is the probabil-

ity distribution function of T. The survival function is defined as

SðtÞ ¼ 1� PðT < tÞ ¼ 1� FðtÞ.
• In log-rank testing, we are working under the null model that

assumes that the two groups have identical survival functions,

SAðtÞ � SBðtÞ
• We then have

OA;j � HGðnj; nA;j; ojÞ:

Similar for group B (HG stands for Hypergeometric).
• The null model also assumes that the variables OA;j are (collect-

ively) independent.
• The expected value and the variance of OA;j under the null model

are:

EA;j ¼
nA;j

nj
oj

VA;j ¼
nA;j

nj
oj

nj � oj

nj

� �
nj � nA;j

nj � 1

� �
:

Similar for group B.
• Putting everything together, for all j ¼ 1; . . . ; J, the log-rank stat-

istic compares OA;j to their expected values EA;j under the null

model. The statistic is defined as:

ZA ¼
O� Effiffiffiffi

V
p ;

where:

O ¼
XJ

j¼1

OA;j E ¼
XJ

j¼1

EA;j V ¼
XJ

j¼1

VA;j:

Similar for group B.

If J is sufficiently large and the partition into A and B is reasonably
balanced (see e.g. Vandin et al., 2015) then, Z is approximately dis-
tributed as N(0, 1). This allows us to compute a P-value for the com-
parative survival data D, using the value actually observed for O,
which we denote o ¼ oðDÞ. This P-value is denoted by LRðD; k0Þ.
By extension LRðD; kÞ will denote the log-rank P-value that would
be obtained for any different partition labeling k.

2.1.2 Definition of the log-rank stability interval

We now define a log-rank stability interval for given survival data
and two parameters a > 0 and d � 0.

• Again, consider time and event data D with a partition labeling

k0 (mapping subjects into the groups A & B) over n subjects.

Recall that LRðD; k0Þ is the log-rank P-value computed for this

data.
• Let 0 < a < 1. Given a different binary labeling k, we say that

k is an a-modification of k0 if the labels have changed in less than

a fraction a of the samples.
• Formally, Hðk; k0Þ � a � n, where H is the Hamming distance.
• Let Bðk0; aÞ be the set of all possible labeling partitions k that are

a-modifications of k0.
• Let 0 � d < 1. We want to compute a tight interval ½pL; pU� in

the following sense: pU should be the smallest number for which

LRðD; kÞ 2 ½pL; pU� holds for a 1� d fraction of k 2 Bðk0; aÞ.
Note that under this definition, we require tightness on the right

hand side, which is, in practice, taking a conservative approach,

the more interesting case (see Section 4).
• The interval defined above is the stability interval for the two

parameters a > 0 and d > 0 and the input data. We write:

SIðD; k0; a; dÞ ¼ ½pL; pU�: (1)

For example, given data D with n ¼ 100 (100 samples), d ¼ 0:05
and a ¼ 0:01, we want to compute an interval SI so that for 95% of
the single label changes (1% change) the log-rank P-value will fall
in SI.

2.2 Computing stability intervals for log-rank test
In this section, we describe our algorithmic approach and prove its
correctness.

2.2.1 Algorithm: LoRSI

We start by some definitions and notations.
Let:

• D� the dataset. Consisting of three vectors of length n:

a. e: event/censored descriptor. Indicates whether event or cen-

sored occurred.

b. t: time. The time from the beginning of an observation period

to an event, censored or end of the study.

c. l: group. Indicates the group of the subject.
• d ¼ ðlðdÞ; tðdÞ; eðdÞÞ represents a single instance: an instance d 2

D is defined by three quantities—the group label l(d), the time

t(d) and the event/censored descriptor e(d).
• F : the set of interest (the Focus set).
• B : the other set (the Background set).
• The set F is typically the one that has a better survival rate. That

is: ZF < ZB. In this article, we also take this approach and

Log rank stability interval 4453
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therefore F is the set that has the better survival rate in the input

data, D.

We further define the following subsets of F and B:

• EF: the events of the group F, ordered from the earliest to the

latest.
• CF: the censored samples of the group F, ordered from the ear-

liest to the latest.
• EB: the events of the group B, ordered from the earliest to the

latest.
• CB: the censored samples of the group B, ordered from the ear-

liest to the latest.

Note that F ¼ EF [ CF and B ¼ EB [ CB.
Now define the prefixes and sufixes of these ordered subsets as

follows:

• EFLðiÞ ¼ the samples EFð1Þ; . . . ;EFðiÞ
• EBLðiÞ ¼ the samples EBðjEBj � iþ 1Þ; . . . ;EBðjEBjÞ
• CBLðiÞ ¼ the samples CBðjCBj � iþ 1Þ; . . . ;CBðjCBjÞ
• EFUðiÞ ¼ the samples EFðjEFj � iþ 1Þ; . . . ;EFðjEFjÞ
• EBUðiÞ ¼ the samples EBð1Þ; . . . ;EBðiÞ
• CFUðiÞ ¼ the samples CFðjCFj � iþ 1Þ; . . . ;CFðjCFjÞ:

Following standard notation for the set of types of denominator
k over a three letter alphabet (Cover, 1999), we denote:

Tðk;3Þ ¼ fði1; i2; i3Þ : i1 þ i2 þ i3 ¼ kg:

Note that:

jTðk; 3Þj ¼ kþ 2
2

� �
:

Definition 1. The set of PU candidates is defined by:

CU ¼ fðEFUði1Þ [ EBUði2Þ [ CFUði3ÞÞ : ði1; i2; i3Þ 2 Tðk;3Þg:

We will show that this is the collection of candidate sample sets
of size k, amongst which we will identify the set of samples that, if
swapped, will lead to the most extreme positive change in the
P-value. Note that the size of CU is the same as that of Tðk; 3Þ,

namely
kþ 2

2

� �
.

Similarly:

Definition 2. The set of PL candidates is defined by:

CL ¼ fðEFLði1Þ [ EBLði2Þ [ CBLði3ÞÞ : ði1; i2; i3Þ 2 Tðk; 3Þg:

Algorithm 1 describes the Log-Rank Stability Interval Algorithm

(LoRSI) for finding PL and PU, where a ¼ k
n. For PU, the idea of the

algorithm is to iterate over the set of all relevant sets of k changes.

The size of this collection is relatively small, namely
kþ 2

2

� �
, due

to the monotonicity effect on the z-score in each one of the groups
EF;CF & EB as proven below in Section 2.2.2. In each iteration, our
procedure calculates the P-value after changing the labels of the cur-
rent k subjects. Finally, it selects the max P-value among the

kþ 2
2

� �
candidates. Note that, if we consider only one label

change (k ¼ 1), then, the SI (both sides) is determined by only six
candidates, three for PU and three for PL (see Fig. 3). In the
Supplementary Material, we describe the LoRSI algorithm, where

a ¼ 1
n and for any d > 0.

2.2.2 Correctness

In this section, we prove the correctness of Algorithm 1. This, in es-
sence, is the content of Theorem 1, stated at the end of this section.
We start with some definitions and notations.

• Let z0 be the original Z-statistic obtained from the input labeling.
• Now consider a labeling swap for the instance d. That is, if in k0,

the instance d is in the group F, then, it is swapped to B and sym-

metrically otherwise. This swap will affect the value of Z calcu-

lated for the new data. Let

znewðD; dÞ ¼
onew � Enewffiffiffiffiffiffiffiffiffiffi

Vnew

p ;

where onew, Enew and Vnew are obtained for the swapped data as

described in the preliminaries.
• We are specifically interested in the resulting change in the

observed value of Z, which we denote

DzðD;dÞ ¼ znewðD;dÞ � z0:

Let ðY1; . . . ;YnÞ be a set of RVs. We say that ðY1; . . . ;YnÞ is an inde-
pendent hypergeometric set (IHS) if:

1. Y1; . . . ;Yn are (collectively) independent.
2. 8i Yi � HGðNi;Bi; niÞ:
3. 8i VarðYiÞ > 0:

For a single RV X let

ZðXÞ ¼ X� EðXÞffiffiffiffiffiffiffiffiffiffiffiffi
VðXÞ

p
and then, for a set of independent RVs,

ZðX1; . . . ;XnÞ ¼ Zð
Xn

i¼1

XiÞ:

We note that if ðY1; . . . ;YnÞ is an IHS and if n is sufficiently large
then the distribution of ZðY1; . . . ;YnÞ is approximately standard

Algorithm 1: LoRSI pseoducode.

Log-Rank Stability Interval

input: Dataset—D, a ¼ k
n

output: Stability Interval ½pL;pU�
pL candidates ¼1
pU candidates ¼1
//each of these sets will hold all

kþ 2
2

� �
relevant P-values

for current_set_of_changes in CU do

//see Definition 1 for CU

p ¼ log-rank P-value after swapping the labels of all the k

samples in current_set_of_changes

pU candidates.append (p)

end

for current_set_of_changes in CL do

//see Definition 2 for CL

p ¼ log-rank P-value after swapping the labels of all the k

samples in current_set_of_changes

pL candidates:append (p)

end

pU ¼ maxðpU candidatesÞ
pL ¼ minðpL candidatesÞ
return pL, pU
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Fig. 3. Log-rank stability analysis for single label changes. The figure represents results for three datasets, as described in the text. Each of the depicted datasets consists of two

groups (F)—the (actual, as per the original data) group of patients with good prognosis, and (B)—the bad prognosis group. Each data point is either an event or a censored

point. The combination of the group and the event type leads to four categories of patients. The scatter plots provide a visual representation of the effect, on the P-value, that

follows from changing the label of a single sample (i.e. a ¼ 1
n). We can observe the monotonicity of the effect, with a direction depending on the category, as proven in Section

2. For each dataset, we indicate the original (non-swap) P-value (solid black lines on the right panel), the numbers PL and PU (solid red lines) for d¼0 and the number PU for

d ¼ 0:05 (dashed red lines). Sample categories, in the scatter plots are represented by shape and color: blue dots—event swap from (B) to (F), red dots—event swap from (F) to

(B), cyan Xs—censored sample swap from (B) to (F) and purple Xs—censored sample swap from (F) to (B). The green and red circles represent PL and PU candidates, respect-

ively, at d ¼ 0

Log rank stability interval 4455



normal (Lindeberg, 1922). We also note that, as stated above, the
variables OA;j, where 1 � j � J, constitute an IHS.

For an observation x, derived from an RV X, we further define
the Z-transformed value:

zðxÞ ¼ x� EðXÞffiffiffiffiffiffiffiffiffiffiffiffi
VðXÞ

p :

For a set observation we now define

zðX1 ¼ x1; . . . ;Xn ¼ xnÞ ¼ zð
Xn

i¼1

xiÞ:

For a random variable X and a number x 2 R, we use the nota-
tion CDF(X, x) to represent the cumulative distribution of X at x.
Or, in other words: CDFðX;xÞ ¼ PðX � xÞ.

Claim 1. Given two RVs X, Y where:

X � HGðN;B; nÞ;Y � HGðN;B;mÞ

and

n < m

then

8b � n; CDFðY; bÞ < CDFðX;bÞ:

See Supplementary Material for a proof.
Claim 2. Consider two RVs X, Y where:

X � HGðN;B; nÞ;Y � HGðN;B;mÞ:

Let T1; . . . ;Tk be k RVs where both ðX;T1; . . . ;TkÞ and
ðY;T1; . . . ;TkÞ are IHS. Denote li ¼ EðTiÞ and ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
VðTiÞ

p
.

Let:

Z1 ¼ ZðY;T1; . . . ;TkÞ; z1 ¼ zðY ¼ a;T1 ¼ t1; . . . ;Tk ¼ tkÞ
Z2 ¼ ZðX;T1; . . . ;TkÞ; z2 ¼ zðX ¼ a;T1 ¼ t1; . . . ;Tk ¼ tkÞ

If

n < m

then:

1. CDFðZ1; z1Þ < CDFðZ2; z2Þ
2. For sufficiently large values of k (which is the interesting case, in

the context of log-rank, see comment after the proof), we also

have:

z1 < z2:

See Supplementary Material for a proof.
As noted above, we are interested in working with large values

of k in the context of log-rank. Without this assumption, the second
part of Claim 2 is not necessarily true. For example, for k ¼ 1,
consider:

• T1 � HGð90;2; 1Þ with observed value t1 ¼ 1
• X � HGð100; 1;50Þ with observed value a ¼ 1
• Y � HGð100; 1; 99Þ with observed value a ¼ 1,

which yields: z1 ¼ 5:554; z2 ¼ 2:835:
Claim 3. Let dj1 and dj2 be censored samples in D from group F.
Let z1 ¼ znewðD;dj1Þ and z2 ¼ znewðD; dj2Þ.
If timeðdj1 Þ < timeðdj2 Þ then z0 < z1 < z2, and therefore:

0 < DzðD; dj1Þ < DzðD; dj2Þ:

Similarly, if the censored samples, dj1 and dj2 , come from group
B then if timeðdj1 Þ < timeðdj2 Þ then z0 > z1 > z2, and therefore:

0 > DzðD; dj1Þ > DzðD; dj2Þ:

Proof. We use the fact that the random variables OF;j as defined in the

log-rank setup constitute an IHS. Swapping dj1 from F to B leads to a

change in the at risk numbers nF;j 8j � j1. More specifically each one of

them is decreased by 1. Nothing changes for the later indices. Assuming

that J is sufficiently large, we now iteratively use Claim 2. In every iter-

ation, we decrease nF;j by 1, starting at j ¼ 1 and ending at j ¼ j1. At

every index j let OF;j and ~OF;j be the hypergeometric variables represent-

ing the number of events at time j before and after a hypothetical swap

at j, respectively. Claim 2 therefore applies, at every iteration j, with OF;j

and ~OF;j playing the role of Y and X, respectively, and ~OF;i with 1 �
i � j� 1 and OF;i with jþ 1 � i � J playing the role of the Tis. We,

thus, get z0 < z1.

Similarly, since j1 < j2 the swap of dj2 will affect all at risk num-
bers above as well as several others nF;j s:t j1 < j � j2. Continuing
the above iterations, we therefore have z1 < z2.

When swapping away from group B, the effect of the swap
will be to increase the at risk numbers, leading to the reverse
inequalities. �

Claim 4. Consider the RVs X1, X2 and Y 1, Y 2 where:

X1 � HGðN;B; lÞ;Y1 � HGðN;B; lÞ
X2 � HGðM;C; nÞ;Y2 � HGðM;C;mÞ:

Let T1; . . . ;Tk�1 be k �1 RVs where both ðX1;X2;T1; . . . ;Tk�1Þ
and ðY1;Y2;T1; . . . ;Tk�1Þ are IHS. Denote li ¼ EðTiÞ and
ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
VðTiÞ

p
.

Let:

z1 ¼ zðY1 ¼ a1 � 1;Y2 ¼ a2;T1 ¼ t1; . . . ;Tk�1 ¼ tk�1Þ
z2 ¼ zðX1 ¼ a1;X2 ¼ a2 � 1;T1 ¼ t1; . . . ;Tk�1 ¼ tk�1Þ:

If

n < m

then

z1 < z2

Proof. First, we write explicitly:

Z1 ¼
Y1 � lY1

þ Y2 � lY2
þ T1 � l1 þ � � � þ Tk�1 � lk�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
Y1
þ r2

Y2
þ r2

1 þ � � � þ r2
k�1

q

Z2 ¼
X1 � lX1

þX2 � lX2
þ T1 � l1 þ � � � þ Tk�1 � lk�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
X1
þ r2

X2
þ r2

1 þ � � � þ r2
k�1

q

z1 ¼
a1 � 1� lY1

þ a2 � lY2
þ t1 � l1 þ � � � þ tk�1 � lk�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
Y1
þ r2

Y2
þ r2

1 þ � � � þ r2
k�1

q

z2 ¼
a1 � lX1

þ a2 � 1� lX2
þ t1 � l1 þ � � � þ tk�1 � lk�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
X1
þ r2

X2
þ r2

1 þ � � � þ r2
k�1

q :

By definition lY1
¼ lX1

and rY1
¼ rX1

. Let b1 ¼ a1 � 1. We rearrange

the term to get:

z1 ¼
b1 � lY1

þ a2 � lY2
þ t1 � l1 þ � � � þ tk�1 � lk�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
Y1
þ r2

Y2
þ r2

1 þ � � � þ r2
k�1

q

z2 ¼
b1 � lY1

þ a2 � lX2
þ t1 � l1 þ � � � þ tk�1 � lk�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
Y1
þ r2

X2
þ r2

1 þ � � � þ r2
k�1

q :
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We now apply Claim 2, with: b1 ¼ tk; lY1
¼ lk; rY1

¼ rk; a2 ¼
a; lY2

¼ lY ; rY1
¼ rY ; lX2

¼ lX; rX2
¼ rX and get z1 < z2. �

Claim 5. Let dj1 and dj2 be events in D from group F.
Let z1 ¼ znewðD;dj1Þ and z2 ¼ znewðD; dj2Þ.
If timeðdj1 Þ < timeðdj2 Þ then z1 < z2, and therefore:

DzðD; dj1Þ < DzðD;dj2Þ:

Similarly, if the events, dj1 and dj2 , come from group B then if
timeðdj1 Þ < timeðdj2 Þ then z1 > z2, and therefore:

DzðD;dj1Þ > DzðD; dj2Þ:

Proof. We once again use the fact that the random variables OF;j as

defined in the log-rank setup constitute an IHS. Swapping dj1 from F to

B leads to a change in the at risk numbers nF;j 8j � j1. More specifically

each one of them is decreased by 1. Similarly, since timeðdj1 Þ <
timeðdj2 Þ the swap of dj2 will affect all at risk numbers above as well as

several others, namely nF;j s:t j1 < j � j2. In addition, oF;j1 becomes

oF;j1 � 1 when swapping dj1 and oF;j2 becomes oF;j2 � 1 when swapping

dj2. Therefore, oFnew ¼ oF � 1 in both swaps.

Now, let Y1 and Y2 be OF;j1 and OF;j2 after swapping dj1 from F
to B, respectively. In addition, let X1 and X2 be OF;j1 and OF;j2 after
swapping dj2 from F to B, respectively. By iteratively using Claim 4
and assuming that J is sufficiently large, we get z1 < z2.

In the case of swapping away from group B, the effect of the
swap will be to increase both the at risk numbers and the observed
oFnew, and therefore we get the reverse inequalities. �

In summary, we proved that changing one sample will lead to a
monotonic effect on the z-score and therefore on the log-rank
P-value.

Now consider the case of k swaps. We claim that the k instances
that yield the most extreme positive change in the P-value is one of
the candidates in CU. Let k	 be the labeling that, indeed, yields the
largest LRðD; kÞ within Bðk0;

k
n Þ. To see why the above claim holds

assume, WLOG, that k	 swaps some instance EBUðjÞ but does not
swap EBUðiÞ for some i< j. By the monotonicity proven above
(Claim 5), we can swap EBUðiÞ instead of EBUðjÞ and get a larger
Dz. A similar argument holds for an assumed usage, by k	, of a non-
continuous suffix of EF and CF, respectively. Furthermore, a similar
argument holds for the left side of the interval.

We conclude that:

Theorem 1. For any k (counting label swaps in a data D),

max LRðD; kÞ : k 2 Bðk0;
k
nÞ

� �
is attained by swapping the labels in one

of the sets listed in CU and therefore determined by a triplet

ði1; i2; i3Þ 2 Tðk; 3Þ. Similarly, min LRðD; kÞ : k 2 Bðk0;
k
nÞ

� �
is attained

by a set in CL and therefore also determined by some (other) triplet

ði1; i2; i3Þ 2 Tðk; 3Þ.

3 Results

We now demonstrate the calculation of stability intervals on three
different datasets (see Kaplan-Meier curves in Figs 1, 4 and 5). In
calculating the interval, we use our efficient LoRSI algorithm, which
is considering only a small set of relevant swaps, depending on the
value of a, as described above. To provide a more complete informa-
tion on how labeling errors can affect a given dataset, we also pre-
sent the full P-value distribution. In order to do this, we calculate
the log-rank P-value for all possible swaps according to a. The P-
value distributions for a ¼ 1

n, pertaining to the n þ 1 swaps (includ-
ing the non-swap original data) are depicted in Figure 3B, D and F.
In addition, we present, in Figure 3A, C and E, for each dataset, the
P-value as a function of the time and type of the swapped sample.
For the first dataset, we also calculated the interval for 2 and 3
changes (Fig. 6). It should be noted that the calculation of the full
distribution introduces a prohibitive time complexity. A more
detailed comparison to our efficient approach is given below.

The first dataset is the MAINZ cohort (Schmidt et al., 2008).
We divided the data according to the subtype—Luminal A versus
not Luminal A. It is well known that the breast cancer subtype
Luminal A has better prognosis than the rest of the subgroups
(Fallahpour et al., 2017; Howlader et al., 2018). As expected and as
stated in the introduction, a log-rank test demonstrates this differ-
ence with P-value ¼ 0.014 (see the left panel in Fig. 1). The stability

interval calculated given a ¼ 1
n & d ¼ 0 is [0.006, 0.029], see Figure

3A and B. This interval represents a 57% and 107% decrease/in-

crease from the original P-value, respectively. We note that a ¼ 1
n in

this dataset is only 0.5%. Using d ¼ 0:05, the effect is still dramatic:
a 101% increase to the inferred maximum P-value (SI ¼ [0.006,

0.0282]). We further investigate the effect of a ¼ 2
n and a ¼ 3

n. The

stability interval calculated for a ¼ 2
n is [0.0029, 0.055] and when

using d ¼ 0:05, we got PU ¼ 0:034. The stability interval calculated

for a ¼ 3
n is [0.0013, 0.095] and when using d ¼ 0:05 we got

PU ¼ 0:043. Here, again, we calculated the full P-value distribution
to provide the complete information (see Fig. 6), a time consuming
process. In order to find the stability interval, using the full P-value

distribution for a ¼ k
n, one needs to perform

Pk
i¼1

n
i

� �
log-rank calcu-

lations. Our LoRSI algorithm needs only 2
kþ 2

2

� �
such calcula-

tions, as described in Section 2. It took 2.5 min to calculate the SI

using the full P-value distribution, for a ¼ 2
n, where LoRSI took 0.5

s. For a ¼ 3
n, the gap is much larger: almost 3 h to calculate the SI

using the full P-value distribution and only 0.75 s for LoRSI.

Fig. 4. Kaplan Meier curve and log-rank p-value according to ECOG score of

patients with advanced colorectal or lung cancer - ECOG¼0 Vs ECOG > 0

Fig. 5. Kaplan Meier curve and log-rank p-value according to expression of the gene

MSH2 in ovarian cancer patients - MSH2 expression>-0.7 Vs MSH2 expression �-0.7

Log rank stability interval 4457



Furthermore, setting a ¼ 0:04, which represents the error rate
according to Ebbert et al. (2011), we need to investigate k ¼ 8
changes, which is totally impractical. LoRSI will take seconds to do
the SI calculation.

The second dataset came from a study that was developed to
compare descriptive information from a patient-completed question-
naire to that obtained by the patient’s physician Loprinzi et al.
(1994). All the patients suffered from advanced colorectal or lung
cancer. We consider the ECOG score calculated by a physician that
assess the patients as a label for assessing survival differences. The 0
score represents fully active, able to carry on all pre-disease activities
without restriction. Higher ECOG means less ability to perform
usual daily activities, where 5 is the highest score. We divided the
data according to ECOG ¼ 0 and ECOG > 0. The statistical differ-
ence in survival between the groups is significant with log-rank
P-value ¼ 0.0021 (Fig. 4). The stability interval calculated given
a ¼ 1

n & d ¼ 0 is [0.0004, 0.0079], see in Figure 3C and D. This
interval represents a 81% and 276% decrease/increase from the ori-
ginal P-value, respectively.

The third and last dataset comes from an investigation of the
gene expression in ovarian cancer patients, using the TCGA data
(Network et al., 2011). The MSH2 gene was shown to be associated
with survival in ovarian cancer (Borcherding et al., 2018). We took
the relevant part of the TCGA dataset and split the samples into two
groups according the optimal cutoff suggested by Borcherding et al.
(2018). This cutoff is (standardized) MSH2 expression >�0.7 and it
yields a log-rank P-value of 0.0347 (Fig. 5). The resulting SI at a ¼ 1

n
is [0.009275, 0.0947], see in Figure 3E and F. Here, the SI represents
a 73% decrease from the original P-value to the minimum P-value
and a 273% increase to the maximum P-value. This PU results from
swapping only one single sample (the latest censored sample in CF),
which is 0.24% of the samples in the cohort. Moreover, increasing d
to 0.05 will change PU to 0.06, still a dramatic effect. To obtain
PU < 0:05, we need to set d to 0.1. The meaning of this result is
that 10% of the single sample labeling swaps, applied to a dataset
that originally had a significant survival signal, result in a non-
significant P-value.

4 Discussion

In this work, we introduce the novel concept of stability interval for
log-rank test. This interval represents the possible effects of perturb-
ing the labels from the original survival analysis data. We show that
even a small error rate in the labels can lead to dramatically different
statistical conclusions. Our calculated stability interval bounds these
differences, thus allowing an assessment of the stability of the statis-
tical test, under labeling errors. We focus on the definition of the sta-
bility interval for log-rank and develop an algorithm for efficiently
calculating the interval for any a.

We present a deterministic approach for addressing the labeling
error issue, where we consider all possible label swaps that affect
different sample sets representing exactly a fraction of the samples.
One can also take a stochastic approach, wherein instances are gen-
erated, in which each sample label is swapped with probability a.
The number of labels actually swapped will then have a Binomðn; aÞ
distribution. Sampling sufficiently many instances, or analytically
characterizing the resulting sample space, will lead to a new way of
calculating the stability interval from the resulting P-value distribu-
tion. While in the deterministic approach, we (in effect) assume a
uniform error distribution, in this stochastic approach we can, the-
oretically, use any error distribution. This includes, e.g. models that
would assign confidence to individual labels, making swaps less or
more likely for individual subjects in the cohort. The study of this
interesting and potentially useful extension is a topic for future re-
search. Our approach is also extended to address a confidence par-
ameter d. Specifically, we find the smallest number pU for which
LRðD; kÞ 2 ½pL; pU� holds for a 1� d fraction of possible labeling
changes k 2 Bðk0; aÞ. This represents a conservative approach to tak-
ing d into account. Namely, one that focuses on the desired signifi-
cance threshold, as may be determined, by the user, in the study
design.

We note that in the proof of our algorithmic approach, we distin-
guish between working with the CDFs of sums of hypergeometric
distributions and working with their standardized versions. Our re-
sult, pertaining to how the ends of the log-rank SI can be obtained

by calculating the results of 2
kþ 2

2

� �
sets of k swapped, holds for

large Js as it requires a normal approximation. If differences in sur-
vival are directly assessed against the underlying sum of hypergeo-
metric variables null model, then some of our results hold for any J.

We investigated the advantage of using our efficient LoRSI ap-
proach as compared to calculating the stability interval by generat-

ing the full P-value distribution. While LoRSI performs Hðk2Þ log-
rank calculations to address k changes, the exhaustive approach

takes H
n
k

� �
such calculations. This complexity gap leads to sec-

onds versus hours difference for small values of k and to LoRSI
being the only practical approach in higher values.

We provide a Python implementation of the LoRSI algorithm.
Current work focuses on the development of more efficient and user

Fig. 6. p-value distribution on the MAINZ cohort (Luminal A versus not Luminal

A), when a ¼ 2
n, panel A, and when a ¼ 3

n, panel B. The black line is the original

p-value. The solid red lines are the PL and PU when d¼0. The dashed red line

represents the PU when d¼0.05
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friendly implementations of the methods described herein as well as
on visualization tools. All will be made available through future
releases. We hope that such efforts will make statistical stability ana-
lysis more accessible and useful for the community.
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